
PerfCenter: A Performance Modeling Tool for Application
Hosting Centers

Akhila Deshpande
Department of Computer
Science and Engineering

IIT Bombay
Powai, Mumbai-400076,

INDIA
uakhila@cse.iitb.ac.in ∗

Varsha Apte
Department of Computer
Science and Engineering

IIT Bombay
Powai, Mumbai-400076,

INDIA
varsha@cse.iitb.ac.in †

Supriya Marathe
Department of Computer
Science and Engineering

IIT Bombay
Powai, Mumbai-400076,

INDIA
supriyam@cse.iitb.ac.in

ABSTRACT
We present a tool, PerfCenter, which can be used for perfor-
mance oriented deployment and configuration of an applica-
tion in a hosting center, or a “data center”. While there are
a number of tools which aid in the process of performance
analysis during the software development cycle, few tools are
geared towards aiding a data center architect in making ap-
propriate decisions during the deployment of an application.
PerfCenter facilitates this process by allowing specification
in terms that are natural to a data center architect. Thus,
PerfCenter takes, as input, the number and “specs” of hosts
available in a data center, the network architecture of geo-
graphically diverse data centers, the deployment of software
on hosts, hosts on data centers, and the usage information
of the application (scenarios, resource consumption), and
provides various performance measures such as scenario re-
sponse times, and resource utilizations. We describe the
PerfCenter specification, and its performance analysis util-
ities in detail, and illustrate its use in the deployment and
configuration of a Webmail application.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Client/server,Distributed applications;
C.4 [Performance of Systems]: [Modeling Techniques];
D.2.8 [Software Engineering]: Metrics—Performance
measures

General Terms
Performance,Design

∗This research was funded by Tata Consultancy Services
and was carried out in the TCS Laboratory for Intelligent
Systems, CSE Department, IIT Bombay.
†This research was funded by the IBM Faculty Award 2007-
08.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP’08, June 24–26, 2008, Princeton, New Jersey, USA.
Copyright 2008 ACM 978-1-59593-873-2/08/06 ...$5.00.

Keywords
Performance analysis, tool, data center

1. INTRODUCTION
Enterprise applications are typically hosted in central

facilities called “application hosting centers”, or more
commonly, “data centers”. Each time a new application is
to be hosted in a data center, the data center architect must
make several design choices. E.g.- does the application need
additional machines? What should be the configuration of
these machines? How should the application components
be deployed on these machines? How should they be
configured? If there are multiple data centers, connected
through wide-area network (WAN) links, there would be
a choice of possibly distributing some application compo-
nents over the different data centers. All these decisions
significantly impact the performance of the application and
the utilization of the data center resources. Apart from
the direct hardware costs, it is very important that data
centers minimize the area as well as the energy footprint
of the machines housed in them. Thus, over-provisioning,
while an “easy” solution, may prove to be a costly one.
At the same time, data center owners must satisfy the
performance requirements of the clients whose applications
they host, which may be expressed in the form of service
level agreements. Therefore, data center architects need ap-
propriate tools using which they can make deployment and
configuration decisions which result in satisfactory usage of
resources, while still meeting service level agreements.

A number of tools and methodologies have been proposed
over the last decade and more, that address the basic ques-
tion of how software systems perform [5]. All these tech-
niques, in one way or the other abstract a multi-tier soft-
ware application as a queueing network. The software pro-
cesses that service requests are essentially queuing systems.
Since a request has to pass through multiple such servers to
be fulfilled, the natural abstraction is a queueing network.
However, a key challenge is to model the several layers of
resources that are present in distributed software systems.
That is, the server resources themselves can be customers of
other resources, which in turn can be customers of other re-
sources, and so on, thus creating“layers” in the queueing net-
work. E.g. a Web server thread is a server for the HTTP re-
quests, as well as a customer for the CPU“queueing system”.

Several approaches have been proposed to model such
“layered” systems of hardware and software resources. The

early significant ones include the Stochastic Rendezvous Net-
work model by Woodside et al [26] and the Method of Layers
by Sevcik and Rolia [21]. Both techniques map the system to
a layered queueing network. These approaches are notable
for their analytical solutions of the models. The Stochastic
Rendezvous Network model, also known simply as a Lay-
ered Queueing Network (LQN) has been particularly popu-
lar, with many extensions made to it over the years [19].

Some of these methodologies have been implemented as
software tools. E.g. (LQNSolver [13]) implements the SRVN
(or LQN) model. SPE • ED [24] is another important tool
(commercially available) that promotes the “Software Per-
formance Engineering (SPE)” process.

The work in recent years has focused immensely on trans-
lation of high-level specification, to the formalisms accepted
by such queueing network models [19, 14, 15]. These ap-
proaches assume that a tool for the solution of the target
model is available. Specifically, there has been significant
amount of work in converting systems specified using the
UML SPT (Schedulability, Performance and Timing) pro-
file [18], to an queueing model, to be solved by an existing
solver [16, 28, 23, 9, 6].

The existing tools and methodologies are primarily fo-
cused on the notion of making performance analysis conve-
nient during the software development cycle. This explains
the sharp focus on developing tools and methods that will
work directly with UML, as this is the standard for modeling
object-oriented software.

We feel, however that there is a need for a tool which
is particularly convenient, when the potential user is a
data center architect, whose focus would be on deployment
and configuration of an application, given the resource
constraints of the data center. A direct approach by which
a “data center architecture” can be specified would be very
convenient. In other words, we would like to specify the
hardware architecture (such as how many machines are
available, of what type), the network architecture (how the
machines are deployed on LANs, and perhaps separated
by a WAN), the software architecture (the message flows
for various scenarios), and finally, the deployment and
configuration details of the software and hardware. To our
knowledge, none of the existing tools/methodologies focus
on such specification.

We introduce an open source, freely downloadable software
tool, called PerfCenter 1 which we believe is both intuitive
and straightforward, and allows for convenient analysis of
various deployment and configuration scenarios, which can
help a data center architect. PerfCenter allows for easy and
natural specification of the hardware, network and software
architecture of a data center, and analyzes the performance
of the application at given volumes. The specification lan-
guage of PerfCenter supports various language constructs
such as variables, expressions, and for and while loops so
that analyzing various configurations becomes easier. Perf-
Center generates and solves the underlying queuing network
model using either an analytical solution or by simulation.
The methodology of solving the PerfCenter model analyti-
cally has been presented in an earlier paper [25]. This paper
focuses on the usage of PerfCenter: we explain the input
language, and illustrate its usefulness for data center de-

1PerfCenter executables, source code, and documentation
can be found at http://www.cse.iitb.ac.in/perfnet/
perfcenter/

sign with an example of deployment of a Web-based e-mail
system. We show how the various analysis utilities of Perf-
Center can be used to not only arrive at a good deployment
and configuration, but to also provide insight into the why
the system performs in a certain way. For this last reason
(and because it is free, and modify-able), PerfCenter can
also serve as a teaching tool for the subject of software per-
formance analysis.

The rest of the paper is as follows: we review related work
in this area in Section 2, introduce PerfCenter in detail in
Section 3, and then illustrate the use of PerfCenter in eval-
uating various deployment and configuration alternatives,
using an example in Section 4. We conclude the paper in
Section 5.

2. RELATED WORK
A large amount of research has been done over the last

decade to address the problem of analyzing the performance
of software systems. Much of the work consists of method-
ologies and theoretical proposals of solutions. Some of the
solutions have been implemented as tools. We review some
of the theoretical work, as well as tools based on various
methodologies, in this section.

The Method of Layers [21] was among the early ap-
proaches, which proposed a model and an analytical solution
for capturing the “layered” behaviour of software systems -
i.e. where one “layer” of servers uses the services of another
layer of servers, where the lowest layer is that of the hard-
ware devices. All calls between layers were assumed to be
synchronous.

The Stochastic Rendezvous Network [26] is a powerful
model, which captures many interesting behaviours of a dis-
tributed system. Apart from synchronous calls to servers at
different layers, the model allows execution of a service in
phases. This allows capturing of post-processing that is done
by a server, even after a reply is sent back to the caller. Some
extensions to the “power” of the model have also been made
(e.g. adding the capability of modeling forks and joins [19])
in the processing of the request.

Another significant body of work has been done by Bal-
samo et al [3, 4, 7] who have used multiclass queueing net-
works with finite capacity queues to model software architec-
tures, including those that allow synchronous calls between
servers.

Some amount of work has also been done in developing
more accurate (as opposed to generic) models of a system,
so that more detailed behaviour can be specified and ana-
lyzed [12], or in developing models specific to certain soft-
ware technologies [20, 27].

Some of the performance modeling methodologies have
been implemented as software tools. The solution method
of the SRVN model has been implemented in a tool called
the LQNSolver [13]. The tool SPE • ED [24] is a commer-
cially available product that offers a variety of features that
support what is termed as “Software Performance Engineer-
ing (SPE)”. SPE facilitates the integration of the process
of performance analysis into the software development cy-
cle . The tool accepts a “software execution model” and
a “system execution model” specification and provides the
necessary performance measures of the system.

Recently, much of the effort has been directed towards
mapping standard specification formalisms to the input that
these tools work with (e.g. translating Use Case Maps to

LQNs [19]). Much recent work has focused on the UML-
SPT profile [18] as it is being accepted as a standard for
specification of performance parameters of an distributed,
object oriented system [16, 28]. Additionally, some papers
have proposed performance specification languages, that can
serve as an intermediate formats, between UML and the
language accepted by a specific modeling tool [14, 23].

A detailed survey of the work done in this area is out of
the scope of this paper, and the reader is instead referred to
the excellent review by Balsamo et al [5]. While a variety
of tools seem to exist for the purpose of analyzing software
systems, we claim that none of these are suitable for anal-
ysis from the “data center” point of view (with the possible
exception of OPNET’s IT Guru Systems Planner, which,
however, is a commercial tool). We claim that the existing
tools are ideal as tools to be used during development, when
the details of deployment may not be available. However,
at the stage when an application is ready to be deployed in
a hosting center, the architecture of the data center (ma-
chine specifications and network architecture) starts playing
an important part. A data center architect would require
a tool that allows him/her to run various what-if scenar-
ios of deployment and configuration, and see their effect on
the performance of the application, and on the utilization of
data center resources. The formalism we propose captures
the natural “language” that data center architects speak - in
terms of number of machines of a certain type, the “specs”
of a type of machine, the “deployment” of a software ap-
plication on a certain machine, and the deployment of the
machines on various different data centers that might be sep-
arated by long distance network links. PerfCenter accepts
specification at this level, and generates and solves the un-
derlying queueing model which captures the complexity of
the contention for resources.

In the next section, we present the elements of our system
model, which will clarify how our formalism is suited towards
the analysis of an application that is about to be deployed
in a data center.

3. PERFCENTER
The PerfCenter system model attempts to formalize a

“data center” roughly hierarchically, as a typical architect
would. Thus we define host machines, the application
servers, networks, and provide finer level details of the re-
sources that constitute the host machines and the network.
We also specify deployment and configuration details for the
servers.2 The deployment is specified in terms of servers on
machines, and machines on LANs. The specification is pro-
vided using a simple text interface.

To understand the system model of PerfCenter in detail,
we use the example of a Web based email application. The
various software components required for this application
are the Web server, the IMAP server, the authentication
server, and the SMTP server. The application is hosted on
one or more hosts. The hosts may be connected by a LAN,
or may even be separated by WANs. This application can
be used in various ways: we can login to the system, read
messages, send messages, delete messages. We term these
as “use case scenarios” or simply “scenarios”.

2In this paper, we use the term “server” to imply the server
process, e.g. the Web Server or the IMAP server. The
“hardware” server is termed as machine or a host.

Figure 1: Message sequence chart for the login sce-
nario

send to auth

verfiy password

send to Imap

list msg

change to html

Component: Web
CPU: 0.030

Component:Auth
CPU:0.010
Disk:0.015

Component: Web
CPU:0.020

Component: IMAP
CPU:0.025
Disk:0.035

Component: Web
CPU:0.010

0.1
100 Bytes

0.9
200 Bytes

SYNC
200 Bytes

SYNC
200 Bytes

2000 Bytes

Figure 2: Activity Diagram depicting the processing
when a user logs in

send to auth

verfiy session

send to Imap

read msg

change to html

Component: Web
CPU: 0.030

Component:Auth
CPU:0.005

Component: Web
CPU:0.020

Component: IMAP
CPU:0.020
Disk:0.025

Component: Web
CPU:0.010

0.2
100 Bytes

0.8
200 Bytes

SYNC
200 Bytes

SYNC
200 Bytes

2000 Bytes

Figure 3: Activity Diagram depicting the processing
when a user reads a message

send to auth

verfiy session

send to Imap

delete msg

change to html

Component: Web
CPU: 0.030

Component:Auth
CPU:0.05

Component: Web
CPU:0.020

Component: IMAP
CPU:0.015
Disk: 0.010

Component: Web
CPU:0.010

0.2
100 Bytes 0.8

200 Bytes

SYNC
200 Bytes

SYNC
200 Bytes

2000 Bytes

Figure 4: Activity Diagram depicting the processing
when a user deletes a message

send to auth

verfiy session

send to smtp

send msg

change to html

Component: Web
CPU: 0.030

Component:Auth
CPU:0.005

Component: Web
CPU:0.020

Component: IMAP
CPU:0.025
Disk: 0.035

Component: Web
CPU:0.010

0.2
100 Bytes

0.8
200 Bytes

SYNC
200 Bytes

SYNC
200 Bytes

2000 Bytes

send to imap

list message

Component:SMTP
CPU:0.014

SYNC
2000 Bytes

200 Bytes

Component: Web
CPU:0.020

Figure 5: Activity Diagram depicting the processing
when a user sending a message

If such an application is to be deployed in a data center,
we would want to arrive at a satisfactory deployment and
configuration that would maximize the performance seen by
the users, while minimizing the data center resources used.
Specifically, in such an application, the scenario response
times would be a primary measure of interest for the users.
From the point of view of the application owner, the ca-
pacity of the system in terms of throughput or number of
users would be of most interest. From the point of view of
the data center architect, optimal utilization of resources is
the top priority. All these performance measures depend on
various factors: how each scenario uses the software compo-
nents at various tiers, the resources consumed at each step
of execution of the scenario, how the hardware resources are
shared, and how the network resources are shared. PerfCen-
ter allows for easy specification of all these factors.

The sequence of actions performed by the application
components to execute a scenario can be expressed using
message sequence charts [2] or activity diagrams [1]. Fig-
ure 1 shows how a login scenario would be performed on the
system in terms of the processing to be done on the various
servers. The figure depicts the message sequence chart cor-
responding to this scenario. To login, the user supplies his
user name and password to the Web server. When this re-
quest arrives at the Web server, the threads of the server use
the devices such as the CPU, disk of its host machine to pro-
cess this request (indicated by a shaded rectangle labelled
“send to auth”). We term this local processing as a task in
our model. After processing the send to auth task, the Web
server “calls” the authentication server to verify the user cre-
dentials. The authentication server also clearly requires the
use of local devices to process this query (“verify password”).
On receiving the reply, the Web server again does some local

processing (“send to imap”). Assuming the user is authen-
ticated, the Web server now calls the IMAP server, which
returns a list of the messages that the user has received
(“list message”), which the Web server formats and displays
to the user (“change to html”). The label “SYNC” on the
arrows indicate that the calls made were synchronous. That
is, the thread making the call is blocked until it receives a re-
ply. On the other hand, in our model, an asynchronous call
implies that the calling server thread simply forwards the
request to the invoked server, without waiting for a reply. It
then becomes free to pick up the next request for processing.
When a reply arrives, say from the authentication server, it
will queue again at the Web server for processing.

The same scenario can also be depicted using activity di-
agrams. Since it is easier to depict branches in activity di-
agrams, in the rest of the paper, we depict scenarios using
activity diagrams. Figure 2 shows the activity diagram cor-
responding to the login scenario. In this case, we also show
the execution path followed if the user credentials cannot
be verified. Similarly, Figures 3, 4 and 5, and show the ac-
tivity diagrams corresponding to the read, delete and send
scenario respectively.

Note that, for a moment, if we ignore contention for hard-
ware, the information required to estimate, say the scenario
response times, would be: the probability that an arriving
scenario is of certain type (e.g. login, or read), the execution
time of the tasks (on all the devices that a task may use),
the branching probabilities in the activity graph; the server
characteristics such as number of threads, and buffer size (if
any); and lastly the load on the system. The load may be
either open (specified using scenario arrival rates) or closed
(specified using number of users, and think time).

Now, let us consider the impact of contention for hardware
resources, or equivalently, the problem of “sizing” the hosts,
and deploying the software components on the hosts. Sup-
pose we have four machines available for this application.
Every machine can have different hardware. For example, a
particular machine may have two or four CPUs, another ma-
chine may have CPUs of a different speed. How we deploy
the Web, IMAP, SMTP and authentication server on these
machines will impact the end-user performance, as well as
the utilization of the machines.

Suppose that there are two data centers, on two LANs
separated by a WAN, and suppose further that the au-
thentication server must be housed in “Data Center 2”.
In this case, we have to answer the additional question of
whether the WAN link between the two LANs has enough
capacity for the new application, and how this affects the
scenario response times. PerfCenter abstract the WAN as
a point to point link and for that link, parameters such
as the MTU (Maximum Transmission Unit), transmission
rate and propagation time need to be defined. The MTU
is specified so that the packet queue at the link can be
modeled. The network delay would then depend on the
size of the message sent from one server to another when a
remote call is made. Figures 2- 5 show the average message
size in bytes when a call is made from one server to another
for processing a request. We assume that the network delay
within a LAN is negligible.

Figure 6 shows a sample deployment of the machines on
the network, and servers on machines that may be an “ini-
tial” deployment plan. The figure also shows the WAN link
parameters, and the server configuration settings. It shows

H1 CPU 1

Web IMAP
H2 #CPU 1

Auth
SMTP

lan1
lan2

MTU: 256 Bytes
Transmission rate:100 Mbps
Propagation delay:1ms
Header size: 40 Bytes

Figure 6: Sample Deployment of the email system

the authentication server deployed on host H2, Web, IMAP
and SMTP on host H1 respectively. The architects would
now require a performance modeling tool to improve on this
deployment. Apart from the host and server deployment,
optimal values for server configuration parameters such as
the number of threads and/or the buffer size would have to
be arrived at. In the following, we explain how this can be
done using PerfCenter.

3.1 PerfCenter Specification Model
The previous section described the various components

of system that can be specified to PerfCenter for analysis.
This section explains how the specification translates into an
input file for PerfCenter. We illustrate how the deployment
in Figure 6 corresponds to the input file shown in Figure
7. The components of the input file are explained in the
following list.

• Variables: The input file allows for use of variables
to specify any numeric value. These variables have to
be defined before actual use. This definition is done in
the variable block.
variable

<var-1> <value>

..

<var-n> <value>

end

Lines 1 to 10 from input file define the variables used.

• Devices: The devices present in the various machines
are listed here. All the devices listed in this block may
be used later in the input file as components of various
machines.
device

<device-name-1>

..

<device-name-n>

end

Lines 12 to 15 in the input file list the devices present
for in the available machines.

• Host: For every type of machine in the system, we
specify a name and a list of hardware devices present
in the machine. Every device is further specified with a
count, indicating the number of such devices present in
the machine and the details of buffer size and schedul-
ing policy used at the device. The scheduling policy
can be LIFO, FIFO or PS. More complex user-defined
scheduling policies can also be specified, as is explained
in detail in the PerfCenter User Manual [11]. Device

definition could also mention relative speed of the de-
vice. The relative speed specifies how fast or slow the
particular device is with respect to a normalized device
used to calculate the service times of the task. Thus,
a task needs only half the service time for processing
on a device with speedup of two.
host <hostname> <[#this-type-machines]>

<device-type-1> count <#devices>

<device-type-1> buffer <buffersize>

<device-type-1> schedP <lifo|fifo|ps>

<device-type-1> speedup <relativespeed>

..

<device-type-n> count <#devices>

<device-type-n> buffer <buffersize>

<device-type-n> schedP <lifo|fifo|ps>

<device-type-n> speedup <relativespeed>

end

In the input file, lines 17 to 59 define hosts, including
all the devices, and the device details within them.

• Servers: For each server, the number of threads, the
buffer size and the scheduling policy followed at the
server is specified. The various tasks that a server
executes are listed in the definition.
server <servername>

thread count <#threads>

thread buffer <buffersize>

thread schedP <lifo|fifo>

task <task-name-1>

..

task <task-name-n>

end

Lines 61 to 93 describe the servers, along with their
requisite details.

• Task : A task is a continuous piece of computation
by a thread, on one or more devices of its host ma-
chine for a specified amount of time. In PerfCenter,
we assume that a task uses the devices that it needs,
serially (i.e. one after the other). Thus a task is the
piece of computation that a thread would do up to the
point that it makes a remote call to another thread, or
up to the point that it exits, whichever is earlier. The
computation done by the thread after the remote call
“returns”, is treated as a another task.

Every task listed in the server definition, is specified
by a list of its execution times on the various hardware
devices such as CPU, disk etc.
task <task-name>

<device-type-1> servt <servicetime>

..

<device-type-n> servt <servicetime>

end

Lines 95 to 137 of input depict the task definitions.
The approximate execution times for a task on various
devices can be obtained by using measurement tools
such as AutoPerf[22] or estimating it from monitoring
data [10], or by analyzing the code itself [17].

• Network: This block describes the network configu-
ration by specifying the LANs present in the system.
Every LAN in the system is declared as shown in lines
139 to 142.

lan

<lan-name-1>

..

<lan-name-n>

end

For every pair of LANs, the WAN connecting them
is abstracted as a link whose parameters have to
be specified. The parameters should include the
Maximum Transmission Unit (MTU), the header size,
the propagation delay and transmission rate.
link <linkname> <lanname1> <lanname2>

trans <transmissionspeed>

mtu <MTUsize>

prop <propagationdelay>

headersize <sizeinbytes> bytes

end

In the input file, lines 144 to 149 show how these
parameters are defined for the link between LAN1
and LAN2.

• Deployment: There are two kinds of deployment; the
deployment of machines over the network, and the de-
ployment of servers over machines. To specify both
these kinds of deployment, the keyword deploy is used.
deploy <server-name> <machine-name>

deploy <machine-name> <lan-name>

Lines 156 to 159 specify server deployment on ma-
chines, while lines 151 to 154 describe how the ma-
chines should be deployed on LANs.

• Scenarios: Scenarios represent the manner in which
the system components interact with each other to pro-
vide service to customers. Figure 2 shows the login
scenario in the form of an activity diagram. With ev-
ery scenario, a probability is specified indicating the
fraction of requests invoking that particular scenario.
Within a scenario, we allow for probabilistic branch-
ing. This branching is done using keyword branch.
Every branch is contained within a block starting with
branch prob <branch-probability> and ending with
end. We also allow for nested branches.
scenario <scename> prob <inv-prob>

<taskname1> <taskname2> <message-size> [SYNC]

..

branch prob <branch-probability>

<taskname3> <taskname4> <message-size> [SYNC]

..

end

..

end

Every activity diagram is translated to depict the sce-
nario in a form that can be input to PerfCenter as
shown in lines 161 to 210.

• Load: Load on the system can be specified in two
ways. In case the system has open arrivals, an arrival
rate value can be used to indicate the load.
loadparams

arate <arrival-rate>

end

Otherwise, if the system supports closed arrivals, the
number of users can be specified using the keyword
noofusers and the average time between receiving a
response and sending a request by a user is specified

using the keyword thinktime. The keyword exp indi-
cates that the thinktime is exponentially distributed.
loadparams

noofusers <#users>

thinktime exp(<average-think-time>)

end

Lines 212 to 215 describe the load on the system in
input file.

3.2 PerfCenter Measures
PerfCenter provides performance measures in the form of

response times, throughputs, queue lengths etc. Every de-
vice in the system, is identified as
<machinename>:<devicename>, and every server instance as
<machinename>:<servername>. For every resource, we have
the following functions:
• utilization - util(<resname>)
• throughput - tput(<resname>)
• average queue length - qlen(<resname>)
• average service time - avgservt(<resname>)
• average waiting time - waitt(<resname>)
• average response time - respt(<resname>)
• arrival rate - arate(<resname>)
• blocking probability i.e. the probability that an incom-
ing request will be dropped at the queue due to insufficient
buffersize - blockprob(<resname>)
• all parameters listed above - qparams(<resname>)

The functions tput(), blockprob() and respt() can also
be used without passing any parameters, in which case they
return the average scenario performance measures. If sce-

narioname is passed as input, the scenario performance can
be obtained. The use of these functions has been illustrated
on lines 227 to 236 in Figure 7.

3.3 Analysis Utilities
To carry out performance analysis conveniently, PerfCen-

ter allows for constructs such as loops (for, while etc), key-
words like set, and variables. Using loops, the tool can be
used for efficient running of multiple design scenarios.

These analysis utilities can prove very useful to determine
system capacity. For example, the input file illustrates use
of while loop in lines 233 to 236. The loop allows prediction
of system performance for number of users from 1 to 100.

3.4 Analysis Method
PerfCenter uses both analytical and simulation methods

for performance prediction. The analytical technique has
been explained in detail in [25]. Its current implementation
only supports open arrivals into the system. The simulation
technique supports all the features presented in this paper.

To use the simulation technique in PerfCenter, we need
to specify some simulation parameters. PerfCenter uses the
independent replications [8] method to estimate the perfor-
mance measures. Averages from a single run are calculated
after discarding the values corresponding to the initial “tran-
sient” part of the simulation. The following lines show how
the required model parameters are specified.
modelparams

method simulation

type <open|closed>

replicationno <#replications>

noofrequests <#requests>

confint true

sampleno <#samples>

startupsampleno <#samples>

<measure-1> <confidence interval level>

..

<measure-n> <confidence interval level>

end

The number of replications and the total number of re-
quests simulated per replication are specified by replica-

tionno and noofrequests respectively. The sampleno cor-
responds to the actual number of samples of measures that
will be taken in each run. This number is used for measures
such as utilization or throughput, which are continuous-time
measures. The startupsampleno corresponds to the number
of samples that should be discarded, to make sure that the
initialization bias is removed. A list of the output measures
for which confidence intervals are to be calculated along with
the confidence level is then specified.

We now illustrate the use of PerfCenter with a case study
of a Webmail application.

4. DEPLOYMENT AND
CONFIGURATION DESIGN USING
PERFCENTER

For the Webmail application of Section 3, the data center
architect’s decision involves choosing appropriate host con-
figurations, appropriate deployment of application servers
on the hosts, sizing the network link, and finally, configur-
ing the four servers.

We present two scenarios in the following. The first is
that of sizing for a small user group and the second is that
of scaling to an extremely large user group. For both these
scenarios, we show PerfCenter’s usefulness in arriving at a
satisfactory deployment and configuration design.

4.1 Small User Group Scenario
Consider the example of a company that needs to set up an

internal Webmail system, for its 500 employees. We assume
that at a given time not more than 100 employees access
Webmail. Each user sends a request to the application after
an average of 3 seconds after getting a response. An average
scenario response time requirement of less than one second
has been specified for this application.

An initial system deployment (DPLY1) to support this
system is shown in Figure 6. PerfCenter can be run on the
input file (Figure 7) corresponding to this deployment, to es-
timate the performance measures for this system. Note that
this is a “closed arrivals” model. Table 1 shows predicted
utilization of host CPUs and disks for this deployment and
Figure 10 shows the response time as a function of number
of users. As can be seen, the response time exceeds 1 second
at just 30 users, which is unacceptable. Also, it can be noted
that host H1 is over-utilized (98%). This suggests that the
initial deployment is not suitable, and other deployments
need to be tried. Initially, we will assume that software re-
sources such as number of threads and buffer size are not
a bottleneck (set to a very high number in the input file).
Similarly, we assume the WAN link capacity to be 100Mbps,
which is high enough to not be a bottleneck.

4.2 Identifying server deployment
Since a machine was getting over-utilized in DPLY1, in the

next deployment we add two new machines to LAN1, hosts

Figure 7: Input file for PerfCenter

H3 and H4. Assuming that the Web server will require the
most CPU capacity, we host the Web server on two machines
H1 and H4. IMAP and SMTP are moved from host H1 to
host H3. Figure 8 shows the new deployment. The input
file is appended with the following lines to reflect the new
deployment.
undeploy imap H1

undeploy smtp H1

deploy imap H3

deploy smtp H3

deploy web H4

H3 #CPU 1

H1 #CPU 1

IMAP

H2 #CPU 1

Auth
SMTP

lan1
lan2

Web

H4 #CPU 1

Web

MTU:256 Bytes
Transmission Rate:100 Mbps
Propogation delay: 1ms
Header size: 40 Bytes

Figure 8: DPLY2: Relieving host H1 bottleneck

Table 1 shows the performance predicted for this deploy-
ment (DPLY2). We observe that the disk of H3 (on which
IMAP is hosted) is over-utilized (80.6%). We therefore,
replace H3 by a faster machine that would double the CPU
speed and the disk access rate. Further, for the purpose
of consolidation, we host the Web server on one machine,
H1, after adding one CPU to it. Figure 9 shows the new
deployment (DPLY3). We analyze this deployment by
appending the following lines to the input file:
undeploy web H4

set H1:cpu:count 2

diskspeedupfactor3 = 2

cpuspeedupfactor3 = 2

H3 #CPU 1
H1 #CPU 2

IMAP

H2 #CPU 1

Auth
SMTP

lan1

lan2

Web

Speed 2

MTU:256 Bytes
Transmission rate:100Mbps
Propogation delay: 1 ms
Header size: 40 Bytes

Figure 9: DPLY3: Disk upgraded, Web server con-
solidated

PerfCenter predicts Web server to be more utilized with
77.6%. If we wish to leave some headroom, one more pro-
cessor could be added to H1 resulting in deployment con-

figuration DPLY4 (Figure 13). The summary of utilizations
for all four configurations are shown in table 1.

H1 H2 H3 H4 IMAP H2
CPU CPU CPU CPU Host Disk
% % % % Disk% %

DPLY1 98.1 8.2 NA NA 41.2 8.8
DPLY2 67.5 15.9 48.6 75.0 80.6 17.0
DPLY3 77.6 17.7 23.9 NA 44.2 18.7
DPLY4 53.8 18.4 27.7 NA 47.1 19.5

Table 1: Host Device Utilizations

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 20 40 60 80 100 120 140 160
A

vg
 R

es
po

ns
e

T
im

e

Number of Users

dply 1
dply 2
dply 3
dply 4

Figure 10: Average Scenario Response Time

Figure 10 shows a plot of the estimated average scenario
response times for all four deployments. As we are de-
signing for 100 users, response time is acceptable for the
deployment alternatives DPLY2-DPLY4. However, DPLY4
best balances the desire for adequate utilization of resources
(while still leaving some headroom), with the user require-
ment of scenario response times, and hence is chosen as the
final deployment for this application.

4.3 Identifying network link capacity
Now that the deployment is finalized, we move on to to

estimating the network link capacity required for Webmail
application (which was assumed so far to be 100 Mbps).
Table 2 shows link utilizations predicted using PerfCenter for
transmission rates of 256Kbps and 1Mbps. In both cases,
the propagation delay is assumed to remain at 1 ms. The
table shows that a 256 kbps link should be sufficient for this
application.

256Kbps 1Mbps
lan1 to lan2 20.1% 5.1%
lan2 to lan1 18.7% 4.8%

Table 2: Network Utilization

4.4 Selecting Server Thread Count
The number of threads to be set for a server is important

for performance delivered by the server. If this number is
set too low, hardware resources remain underutilized. If
this number is high it increases memory utilization and the
influx of connections will bring the server to a standstill.

Our goal is to determine the minimum number of server
threads necessary to utilize the hardware resource, which
still delivers acceptable response time, for a given load. In
this case we do this sizing for 100 users (with think time of
3 seconds).

We focus on thread sizing for the Web server. This is
because it is the front-end server - the thread sizes for the
“downstream”servers can be determined easily once the Web
server threads are set. The values of average scenario re-
sponse time, Web server utilization, Web server host CPU
utilization for number of threads varying from 1 to 15 are
plotted in Figure 11 and Figure 12 . In the figure, as the
thread count increases, the utilization of the Web server
threads decrease and that of the CPU increases.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

U
til

iz
at

io
n

Number Of Threads

cpu
webserver

Figure 11: Utilization vs Web server thread count

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12 14 16 18 20

av
g

R
es

po
ns

e
T

Im
e

Number Of Threads

respt

Figure 12: ResponseTime vs Webserver thread
count

From Figure 12 we note that after thread count reaches
seven, response time becomes constant. Increasing thread
count further does not have any effect on the average re-
sponse time. Also, from Figure 11 when thread count is
seven the CPU utilization flattens out. Hence we can con-
clude that for this configuration, seven could be the ideal
value of thread count.

The final deployment and configuration for the Web mail
application is shown in Figure 13. PerfCenter can be used to
determine the maximum capacity of this configuration. As
shown in Figure 14, the maximum throughput achieved by
the system is around 30 requests/sec. Figure 15 shows the

response time performance for this system. Note that the
95% confidence intervals for these two measures have been
shown in the corresponding plots.

H3 #CPU 1
H1 #CPU 3

IMAP

H2 #CPU 1

Auth
SMTP

lan1
lan2

Web

Speed 2

MTU: 256 Bytes
Transmission rate: 256 kbps
Propogation delay: 1 ms
Header size: 40 Bytes

Figure 13: DPLY4: Recommended configuration for
small user group

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160

T
hr

ou
gh

pu
t

Number Of Users

throughput

Figure 14: Maximum Throughput with 95% confi-
dence interval

4.5 Web Mail Scaling
Suppose that we now want to upgrade the Webmail sys-

tem to support requests arriving at rate of 2000 requests/sec
(specified as open arrivals). The underlying systems should
be upgraded to handle this heavy load.

To perform hardware upgrade, the host with the high-
est utilization is identified and upgraded. If this new
configuration does not support the required load of 2000
requests/sec, then we again upgrade the host having highest
utilization. These steps are repeated till a configuration is
found that is predicted to support an arrival rate of 2000
requests/sec. For hardware upgrade we again assume that
there are no software bottlenecks.

Step 1: In the earlier configuration as shown in Figure
13, maximum throughput achieved by the system was 30
requests/sec. The Web Server host H1 was the bottleneck
resource.

The scaled system should support almost 70 times the
load of the earlier system. Thus significantly higher CPU
and disk capacity is required for this system. We assume
that two new disk assemblies are available to us which
speed up the disk access by a factor of 80 in host H3 and
by a factor of 20 in host H2. Similarly, we upgrade host
H1 to a 32 processor machine. We assume that we have
another machine, H4 of this type. We also upgrade H2 and
H3 to have 12 processors each. The CPU speeds are also no

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160

R
es

po
ns

e
T

im
e

Number Of Users

response time

Figure 15: Response time behavior with increasing
load, with 95% confidence interval

Step H1 H2 H3 H4 H5

Step1

CPU count 32 12 12 32
Utilization % 88.0 100 75.8 87.7
CPUSpeedup 2 1 4 2
Disk Speedup 20 80
Utilization% 51.6 46.5

Step2

CPU count 32 32 18 32 32
CPUSpeedup 2 1 4 2 2
Utilization % 64.5 55.9 57.0 63.1 58.7
Disk Speedup 20 80
Utilization% 58 52.6

Table 3: Resource Utilizations for Scaled-up Deploy-
ment

longer the same, the speed up factors are specified in the
input by modifying the “speedup” attribute of the CPUs.
The speedup factor can be based on raw CPU speed, or the
speedup achieved by some benchmark applications.
diskspeedupfactor2 =20

diskspeedupfactor3=80

deploy web H4

set H1:cpu:count 32

set H4:cpu:count 32

set H3:cpu:count 12

set H2:cpu:count 12

cpuspeedupfactor1=2

cpuspeedupfactor3=4

cpuspeedupfactor4=2

PerfCenter predicts that this configuration fails at load
of 2000 requests/sec, with H2 becoming over-utilized at
100%. Throughput achieved for this configuration is 1755
requests/sec. Resource utilizations predicted by PerfCenter
for this configuration are as shown in Table 3.

Step 2: Since host H2 CPUs are the bottleneck, we
upgrade H2. We also upgrade H3 and add a 32-processor
machine H5, and deploy the Web server on it.
host H5

cpu count 32

cpu buffer 99999

cpu schedP fcfs

Web-H1 Web-H4 Web-H5 IMAP SMTP Auth
45 45 45 135 135 135

Table 4: Server Thread Sizing

cpu speedup 2

end

deploy web H5

set H2:cpu:count 32

set H3:cpu:count 18

For this deployment, PerfCenter estimates the utilizations
as shown in Table 3. In this configuration, utilization of all
hosts is below 70%. This configuration supports the speci-
fied arrival rate of 2000 requests/sec while keeping processor
and disk utilizations uniform across all hosts.

Following the approach discussed in Section 4.4 we can
estimate the new thread count value for all the servers as
shown in Table 4.

Final recommended deployment and configuration arrived
at by using PerfCenter is shown in Figure 16.

H3 #CPU 18

H1 #CPU 32

IMAP #Threads 135

H2 #CPU 24

Auth #Threads 135

SMTP #Threads 135

 lan1

Web #Threads 45

H4 #CPU 32 H5 #CPU 32

Web #Threads 45 Web #Threads 45

Figure 16: Recommended configuration for scaled
up system

5. CONCLUSIONS AND FUTURE WORK
We presented a tool PerfCenter, that is convenient for

representing the hardware and software architecture of an
application which is to be deployed in a data center. We
explained the PerfCenter’s abstraction and its specification
language in detail, and presented a deployment case-study
using a Web-mail example. The example further drove in the
usefulness of PerfCenter in evaluating various deployment
scenarios. PerfCenter also provides a non-trivial network
abstraction, which again, is relevant if the application is to
be deployed over a WAN.

Some validation of the results provided by PerfCenter, by
comparison with measured values, has been reported in [25].
However, further thorough validation is required to increase
the confidence in the tool.

There are a multitude of features that can be added to
PerfCenter. Among the ones that are in progress already are
the incorporation of soft resources other than threads. E.g.,
PerfCenter will soon allow specification of a resource such
as a piece of “synchronized” code (in other words a “critical
section”). PerfCenter currently also does not support the
expression of passive resources such as memory. We will
allow such constructs in the near future.

6. REFERENCES
[1] S. W. Ambler. UML 2 Activity Diagrams.

http://www.agilemodeling.com/artifacts/

activityDiagram.htm, August 2006.

[2] S. W. Ambler. UML 2 Sequence Diagrams.
http://www.agilemodeling.com/artifacts/

sequenceDiagram.htm, August 2006.

[3] F. Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi.
Deriving performance models of software architectures
from message sequence charts. In WOSP ’00:
Proceedings of the 2nd International Workshop on
Software and Performance., pages 47–57, 2000.

[4] S. Balsamo, F. Aquilani, and P. Inverardi. An
approach to performance evaluation of software
architectures. In Proceedings of the first International
Workshop on Software and Performance, pages
178–190, 1998.

[5] S. Balsamo, A. D. Marco, P. Inverardi, and
M. Simeoni. Model-based performance prediction in
software development: A survey. IEEE Transactions
on Software Engineering, 30(5):295–310, 2004.

[6] S. Balsamo and M. Marzolla. Performance evaluation
of UML software architectures with multiclass
queueing network models. In Proceedings of the 5th
International Workshop on Software and
Performance, pages 37–42, 2005.

[7] S. Balsamo, V. D. N. Personè, and P. Inverardi. A
review on queueing network models with finite
capacity queues for software architectures performance
prediction. Performance Evaluation, 51(2-4):269–288,
2003.

[8] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol.
Discrete-Event System Simulation. Pearson
Prentice-Hall, 2005.

[9] V. Cortellessa, M. Gentile, and M. Pizzuti. Xprit: An
XML-based tool to translate UML diagrams into
execution graphs and queueing networks. In QEST
’04: Proceedings of the 1st International Conference
on Quantitative Evaluation of Systems, pages 342–343.
IEEE Computer Society, 2004.

[10] P. Cremonesi and G. Casale. How to Select Significant
Workloads in Performance Models. In Int. CMG
Conference, pages 183–192, 2007.

[11] A. Deshpande and V. Apte. PerfCenter User Manual.
www.cse.iitb.ac.in/perfnet/perfcenter/manual.pdf.

[12] D. A. M. e; and H. Gomaa. A method for design and
performance modeling of client/server systems. IEEE
Transactions on Software Engineering,
26(11):1066–1085, 2000.

[13] R. G. Franks. Performance analysis of distributed
server systems. PhD thesis, Carleton University, 2000.
Adviser-C. Murray Woodside.

[14] V. Grassi, R. Mirandola, and A. Sabetta. From design
to analysis models: a kernel language for performance
and reliability analysis of component-based systems.
In Proceedings of the 5th International Workshop on
Software and Performance, pages 25–36, 2005.

[15] G. P. Gu and D. Petriu. XSLT transformation from
UML models to LQN performance models. In WOSP
’02:Proceedings of the 3rd International Workshop on
Software and Performance, 2002.

[16] G. P. Gu and D. C. Petriu. From UML to LQN by

XML algebra-based model transformations. In WOSP
’05: Proceedings of the 5th international workshop on
Software and performance, pages 99–110, 2005.

[17] H. H. Liu. Service Demand Models for Enterprise
Software Applications. In Int. CMG Conference, pages
249–260, 2005.

[18] I. Object Management Group. UML Profile for
Schedulability, Performance, and Time Specification.
http://www.omg.org/cgi-bin/doc?formal/2005-01-02,
January 2005.

[19] D. C. Petriu and C. M. Woodside. Software
performance models from system scenarios in use case
maps. In TOOLS ’02: Proceedings of the 12th
International Conference on Computer Performance
Evaluation, Modelling Techniques and Tools, pages
141–158. Springer-Verlag, 2002.

[20] P. Reeser and R. Hariharan. Analytic model of web
servers in distributed environments. In WOSP ’00:
Proceedings of the 2nd International Workshop on
Software and Performance, pages 158–167, 2000.

[21] J. A. Rolia and K. C. Sevcik. The method of layers.
IEEE Transactions on Software Engineering,
21(8):689–700, 1995.

[22] S. S. Shirodkar and V. Apte. AutoPerf: an automated
load generator and performance measurement tool for
multi-tier software systems. In Proceedings of the 16th
International Conference on the World Wide Web,
pages 1291–1292, 2007.

[23] C. U. Smith, C. M. Lladó, V. Cortellessa, A. D.
Marco, and L. G. Williams. From UML models to
software performance results: an SPE process based
on XML interchange formats. In WOSP ’05:
Proceedings of the 5th international workshop on
Software and performance, pages 87–98, 2005.

[24] C. U. Smith and L. G. Williams. Performance
engineering evaluation of corba-based distributed
systems with spe*ed. In TOOLS ’98: Proceedings of
the 10th International Conference on Computer
Performance Evaluation: Modelling Techniques and
Tools, pages 321–335. Springer-Verlag, 1998.

[25] R. P. Verlekar, V. Apte, P. Goyal, and B. Agarwal.
PerfCenter: A methodology and tool for performance
analysis of application hosting centers. In The 15th
IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems, October 2007.

[26] C. M. Woodside, J. E. Neilson, D. C. Petriu, and
S. Majumdar. The stochastic rendezvous network
model for performance of synchronous
client-server-like distributed software. IEEE
Transactions Computers, 44(1):20–34, 1995.

[27] J. Xu, A. Oufimtsev, M. Woodside, and L. Murphy.
Performance modeling and prediction of enterprise
javabeans with layered queuing network templates. In
Proceedings of the Conference on Specification and
verification of component-based systems, 2005.

[28] J. Xu, M. Woodside, and D. Petriu. Performance
analysis of a Software Design using the UML Profile
for Schedulability, Performance and Time. In Proc.
13th Int Conf. on Computer Performance Evaluation,
Modelling Techniques and Tools (TOOLS 2003), pages
291 – 310, 2003.

