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Abstract—Existing packet schedulers that provide fair sharing
of an output link can be divided into two classes: sorted prior-
ity and frame-based. Sorted priority methods provide excellent
approximation for Weighted Fair Queueing (WFQ) while frame-
based methods are more computationally efficient. We present a
new packet scheduling algorithm called Bin Sort Fair Queueing
(BSFQ) that combines the strengths of both type of schedulers. As
a result, BSFQ is highly scalable and can provide very good ap-
proximation for WFQ. We prove that BSFQ can provide end-to-
end delay and fairness guarantees to conformant flows. BSFQ also
has a built-in buffer management function that can protect pack-
ets of conformant flows from non-conformant traffic. The per-
formance of BSFQ and its ability to detect non-conformant flows
are studied using simulations and compared to those of the Deficit
Round Robin method.

Index Terms— Quality of Service, Delay Guarantee, Fairness
Guarantee, WFQ, BSFQ

I. INTRODUCTION

THE Internet has enjoyed tremendous growth in the recent
years and the traffic on the Internet is more diverse than

ever – ranging from traditional email to real time audio and
video applications. Many novel applications are well-served if
the network can provide a certain degree of performance. For
instance, the performance of audio applications over the Inter-
net would be greatly improved if the network would be able to
provide delay and/or rate guarantees.

Quality of service provisioning to flows is realized by insu-
lating the flows from one another. The ideal packet schedul-
ing method to ensure fairness is the Fluid Fair Queueing (FFQ)
method [2]. In this hypothetical packet service discipline, data
of active flows are transmitted one bit at a time in a round
robin fashion. This service discipline is not practical as pack-
ets must be transmitted in their entirety. The Weighted Fair
Queueing (WFQ) [2] and Worst-Case Fair WFQ (WF

�
Q) [3]

are packet schedulers that mimic FFQ as closely as possible.
These methods are computationally expensive and other more
efficient scheduling techniques have been developed that ap-
proximate the behavior of WFQ. The methods can be catego-
rized as sorted-priority or frame-based [5].

In sorted-priority schemes, each packet is assigned a priority
value and packets are transmitted in increasing order of their
priority. To approximate the transmission order in the ideal-
ized FFQ system, the priority value assigned to a packet is

some function of its departure time in the FFQ system. Ex-
amples of sorted-priority schemes are Virtual Clock (VC) [6],
Self-Clock Fair Queueing (SCFQ) [7] and Leap-Forward Vir-
tual Clock (LFVC) [8]. In the frame-based approach, time is
divided into frames and packets are entered into a frame without
exceeding a maximum. An example of a frame-based scheme
is the Deficit Round Robin (DRR) method [9]. Frame-based
methods are very scalable as the packet processing operations
have constant time (

� � � �
) complexity, in contrast to the sorted-

priority schemes that require a sorting operation to insert a new
packet.

In this paper, we present the new Bin Sort Fair Queueing
(BSFQ) packet scheduling method that is a frame-based method
and uses priority assignments in sorted-priority schemes to de-
termine the packets that are transmitted in each round. In
BSFQ, the virtual time is divided into slices of equal length
called bins. As in sorted-priority schemes, each arriving packet
is stamped with a priority value which represents its virtual de-
parture time. The packet is then stored in the bin that corre-
sponds to the time slice containing the virtual departure time of
that packet. The packets stored in the same bin are queued in
FIFO order for efficiency reasons (but other more sophisticated
scheduling method can optionally be used). As a result, BSFQ
combines the strengths of both types of scheduling methods: it
is highly efficient and provides better approximation for WFQ
than existing frame-based schemes.

The paper is organized as follows. Section II presents an
overview of the related work. We present the BSFQ method in
Section III and show that the BSFQ method can provide end-to-
end delay and fairness guarantees. Section IV presents a sim-
ulation study of its performance. The paper is concluded in
Section V.

II. RELATED WORK

The general processor sharing (GPS) [1] server is the ide-
ally fair service discipline that can allocate a predefined share
of service capacity to each client or network flow. If there is
a single client obtaining service from a GPS server, the client
will be served at the rate of the server. However, when two dif-
ferent clients are present, both will be serviced simultaneously
but each will receive half the service rate. The service rates re-
ceived by each client can also be weighted differently. The GPS
service method is also called Fluid Fair Queueing (FFQ) in [2].
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FFQ provides perfect fairness to network flows. However, FFQ
is not a practical transmission procedure because packets must
be transmitted as an atomic unit.

We will briefly review the basic concepts to analyze the fair-
ness of scheduling algorithms. A flow is backlogged if it has
some packets in the output buffer. A packet scheduling method
is fair if the difference in the normalized service provided to
any two flows that are continuously backlogged over any in-
terval � 	 
 � 	 � � is bounded by some constant [7]. The normal-
ized service � � � 	 
 � 	 � �

received by flow � in � 	 
 � 	 � � is defined

as � � � � � � � �  " � , where # � � 	 
 � 	 � �
is the amount of data of flow

� transmitted in � 	 
 � 	 � � and % � is the reserved data rate of � .
# � � 	 
 � 	 � �

includes any part of packets from � transmitted in
� 	 
 � 	 � � . If a scheduling discipline is fair then there is a constant( such that ) � � � 	 
 � 	 � � + � - � 	 
 � 	 � � ) . ( , for any two flows �
and 0 that are backlogged during the interval � 	 
 � 	 � � . The con-
stant ( is independent of the length of the interval � 	 
 � 	 � � . In the
ideally fair FFQ method, we have that for any times 	 
 1 	 � ,

� � � 	 
 � 	 � � 4 � - � 	 
 � 	 � �
for any two flows � and 0 that are back-

logged during � 	 
 � 	 � � . Because packets must be transmitted as a
unit, packet schedulers will have ) � � � 	 
 � 	 � � + � - � 	 
 � 	 � � ) 7 9 .

Packet schedulers that approximate the FFQ discipline
are called Packet-by-packet Fair Queueing (PFQ) [7]. The
WFQ [2] and WF

�
Q [3] packet schedulers provide the most

accurate approximations of FFQ. These methods first compute
the “virtual finish time” of a packet using the FFQ scheduler
as reference and then transmits the packets in ascending fin-
ish time values. The WFQ scheduler does so for every packet
in the output buffer while the WF

�
Q scheduler only considers

those packets that would have started receiving service in the
corresponding FFQ system.

More computationally efficient (but less accurate) packet
scheduling schemes have been developed. The Virtual Clock
method [6] is one of the earliest methods proposed to insu-
late network flows. The VC method assigns the ; � < packet> ?� of flow � with the virtual time stamp A 	 C D E � > ?� � 4

H I K � M � > ?� � � A 	 C D E � > ? O 
� � � P R T �" � , for ; 7 9 , where
M � > ?� �

is

the arrival time of packet > ?� and W ?� is the length of > ?� . The vir-
tual time stamp A 	 C D E � > Y � �

is set to zero. Xie and Lam showed
in [11] that if the sum of the rate of all flows sharing a link does
not exceed the link capacity, then the departure time Z � > ?� �

of

packet > ?� is bounded by Z � > ?� � . A 	 C D E � > ?� � P R \ ] _� ` where
W a b d� is the length of the largest packet of flow � and e is the
data rate of the output link. Although VC provides a delay guar-
antee to flows, it does not provide any fairness guarantee. Pack-
ets from a flow that has been idle for a prolonged period of time
will be assigned smaller virtual time stamp values and can re-
ceive — for some period of time — a larger than reserved share
of service.

The Leap Forward Virtual Clock [8] method solves the fair-
ness problem in VC by temporarily moving oversubscribed
flows into a low priority holding area. Only flows in the high

priority area will receive service. A flow � is oversubscribed
if the difference between the virtual time stamps of the current
packet of � and the system time exceeds a certain threshold. In
the case when all flows are oversubscribed, the system clock is
advanced forward to allow some flows to be moved back into
the high priority area.

The Self-Clocked Fair Queueing method [7] uses an inter-
nal (virtual) system clock f � 	 �

to compute time stamps for
packets. The system clock f � 	 �

is equal to the virtual time
stamp of the packet that is being serviced at time 	 . The

; � < packet > ?� of flow � will receive the virtual time stamp

A 	 C g E i k � > ? � � 4 H I K � f � M � > ?� � � A 	 C g E i k � > ? O 
� � � P R T �" � � ; 7 9 .

The value A 	 C g E i k � > Y � �
is set to zero and the packets are trans-

mitted in the ascending order of their virtual time stamp values.
SCFQ can provide both an end-to-end delay guarantee [12] and
a fairness guarantee [7] to conformant flows.

The VC, LFVC and SCFQ schedulers are priority-based
schemes where packets are transmitted in ascending virtual
time stamp values. Priority-based schemes use some sort pro-
cedure to maintain a priority queue and have non-constant per
packet run time complexities. In contrast, frame-based methods
transmit packets in rounds. They do not use sort operations and
have constant per packet processing time. The disadvantage of
frame-based methods is the fact that the delay guarantee they
provide have a larger bound than sorted-priority methods.

The Deficit Round Robin (DDR) method [9] organizes pack-
ets of flows in separate queues and assigns a quantum size to
each flow. Each flow has a “deficit counter” that measures the
current unused portion of the allocated bandwidth. Packets of
backlogged flows are transmitted in rounds and in each round,
each backlogged flow can transmit up to an amount of data
equal to the sum of its quantum and deficit counter. The un-
used portion of this amount is carried over to the next round as
the deficit counter value.

The Uniform Round Robin (URR) method [10] is a cell-
based method that can reduce the jitter of the DRR method by
spacing cell transmissions uniformly over a round. For exam-
ple, when four flows

M
, p , q and r with with quantum values t 4 v

cells and s x 4 s E 4 s y 4 �
cell are backlogged,

a possible transmission order per round in DRR is (
M

,
M

,
M

,
p , q , r ). In contrast, the order of transmission in URR is (

M
,

p ,
M

, q ,
M

, r ). The transmission ordering in URR must be
recomputed when a new flow is added or an existing flow is
deleted from the schedule and this recomputation algorithm is� � C �

where C is the number of slots in one round. After the
ordering is determined, the per packet processing time is con-
stant.

The BSFQ method presented in this paper is a frame-based
method and uses virtual time stamps to determine the schedul-
ing order. The virtual time space is divided into equal intervals
or bins. Packets are assigned virtual time stamps and inserted
into their corresponding bins. The queueing order within a bin
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is FIFO. The BSFQ method has constant run time complexity
for connection{ establishment and packet processing. A simula-
tion study will show that BSFQ can provide a better approxima-
tion for WFQ than DRR using similar operational parameters.
WFQ also has a built-in buffer management component and its
effectiveness to identify packets from non-conformant flows is
illustrated using another simulation experiment.

III. BIN SORT FAIR QUEUEING

t
t
t
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� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �
� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �
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Fig. 1. Bin Sort Fair Queueing

The BSFQ method is defined for output buffer switches. Fig-
ure 1 shows the logical organization used in BSFQ. The output
buffer is organized into � bins and � is a system design pa-
rameter. � must be set to a value that is equal to or greater than
a certain threshold to allow BSFQ to use all available buffers.
This threshold value will be derived later in this section. Each
bin is implicitly labeled with a virtual time interval and each in-
terval has length � . The parameter � is another system design
parameter of BSFQ and its value has a significant impact on
BSFQ’s performance. The intervals of the bins are disjoint and
their union spans a continuous range of the virtual time space.

The bins are ordered according to their virtual time intervals
and are serviced in that ordering. The current bin is initially
equal to the bin with virtual time interval [0, � ) and only pack-
ets from the current bin are transmitted. When all packets in
the current bin are transmitted, the next bin becomes the cur-
rent one and the old current bin is labeled with an interval that
follows the last bin. Thus, there are always � bins in the sys-
tem.

BSFQ maintains a virtual system clock f � 	 �
which is equal

to the left end point of the virtual time interval of the current bin
at time 	 . Thus, the current bin has the label � f � 	 � � f � 	 � P � �
and the � � < bin following the current bin has the label � f � 	 � P

� � � f � 	 � P � � P � � � �
. The virtual time clock in BSFQ is a step

function — similar to the virtual clock in SCFQ — and f � 	 �
will

be incremented by � whenever all packets in the current bin are
transmitted. Notice that if a bin is empty when it becomes the
current bin, then f � 	 �

is incremented by � without transmitting
any packets. We will see later that when � is sufficiently small,
the performance of BSFQ will approximate that of WFQ.

We denote the data rate of the output link by e and each flow
� must negotiate a guaranteed rate % � before starting its trans-
mission. We assume that b � � � % � . e so that the output link

is not oversubscribed. The ; � < packet > ?� of flow � is assigned

with the virtual time stamp A 	 C � > ?� �
where:

A 	 C � > ?� � 4 H I K � f � M � > ?� � � � A 	 C � > ? O 
� � � P W ?�
% � � ; 7 9 (1)

where f � M � > ?� � �
is the system virtual time at time 	 4 M � > ?� �

.
We define A 	 C � > Y � � 4 9 . Arriving packets are stored in their

corresponding bins in the FIFO order. The index � ?� of the bin

used to store packet > ?� is equal to:

� ?� 4 A 	 C � > ?� � + f � M � > ?� � �
� � ; 7 9 (2)

If � ?� 4 9 then > ?� is stored in the current bin, and otherwise,

if � ?� 1 � , it is stored in the � ?� -th bin following the current

bin. If � ?� � � , the packet is discarded. Furthermore, if > ?�
has been discarded by BSFQ, then the packet index (; ) is not
incremented and next arriving packet of flow � will have the
same index as the discarded one. Hence, the BSFQ sched-
uler has a built-in buffer management component. A simula-
tion study will show that the buffer management function in
BSFQ can effectively protect packets of compliant flows from
non-compliant ones.

The following examples show the packet scheduling oper-
ation in BSFQ and the effect of the parameter � on its per-
formance. Consider two flows

M
and p with reserved rates

% t 4 v 9 9 9 bps and % x 4 � 9 9 9 bps, respectively. Assume that
a large number of packets from both flows arrive at the switch
simultaneously at time 0, and each packet is 9000 bits in length.
The WFQ scheduler will transmit the packets as: > 
t , > � t , � > � t ,> 
x � , > � t , > � t , � > � t , > � x � , etc. The packets � > � t , > 
x � , � > � t , > � x � ,
and so on, may be transmitted in either order by WFQ.

pB
1 pB

2
(18)(9) pA

2 pA pA
6pA(9)pA

3pA
1 54(3) (6) (18)(15)(12)

pB
3 pB

4(27) (36) pA
7 pA

8 pA
9 pA

10 pA
11 pA

12(21) (30) pA
13

(39)(36)(33)(27)(24)[20, 40)

[0, 20)

Fig. 2. BSFQ using   ¡ ¢ £

We now consider the transmission order in BSFQ. The vir-
tual time stamps of

M
’s and p ’s packets assigned by BSFQ are:> 
t 4 v

, > � t 4 ¤
, > � t 4 ¦

, etc. and > 
x 4 ¦
, > � x 4 � ¨

, > � x 4 © ª
,

and so on. Figure 2 shows the queueing order in a BSFQ server
for � 4 © 9 . We have assumed that packets from p arrive just
before those of

M
and due to the FIFO ordering, p ’s packets

are queued before those of
M

if they are entered in the same
bin. We can see from Figure 2 that the packet transmission or-
der in BSFQ is p «¬ , p ­¬ , > 
t , > � t , > � t , > � t , > � t , > � t , p ®¬ , p̄ ¬ , > ° t ,> ± t , > ² t , > 
 Yt , > 
 
t , > 
 �t , > 
 �t , and so on. BSFQ allocates for each
flow its fair share of bandwidth as the transmission rate of flowM

is three times that of flow p . However, the transmission order
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1 (3)[0, 5)

pB
1 (9) pA

2 (6) (9)pA
3

pB
2

(18) pA
5 (15) pA

6 (18)

pB
3

(27) pA
9 (27)

pB
4
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(36) pA
13
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[25, 30)

[30, 35)

[5, 10)

[15, 20)

[35. 40)

Fig. 3. BSFQ using   ¡ ´

differs significantly from the one in WFQ above. For instance,> � x is transmitted before > 
t , > � t , > � t , > � t and > � t .
Consider the same arrival pattern in the BSFQ system that

uses a smaller value of � . Figure 3 shows the queueing order
for � 4 µ

. We have again assumed that all packets from p are
queued before those of

M
when they are in the same bin. We

can see from Figure 3 that the packet transmission order is now> 
t , p «¬ , > � t , > � t , > � t , p ­¬ , > � t , > � t , > ° t , > ± t , p ®¬ , > ² t , > 
 Yt , > 
 
t , p̄ ¬ ,> 
 �t , > 
 �t , and so on. The ordering is identical to the one of a
WFQ server except for > 
x which is transmitted before > � t and> � x that is serviced before > � t . We see from these two examples
that � has a significant impact on BSFQ’s performance.

BSFQ can also accommodate flows that do not make reser-
vations. We define the residual rate % " ¶ · to be equal to e +

all flows � % � . Notice that % " ¶ · will change when new reser-
vations are made or an existing reservation is released. Packets
from any of the non-reservation flows are assigned a time stamp
value using % " ¶ · as reserved rate and then scheduled in the same
manner as other reservation flows.

In the remainder of this section, we will prove that BSFQ
provides an end-to-end delay and a fairness guarantee.

A. Delay Guarantee

The work in [12] presents a class of schedulers that can pro-
vide an end-to-end delay guarantees for leaky bucket rate con-
trolled sources. A packet scheduler is in class GR if the depar-
ture time Z � > ?� �

of packet > ?� is bounded by

Z � > ?� � . ¸ e q � > ?� � P º

for some constant
º

. ¸ e q � > ?� �
for ; 7 9 is defined as:

¸ e q � > ?� � 4 H I K � M � > ?� � � ¸ e q � > ? O 
� � � P W ?�
% � (3)

and ¸ e q � > Y � � 4 9 . According to [12], the end-to-end delay½ ?� of packet > ?� that traverses a path of ¾ nodes, each using

a GR-scheduler, is bounded by
½ ?� . ¸ e q 
 � > ?� � + M 
 � > ?� � P

� ¾ + � � H I K ?À Á 
 R Â �" �
P ÃÀ Á 
 º À P Å À

�
À Æ 
 , where ¸ e q 
 � > ?� �

is the value of ¸ e q � > ?� �
at node 1,

M 
 � > ?� �
is the arrival time

of > ?� at the first node of the path,
º À

is the constant of node Ç
on the path and

Å À
�

À Æ 
 is the propagation delay between nodes
Ç and Ç P �

, for Ç 4 � � Ê Ê Ê � ¾ . Furthermore, if flow � is
a leaky bucket compliant flow with parameters ( Ë � ,Ì � ), then

½ ?� . Í �
Æ

� Ã O 
  Î Ï Ð T Â Ñ �
Ò Â �Ó �" �

P ÃÀ Á 
 º À P Å À
�

À Æ 
 .
We will show that BSFQ can provide an end-to-end delay

guarantee by showing that BSFQ belongs to the class GR
as defined in [12]. We first show that the number of bytes
admitted into Ô consecutive bins is bounded and define the
“size” of a bin.

Lemma 1: The number of bits of data r Õ admitted into Ô
consecutive bins is bounded by:

r Õ . Ô � e P
b � � �

W a b d�

Proof: Let us consider the packets of a particular flow � that
are entered into the bins � , � P �

, . . . , � P Ô + �
, for an arbitrary

� � 9 . Assume that the first and last packet of � entered into
these bins are > i� and > ×� , respectively. Bin ; contains only
packets with time stamps between ; � and

� ; P � � � , for ; =
� , . . . , � P Ô + �

. Therefore, we have that A 	 C � > i� � � � � and
A 	 C � > ×� � 1 � � P Ô � � . From (1), we have:

A 	 C � > ×� � � A 	 C � > × O 
� � P W ×�
% �

� A 	 C � > × O �
� � P W × O 
� P W ×�

% �Ê Ê Ê
� A 	 C � > i� � P W i Æ 
� P Ê Ê Ê P W ×�

% �
Therefore,

W i� P Ê Ê Ê P W ×� . � A 	 C � > ×� � + A 	 C � > i� � � % � P W a b d�
. Ô � % � P W a b d�

Hence, the number of bits of data of flow � entered into bins
� through � P Ô + �

is at most Ô � % � P W a b d� . The maximum
number of data from all flows that are entered in these bins is
thus bounded by:

r Õ . Ô �
b � � �

% � P
b � � �

W a b d�

. Ô � e P
b � � �

W a b d�

r Õ can be considered as the “capacity” of Ô consecutive bins.
Since Ú Û H Õ Ü Ý y Þ

Õ 4 � e , we define the size of a bin à á â À as:

à á â À 4 e � (4)
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The number of bins � must be greater than a threshold to
allow BSFQ

ä
to use all available buffers. If p is the size of the

output buffer, then � à á â À � p , or � �
x

` æ . If � 1
x

` æ ,
then a portion of the output buffer will not be used by BSFQ.

� can be greater than
x

` æ since the bins are logical. The value
of � will affect the ability of BSFQ to detect packets of non-
compliant flows: a larger � will allow more packets from non-
compliant flows to enter the switch. The buffer management
capabilities of BSFQ are similar to those of our pipeline section
method in [14] and it can provide lossless guarantee to leaky
bucket compliant flows. However, the foci of this paper are on
BSFQ’s delay guarantee and fairness properties, and the anal-
ysis of the buffer management capabilities of BSFQ is outside
the scope of the paper.

Before we state and prove Theorem 1, we will present the
following corollary that is used in the proof.

Corollary 1: The number of bits of data r admitted into
consecutive bins labeled from � f 
 � f 
 P � �

to � f � � f � P � �
,

f � 7 f 
 , is bounded by:

r . � f � + f 
 P � � e P

b � � �
W a b d�

Proof: Since the virtual time intervals of consecutive bins in-
creases by � , we can write f � 4 f 
 P � Ô + � � � , Ô � �

, where Ô
is the number of consecutive bins. By Lemma 1, we have that:

r . Ô � e P

b � � �
W a b d�

4 � f � + f 
 P � � e P

b � � �
W a b d�

We can now present Theorem 1 which shows that BSFQ
belongs to the GR class of schedulers.

Theorem 1: The departure time Z x g i k � > ?� �
of > ?� in BSFQ

is bounded by:

Z x g i k � > ?� � . ¸ e q � > ?� � P � P b � � � W a b d�
e

Proof: The proof is similar to the one presented in [12] for
SCFQ. We define p ?� 4 � Ç ) 9 1 Ç . ; é f � M � > À

� � � �
A 	 C � > À O 
� � � . Let Ô be the largest integer in p ?� . Since

f � M � > 
� � � � A 	 C � > Y � �
, by the definition of A 	 C � > Y � �

, p ?� con-
tains at least one element and Ô is always defined. It follows
from the definition of p ?� that:

f � M � > Õ� � � � A 	 C � > Õ O 
� �

and � f � M � > â� � � 1 A 	 C � > â O 
� � � for Ô 1 � . ;
Therefore, from (1), we have that:

A 	 C � > Õ� � 4 f � M � > Õ� � � P W Õ�
% �

and, A 	 C � > â� � 4 A 	 C � > â O 
� � P W â�
% � � � 4 Ô P � � Ê Ê Ê � ;

Thus:

A 	 C � > ?� � + f � M � > Õ� � � 4 ?

â Á Õ
W â�

% � (5)

Now, assume that > ?� is entered into the bin with the label
� f ì � f ì P � �

. At time
M � > Õ� �

when packet > Õ� arrives, the bin that
is being serviced by BSFQ has the label � f � M � > Õ� � � � f � M � > Õ� � � P

� �
. Thus, the maximum amount of data that will be transmit-

ted between > Õ� ’s arrival and > ?� ’s departure is all the data in the
bins � f � M � > Õ� � � � f � M � > Õ� � � P � �

to � f ì � f ì P � �
. According

to Corollary 1, the amount of data r stored in these bins is at
most:

r . � f ì + f � M � > Õ� � � P � � e P

b � � �
W a b d�

. � A 	 C � > ?� � + f � M � > Õ� � � P � � e P
b � � �

W a b d�

From (5), we have that:

r .
?

â Á Õ
W â�
% �

P � e P

b � � �
W a b d�

The data transmission rate is e and therefore, the departure
time Z x g i k � > ?� �

of packet > ?� using a BSFQ scheduler is:

Z x g i k � > ?� � 4 M � > Õ� � P r
e

. M � > Õ� � P ?

â Á Õ
W â�
% �

P � P b � � � W a b d�
e (6)

From the definition of ¸ e q � > ?� �
in (3), we have:

¸ e q � > Õ� � � M � > Õ� � P W Õ�
% �

and, ¸ e q � > â� � � ¸ e q � > â O 
� � P W â�
% � � for Ô 1 � . ;

Thus:

¸ e q � > ?� � � M � > Õ� � P ?

â Á Õ
W â�

% � (7)

From (6) and (7), it follows that:

Z x g i k � > ?� � . ¸ e q � > ?� � P � P b � � � W a b d�
e

B. Fairness Guarantee

We show that the difference between the normalized service
of any two flows in BSFQ is bounded. Let Z � > ?� �

denote the

departure time of packet > ?� of flow � . At time 	 4 Z � > ?� �
,

0-7803-7476-2/02/$17.00 (c) 2002 IEEE.



BSFQ is servicing a bin with label � f � Z � > ?� � � � f � Z � > ?� � � P � �
.

Since > ?� is contained by this bin, we have that:

f � Z � > ?� � � . A 	 C � > ?� � 1 f � Z � > ?� � � P � (8)

for any packet > ?� . We need the following auxiliary lemma to
show the fairness property of BSFQ.

Lemma 2: If flow � is backlogged at time 	 4 M � > ?� �
, then

A 	 C � > ?� � 4 A 	 C � > ? O 
� � P W ?�
% Õ

Proof: If � is backlogged at time 	 4 M � > ?� �
, then

M � > ?� � .
Z � > ? O 
� �

. Because f � 	 �
is a monotonic (step) function of 	 , it

follows that f � M � > ?� � � . f � Z � > ? O 
� � �
. From (8), we have that

f � M � > ?� � � . A 	 C � > ? O 
� �
and therefore:

A 	 C � > ?� � 4 H I K � f � M � > ?� � � � A 	 C � > ? O 
� � � P W ?�
% �

4 A 	 C � > ? O 
� � P W ?�
% �

The following theorem shows that BSFQ is fair.

Theorem 2: If flows � and 0 are backlogged during the in-
terval � 	 
 � 	 � � , then

) � � � 	 
 � 	 � � + � - � 	 
 � 	 � � ) . © W a b d�
% �

P W a b d-
% -

P �

Proof: Let � > Õ �� � Ê Ê Ê � > Õ �� � denote the set of packets from � that
depart in � 	 
 � 	 � � . Figure 4 shows the timing relationships:

t1 t2

k2

k2pf

pf
k +12pf

k +12pf

k1

k1pf

pf
k +11

k +11pf

pf

L(    ) L(    )L(        ) L(        )

Fig. 4. Packets serviced during the busy period ï ð ñ ò ð ó ô

From this figure, we can conclude that the arrival time
M � > â� �

of packet > â� must be less than the departure time Z � > â O 
� �
of

packet > â O 
� , for � 4 Ô 
 P � � Ê Ê Ê � Ô � P �
, because otherwise

flow � would not be backlogged throughout the interval � 	 
 � 	 � � .
Hence, packets > Õ �

Æ 
� � Ê Ê Ê � > Õ �
Æ 
� arrive while � is backlogged.

It also follows from Figure 4 that:

Õ �
â Á Õ �

Æ 

W â�
% � . � � � 	 
 � 	 � � .

Õ �
Æ 


â Á Õ �

W â�
% � (9)

We first find an upperbound for � � � 	 
 � 	 � �
. Since f � ö �

is a
non-decreasing function, we have that

f � 	 � � + f � 	 
 � � f � Z � > Õ �� � � + f � Z � > Õ �� � �

From (8), we have f � Z � > Õ �� � � 7 A 	 C � > Õ �� � + � and f � Z � > Õ �� � � .
A 	 C � > Õ �� �

and therefore:

f � 	 � � + f � 	 
 � 7 A 	 C � > Õ �� � + A 	 C � > Õ �� � + �

Because the packets > Õ �
Æ 
� , . . . , > Õ �� arrive while � is back-

logged, we have by Lemma 2 that:

A 	 C � > Õ �� � 4 A 	 C � > Õ �� � P Õ �
â Á Õ �

Æ 

W â�

% �

and therefore:

f � 	 � � + f � 	 
 � 7
Õ �

â Á Õ �
Æ 


W â�
% �

+ �

Using (9), we can bound � � � 	 
 � 	 � �
from above by:

� � � 	 
 � 	 � � 1 f � 	 � � + f � 	 
 � P W Õ ��
% �

P W Õ �
Æ 
�

% �
P �

. f � 	 � � + f � 	 
 � P © W a b d�
% �

P � (10)

To obtain a lower bound for � � � 	 
 � 	 � �
, we consider two dis-

tinct cases.

Case 1: A 	 C � > Õ � O 
� � � f � M � > Õ �� � �

Since there is no packet departure in � 	 
 � Z � > Õ �� � � , we have

that Z � > Õ � O 
� � . 	 
 . Therefore:

f � 	 � � + f � 	 
 � . f � Z � > Õ �
Æ 
� � � + f � Z � > Õ � O 
� � �

Using (8), we find that f � Z � > Õ �
Æ 
� � � . A 	 C � > Õ �

Æ 
� �
and

f � Z � > Õ � O 
� � � 7 A 	 C � > Õ � O 
� � + � and therefore:

f � 	 � � + f � 	 
 � 1 A 	 C � > Õ �
Æ 
� � + A 	 C � > Õ � O 
� � P �

Since packets > Õ �� , . . . , > Õ �
Æ 
� arrive when � is backlogged, we

have that:

A 	 C � > Õ �
Æ 
� � 4 A 	 C � > Õ �� � P Õ �

Æ 


â Á Õ �
Æ 


W â�
% �

It follows from the case assumption that A 	 C � > Õ �� � 4

A 	 C � > Õ � O 
� � P R
Þ

��" � and therefore:

A 	 C � > Õ �
Æ 
� � 4 A 	 C � > Õ � O 
� � P Õ �

Æ 


â Á Õ �

W â�
% �

and,

f � 	 � � + f � 	 
 � 1
Õ �

Æ 


â Á Õ �

W â�
% �

P �
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Using (9), we can bound � � � 	 
 � 	 � �
from below by:

� � � 	 
 � 	 � � 7 f � 	 � � + f � 	 
 � + W Õ ��
% �

+ W Õ �
Æ 
�

% �
+ �

� f � 	 � � + f � 	 
 � + © W a b d�
% �

+ � (11)

Case 2: A 	 C � > Õ � O 
� � 1 f � M � > Õ �� � �

Since � is backlogged at time 	 
 and there are no packet de-
partures in � 	 
 � Z � > Õ �� � � , it follows that

M � > Õ �� � . 	 
 . Therefore:

f � 	 � � + f � 	 
 � . f � Z � > Õ �
Æ 
� � � + f � M � > Õ �� � �

. A 	 C � > Õ �
Æ 
� � + f � M � > Õ �� � �

4 A 	 C � > Õ �� � P Õ �
Æ 


â Á Õ �
Æ 


W â�
% �

+ f � M � > Õ �� � �

It follows from the case assumption that A 	 C � > Õ �� � 4

f � M � > Õ �� � � P R
Þ

��" � and therefore:

f � 	 � � + f � 	 
 � .
Õ �

Æ 


â Á Õ �

W â�
% �

and, Õ �
â Á Õ �

Æ 

W â�

% � � f � 	 � � + f � 	 
 � + © W a b d�
% �

From (9), we conclude that the lower bound for � � � 	 
 � 	 � �
es-

tablished in (11) is also valid for the second case. It follows
from (10) and (11) that:

) � � � 	 
 � 	 � � + � - � 	 
 � 	 � � ) . © W a b d�
% �

P W a b d-
% -

P �

IV. NUMERICAL EXAMPLES

We have studied the performance of the BSFQ algorithm and
compared it with WFQ and DRR. The WFQ algorithm serves
as the reference method in the comparison study. The DRR
method is selected because it has the same run time complexity
as BSFQ for both packet processing and connection establish-
ment.

The performance of the BSFQ and DRR methods depend on
the setting of some parameters of the methods. In DRR, each
flow � is assigned a quantum size s � which is the amount of
credits it receives per round. The reserved bandwidth for flow

� is equal to ù �ù ú û ú e , where s
� ý �

4
all flows ? s ? . The reserved

bandwidth for the flows is unchanged if we use a quantum size
Ô þ s ? , Ô 7 9 , for each flow ; . Using smaller quantum sizes
will allow DRR to better approximate the WFQ scheduler, but
it will also increase the per packet processing cost since the

TABLE I

FLOWS USED IN THE SIMULATIONS

Source rate Leaky Bucket
Flow � � � � � � � 	 � � 

1,2,3 16Mbps 2Mbps 50KB 2Mbps
4,5,6 25Mbps 5Mbps 100KB 5Mbps
7,8,9 40Mbps 8Mbps 200KB 8Mbps

DRR scheduler may need to iterate through a number of rounds
without transmitting any packets.

The BSFQ scheduler exhibits a similar behavior as DRR:
using a smaller � will allow BSFQ to better approximate the
WFQ scheduler but it will also increase the likelihood that a
bin is empty. The per packet processing cost is increased in this
case since the BSFQ scheduler must update the system virtual
clock f � 	 �

. For a fair comparison, we set à á â À 4 s
� ý � so that

the amount of data transmitted in each “round” in both schemes
are approximately equal.

48 Mbpsbuffer
Output

flow 1

flow 2

flow 3

flow 4

flow 5

flow 6

flow 7

flow 8
flow 9

Fig. 5. Network used in the simulation study

We first compare the packet delay with a number of simula-
tion experiments. The network used in the simulation is shown
in Figure 5. The transmission rate of the output link is 48 Mbps.
There are nine input flows whose properties are shown in Ta-
ble I. Column 1 in Table I lists the flow indices. Columns 2
and 3 show the peak data rate e � ¶ b Õ and the average data rate

e b � - of each flow. Flows 1, 2 and 3 have low peak and burst
rates, flows 4, 5 and 6 have medium peak and burst rates and
flows 7, 8 and 9 have high peak and burst rates. Packets have
fixed size and each packet is 53 bytes. The packet arrivals of
each flow are generated by a Markovian on/off process. When
the Markovian process is in the ‘on’ state, packets are trans-
mitted with a constant rate that is equal to the peak rate e � ¶ b Õ
in Table I. No packets are transmitted in the ‘off’ state. The
duration of the ‘on’ and ‘off’ periods for a flow is such that

e b � - 4 � û Â �
` � � ]

Þ
� û Â

Æ � û � � , where � ý
À and � ý � � are the average length

of the ‘on’ and ‘off’ periods, respectively. The average length of
an ‘on’ period in the simulations is set to 1 msec. The Marko-
vian arrival generation process is followed by a leaky bucket
rate shaper with the burst size Ë and token generation rate Ì
given in columns 4 and 5 of Table I. Each type of packet sched-
uler is presented with the same pattern of packet arrivals and
each experiment is run for 5000 (simulation) seconds.

Table II shows the reservations for each flow. For BSFQ,
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TABLE II

FLOW RESERVATION PARAMETERS IN EXPERIMENTS

BSFQ DRR
Flows - . 0 .
1,2,3 2Mbps 1 2 4 bytes
4,5,6 5Mbps 6 2 4 bytes
7,8,9 8Mbps 7 2 4 bytes

the reservation % � of flow � is equal to its average data rate
e b � - in Table I. The quantum of flow � in DRR is also pro-
portional to e b � - . We vary the parameter 8 in DRR and �
in BSFQ to study their performance. We have performed three
sets of experiments using the settings 8 4 �

, 8 4 µ 9 9 and
8 4 � 9 9 9 in DRR. The corresponding settings for à á â À in
BSFQ are à á â À 4 9 µ

, à á â À 4 © © µ 9 9 and à á â À 4 9 µ 9 9 9 .
Figure 6 shows the delay distributions in WFQ, DRR and

BSFQ for the flows 1, 4 and 7 when 8 4 �
in DRR and

à á â À 4 9 µ
in BSFQ. The graph is a histogram. To generate

the histogram, we divided the time axis between 	 4 9 msec
and 	 = 50 msec into intervals of 0.1 msec in length and tallied
the number of packets with delay that fall within the interval.
Packets with delays larger than 50 msec were tallied in another
sum. Each tally is then divided by the total number of pack-
ets and the resulting value is an estimate of the probability that
the packet delay falls within a given interval. The left most
plot in Figure 6 shows the delay distributions of flow 1 using
WFQ, DRR and BSFQ. The < -axis in Figure 6 is the packet
delay measured in seconds and the = -axis shows the fraction of
packets whose delay falls within the given interval. We have
shown the delay distributions for delays up to 0.02 second be-
cause the tail distributions are virtually identical (including the
case where the delay is greater than 0.05 sec). The delay distri-
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butions of flows 2 and 3 are similar to that of flow 1 and they are
not shown.> The center and right plots show the delay distribu-
tions for flows 4 and 7, respectively. The distributions of flows
5, 6, 8 and 9 are omitted for the same reason. We can see in Fig-
ure 6 that for 8 4 �

in DRR and à á â À 4 9 µ
bytes in BSFQ, the

delay experienced by the packets using either method is virtu-
ally identical to that in WFQ. It is evident from Figure 6 that the
DRR method using small quantum sizes and the BSFQ method
with small à á â À (or � ) parameters can effectively approximate
WFQ.

Figures 7 and 8 show the delay distributions for ( 8 4 µ 9 9 ,
à á â À 4 © © µ 9 9 bytes) and ( 8 4 � 9 9 9 , à á â À 4 9 µ 9 9 9 bytes),
respectively. We can see that the delay distributions in BSFQ
and DRR differ significantly from WFQ for small delays. Also,
it appears that the delay distributions in the BSFQ method con-
verges quicker to that of WFQ than DRR. The total variance
distance [13] is often used to measure how far away two prob-
ability distributions are from one another. If > and @ are two
distributions which put probability mass on a finite set A , then
the total variance distance between them is equal to:

� B � > � @ � 4 �
©

d E F
) > � < � + @ � < � )

We have computed the total variance distance of the delay dis-
tribution between BSFQ and WFQ, and between DRR and
WFQ for each of the above cases. Tables III and IV show
the total variance distance between BSFQ and WFQ, and DRR
and WFQ, respectively, for the distributions given in Figures 6,
7 and 8. We see that the total variance distance between the
delay distribution of BSFQ (DRR) and WFQ for à á â À 4 9 µ
( 8 4 �

) is very small which confirms the fact that the approxi-
mation is very good. Tables III and IV show that the total vari-
ance distances between BSFQ and WFQ for à á â À 4 © © µ 9 9 and

à á â À 4 9 µ 9 9 9 are smaller than the distances between DRR and
WFQ for 8 4 µ 9 9 and 8 4 � 9 9 9 , respectively. Hence, BSFQ
provides a better approximation for WFQ in these cases.

TABLE III

TOTAL VARIANCE DISTANCES (BSFQ, WFQ)

Parameter Setting Flow 1 Flow 4 Flow 7J " $ & K M 6 0.0050 0.0048 0.0069J " $ & K 1 1 6 O O 0.0430 0.0604 0.0620J " $ & K M 6 O O O 0.0883 0.1028 0.0998

TABLE IV

TOTAL VARIANCE DISTANCES (DRR, WFQ)

Parameter Setting Flow 1 Flow 4 Flow 7
4 K P 0.0048 0.0049 0.0067
4 K 6 O O 0.0738 0.0882 0.0739
4 K P O O O 0.1180 0.1255 0.1095

An added advantage of BSFQ is the fact that it has a built-
in buffer management function. Recall that in BSFQ a packet

is discarded when its bin index is equal to or greater than the
number of bins � . Packets of a flow that transmits at a rate
larger than its reservation will be assigned increasingly larger
virtual times and when the virtual time stamp value exceeds

f P � � , they will be discarded. Thus, BSFQ can provide pro-
tection against non-conformant flows. However, proving that
BSFQ provides a lossless guarantee — similar to the work in
[14] — is outside the scope of this paper. We will only demon-
strate the benefit of the built-in buffer management function of
BSFQ using a simulation experiment.

In the next experiment, we increase the peak and average data
rate of flows 7, 8 and 9 in Table I to 50 Mbps and 10 Mbps, re-
spectively. Notice that the total data rate of all flows is equal
to 51 Mbps which exceeds the link capacity. The reservation
parameters of the flows (see Table II) remains unchanged. The
flows 7, 8 and 9 are non-compliant flows in the simulation ex-
periment.

TABLE V

NON-COMPLIANT FLOWS

Fraction of packets dropped
Flow 1 Flow 4 Flow 7

BSFQ 0% 0% 9.89%
DRR 5.43% 4.52% 6.38%

The parameters used in the experiments are à á â À 4 9 µ 9 9 9 in
BSFQ and 8 4 � 9 9 9 in DRR. The output buffer size is set to
1 Mbytes and a packet is admitted if there is available space.
After a packet has been admitted, it is then processed by the
packet scheduler. In DRR, the packet is entered into its queue
and will not be discarded. In contrast, the packet is discarded by
BSFQ if its bin index exceeds � . Table V shows the percentage
of packets dropped by BSFQ and DRR. The table only shows
the fraction of the packets dropped from flows 1, 4 and 7. The
results for flows 2 and 3, 5 and 6 and 8 and 9, are similar to
that of flow 1, 4 and 7, respectively. We can see that BSFQ
only drops packets from the non-compliant flows. In contrast,
all flows in DRR suffer packet loss.

V. CONCLUSION

We have presented the BSFQ packet scheduling algorithm
that combines the strengths of frame-based and priority-based
schedulers. BSFQ is a frame-based method that transmits all
packets in the current bin in each round. Packets are sorted into
the bins based on their assigned virtual time stamps and within
one bin, packets are transmitted in the FIFO manner. BSFQ is
highly scalable, having constant run time complexity for packet
processing, as well as for connection establishment.

The virtual time interval parameter � has a significant im-
pact on BSFQ’s performance. For very large values of � , the
performance of BSFQ is identical to FIFO, while for small val-
ues of � , BSFQ is more akin to SCFQ. There are a number of
factors that have to be considered in choosing the value of � .
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The amount of state information maintained is inversely pro-
portionalR to � and a small � will increase the number of bins
needed. The efficiency of BSFQ also decreases when � is de-
creased because it increases the likelihood of that some bins are
empty. This is similar to DRR when small quantum values are
used and no packets are sent in some rounds. Determining an
optimal value for � is beyond the scope of this paper.

We have shown that BSFQ can provide end-to-end delay
guarantee and fairness to flows that share a common link.
BSFQ also has a built-in buffer management function that can
insulate conformant flows from non-compliant traffic. Results
of a simulation study show that BSFQ can provide better ap-
proximation for WFQ than DRR using similar operational pa-
rameters. In summary, BSFQ has many desirable strengths,
including scalability, rate and fairness guarantee and built-in
buffer management, to provide quality of service in high-speed
networks.
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