
Availability Analysis of Transaction Processing Systems based on User-Perceived
Performance

Varsha Mainkar
AT&T Labs,

Holmdel, NJ 07733, USA.
mainkar@att.com

Abstract

Transaction processing systems are judged by users to
be correctly functioning not only if their transactions are
executed correctly, but also if most of them are completed
within an acceptable time limit. Therefore, in this paper,
we propose a definition of availability for systems for whom
there is a notion of system failure due to frequent violation
of response time constraints. We define the system to be
available at a certain time if at that time the fraction of
transactions meeting a deadline is above a certain user re-
quirement. This definition leads to very different estimates
of availability measures such as system downtimes as com-
pared with more traditional measures. We conclude that for
transaction processing systems, where the user’s perception
is important, our definition more correctly quantifies the
availability of the system.

1 Introduction

Transaction processing systems of today, such as ticket
booking systems, product ordering systems, or trouble tick-
eting systems are real-time systems, i.e., correct functioning
of the system is not only determined by whether the trans-
action was executed correctly, but whether it was completed
within a certain amount of time. That is, the transaction
response time is an important performance metric. This
metric is also the most important user-perceived metric, and
often the one by which the user judges the quality of the
transaction processing system. For instance, if a simple
query on a typical library database takes 5 minutes to com-
plete, the user may consider the query transaction failed.
The maximum acceptable delay, in this case, could be 30
seconds. Thus the transaction has a 30 second deadline to
complete, or else it is considered failed. However, unlike
hard real-time systems [10], the user would not consider this
one deadline violation as leading to system failure. How-

ever, if such a deadline violation happens very frequently
within a certain time interval, the user will judge the library
database system to be non-operational. For example, if the
deadline is missed by, say, 15 out of the last 20 transactions
in a 30 minute interval, the user will consider the system
failed. In this paper, we propose that the correct measure of
availability of a transaction processing system is this user-
perceived availability which is very strongly based on the
performance, especially the response time performance of
the system.

In practice, a common “performance requirement” for
transaction processing systems, is often in terms of the
transaction response time, e.g., “90 % of all transactions
must complete in 20 seconds”, which quantifies the perfor-
mance from the users’s perspective. A separate “availability
requirement” is also usually specified for any transaction
processing system, which could be in terms of maximum al-
lowed downtime per month. However, such an availability
requirement is incomplete until a definition is provided of
when a system is considered available. When the transaction
processing system is a multiple server system, this defini-
tion of availability is usually made in terms of the minimum
number of servers that should be operational. Such a def-
inition is implicitly based on a notion of performance; i.e.,
it implies that having a certain minimum number of servers
operational, guarantees a certain minimum level of perfor-
mance. An approach to unifying performance and availabil-
ity metrics in this manner has been presented by Levy and
Wirth [4]. In their approach, they use two descriptors of the
state of the system : the “congestion state” (number of jobs
in a system, etc.) and the “availability state” (e.g. number
of operational servers). The availability of the system is de-
fined as the probabilityof being in any one of the availability
states of the system where a minimum performance require-
ment is met, where this performance requirement could be
a user-perceived one such as the response time.

Although our basic argument is the same as the one
by Levy and Wirth, we take their approach a step further
by eliminating the intermediate definition of availability in

terms of the minumum number of servers and link the avail-
ability definition even more explicitly to the user-perceived
performance. Further, in the context of transaction pro-
cessing systems, we focus on one particular metric, i.e., the
probability of a transaction missing a deadline. Thus we
define availability as the probability that the system is func-
tioning at a minimum performance level as perceived by the
user. Specifically, we define availability as the probability
that at any time a required minimum fraction of transactions
are finishing within a given deadline. As we shall see in the
analysis presented in this paper, such a definition accounts
for failure caused not only due to failures of the servers, but
also the temporary degradation of performance due to tran-
sient overloading of the system, which may not last long, but
may still result in the user perceiving the system as temporar-
ily unavailable. This results in an availability number that
is substantially different from the availability as calculated
by traditional approaches.

Performance-based reliability measures have been de-
fined before for hard real-time systems, by Shin and Kr-
ishna [8]. However, in that definition, even if a single task
missed its “hard” deadline, this event leads to a system fail-
ure. Muppala, Woolet and Trivedi [7] discuss modeling of
both hard and “soft” real-time systems in their paper. How-
ever, the soft real-time systems considered in their paper fail
only when all the servers fail. Thus their is no notion of
performance-based failure for the soft-real-time systems. In
this paper, we have considered systems, where one trans-
action missing a deadline does not lead to system failure,
nevertheless, there is a “softer” notion of system failure due
to frequent violation of response time constraints. We be-
lieve that this class of systems represent a large number
of transaction processing systems that are currently opera-
tional.

Another characteristic of transaction processing systems,
which affects the performance-based availability, is the fact
that the rate at which transactions arrive to this system can
vary significantly. In other words, transaction arrival rates
have typical peak periods, during which the arrival rate could
be even twice as much as the average and even five to ten
times the rate at off-peak periods. System failure is then
determined not only by the number of servers that failed,
but the load on the system at the time they failed. Such
a periodic behavior of transaction load has been modeled
by Shin, Krishna and Lee in [9], where they present a very
general methodology to formally derive resource control
strategies for distributed systems. Our focus in this paper is
different : we study the effect of peak and non-peak hours
on availability when the definition of availability explicitly
incorporates the performance of the transaction processing
system.

In the rest of the paper, we first propose our formal defi-
nitionof availability of transaction processing systems (Sec-

tion 2), then describe our model for computing availability
(Sections 3 and 4), and then provide an illustrative example
(Section 5). In Section 6, we describe an efficient approx-
imate method for computing availability, and also provide
some more examples. We summarize and conclude the pa-
per in Section 7.

2 Definition of System Availability

Let us describe a system to be available at time
�
, if

the expected fraction of transactions arriving in the small
interval � ���������	��
 that will miss their deadlines is less than
a given constant � . For an infinitesimally small

�	�
, this also

means that the system is available at time
�
, if the probability

that a transaction, arriving at this time, misses its deadline
is less than � .

Thus the performance/availability requirement on the
system is given in terms of the response time distribution
of a transaction. If �� ��
 is the random variable denoting
the response time at time

�
(i.e. the response time seen by a

transaction that arrives at time
�
), the system is considered

available at time
�

if
����� �� ��
�������� ��� � 1

Here
�

is a given “soft” deadline, and � is given as a require-
ment. The problem is to compute the availability at time

�
,

given that the system is defined to be available at time
�

by
Equation (1). Define � �!� ��
 as

���"� ��
$# �%��� �� ��
��&��� � � 2

Then availability, '�� ��
 , at time

�
, is given by

'�� ��
 # �%��� ���(� ��
)� 1 *+� � � � 3

With such a definition of availability, we capture the in-

herent dependence between performance and availability in
one equation. We term this measure as the user-perceived
availability. The key observation about such a definition
of availability is that it takes into account the possibility
of transient system failure (i.e. unresponsiveness) triggered
purely by transient overloads caused due to the random na-
ture of transaction arrivals. Thus, it will take into account
the possibility that even though there are no server failures
in the system, there could be a temporary system failure due
to a temporary overload.

The computation of availability at time
�

will proceed as
follows : let the state of the system at time

�
be denoted

by ,�� ��
 . (This state description will include the operational
state of the servers, and the state of the transactions in the
system.) Let

�$- � ��
 denote the probability that ,�� ��
%# , - .
Now, let � �	. - be the probability that the response time of a
transaction is less than

�
, given that the system is in state , -

at the time of arrival of the transaction. Then define

�	- #
1
�

if � �	. - � 1 * �#
0
�

if � �	. - � 1 * ��� (4)

Then, if Ω is the set of all states that the system can be
in, the user-perceived availability is given by :

'�� ��
 # �
�����

Ω

� - � - � ��
 � � 5

which represents summing over all probabilities of being in
the states in which the probability of missing a deadline is
less than � .

To compute '�� ��
 as given by Equation (5), we first need
to compute

� - � ��
 and then
� -

. To compute
� -

, we need
the response time distribution of a transaction, given that
the system is in a certain state at the time of arrival of the
transaction. Also, for steady-state availability, we need the
limiting values of these quantities. The next two sections
explain how we do these computations.

3 The Model for State Probabilities

Consider a distributed system of � identical servers. Let
the transaction processing rate of each server be � . The
transaction arrival rate at time

�
is 	�� ��
 . Each server fails at

the rate
 and can be repaired at the rate � . Let us assume
that there is only one repair person available for the servers.
The incoming transactions join a common queue, and are
served in a first-in-first-out manner, each server processing
one transaction at a time. We assume that the arrival rate
follows a periodic pattern with a period of 24 hours. In every
24 hour period we assume we have three different periods
of varying loads. This is based on the typically observed
transaction arrival behavior which has a “peak”, period, a
“medium” period and a “low” load period. More formally,
we define 	�� ��
 as :

	�� ��
 # 	 1
�

0
��� � �

0# 	 2
���

0 � � � �
1# 	 3

���
1 � � �

24 � (6)

where
�

0 and
�

1 are constants.
Furthermore, we assume that in each period, transac-

tions arrive according to a Poisson process. We also assume
that the failure, repair and transaction processing times are
exponentially distributed. We assume that there is a lim-
ited buffer space, , for queueing transactions in the sys-
tem. Under these assumptions, the model for the duration of
time for which the arrival rate is constant is a homogeneous
continuous-time Markov chain with a finite state-space.

The system state can be described by a 4-tuple ��� ��� ��� ���!
 ,
where � is the number of servers that are operational but idle,�

is the number of servers that are failed,
�

is the number
of servers busy processing transactions and

�
is the number

of transactions waiting in the queue. A Markov model with
this state description can be generated; however, for large
buffer size and number of servers, this model can become
quite large. A higher-level specification language such as a
Stochastic Reward Net (SRN) [1], along with a tool such as
SPNP [2], can be used to generate the infinitesimal generator
matrix corresponding to this Markov chain.

We generate three different Markov chains, correspond-
ing to the three different arrival rates 	 1, 	 2 and 	 3. We term
these as the “Phase 1”, “Phase 2” and “Phase 3” Markov
models respectively and denote the infinitesimal generator
matrices corresponding to these three Markov models by�

1,
�

2, and
�

3.
These Markov models can be solved in phases to compute

the overall probability of the distributed system being in a
state , - at time

�
. Now, it is clear that for

� � �
0 the

probability vector at time
�

is simply given by :

� � ��
�# � � 0
�� � 1 � �
where

� � 0
 is the initial state probability vector and
� � ��
 is

the state probability vector at time
�
. For

�
0 � � � �

1, the
state probability vector at time

�
is given by :

� � ��
 # � � � 0
��
�

2 � ����� 0 � # � � 0
�� � 1 � 0 � � 2 � ����� 0 � �
For

�
1 � � � 24, we have :

� � ��
$# � � � 1
��
�

3 � ��� � 1 � # � � 0
�� � 1 � 0 � � 2 � � 1 � � 0 � � � 3 � ��� � 1 � �
Generalizing from the above equations, we have for

� #
24 ! �#"

, !%$ 0, 0
�&" � 24, ! is a non-negative integer :

� � ��
 # � � 0
�')(*� � 1 + � 0
�," ���

0# � � 0
�' (� � 1 � 0 � � 2 � +-� � 0 � �
0 � " ���

1# � � 0
�')(*� � 1 � 0 � � 2 � � 1 ��� 0 � � � 3 � +���� 1 � ���
1 � " �

24 �
(7)

where
' # � � �

1 � 0 . � 2 � � 1 � � 0 �/. � 3 � 24 ��� 1 � � . These proba-
bilities can be computed using a tool such as SPNP [2],
which uses sophisticated numerical techniques based on
uniformization for efficient computation of transient proba-
bilities.

Note that the matrix
'

is the stochastic transition prob-
ability matrix corresponding to the discrete-time Markov
chain (DTMC) embedded at the points 0,24,48, �(��� . This
DTMC is finite, aperiodic and irreducible and therefore the
matrix

' (
has a limit as ! tends to infinity. Let

0 #
lim(214365

(�

The rows of matrix
0

are identical and correspond to the
steady state probability vector � of the embedded DTMC.
Therefore

� � 0
 0 is also equal to � .
Then as

�����
, the continuous time probability is given

by :

lim� 143
� � ��
 #

lim(143
� � 24 ! � "(

� � �
1 + � 0

�," ���
0 (8)# � � �

1 � 0 � � 2 � +�� � 0 � �
0 � " ���

1 (9)# � ���
1 � 0 � � 2 � � 1 � � 0 � � � 3 � +-� � 1 � � �

1 � " �
24 �

(10)

Thus, it is clear that the steady-state probability is peri-
odic with a period of 24 hours. Let us denote the steady-
state probability vector at a large

�
,
��#

24 ! � "
, by� � "(
 � 0 � "��

24. Equations (8)-(10) provide us with the
steady-state values of the state probabilities, � � "(
 , which
can then be used to determine the steady-state availability
of the system.

4 Model for Response Time Distribution

The previous section showed us how to calculate the� - � ��
 ’s and their steady-state values. In this section, we
show how we calculate the

� -
’s. For this purpose, we must

calculate the response time distribution of the transaction,
given that the system state at the time of its arrival is � .
We use the tagged job approach [5, 6] in computing the
response time distribution. In the tagged job approach we
use the PASTA [11] property of Poisson arrivals, i.e. the
property that “Poisson arrivals see time averages”. Thus,
the probability that a transaction arriving at time

�
sees the

system in a certain state � is given by the state probability at
time

�
, which is

�$- � ��
 . This
� - � ��
 can be computed using the

model described in the previous section. For the response
time distribution, we build another Markov model (termed
the “tagged job model”) where apart from the regular state
description, we additionally keep track of a “tagged job”
(or tagged transaction). Thus the system state will now be
described by ��� � � ��� � �����
	 � � + ����������
 , where

�
	
is 1 if the

tagged job is waiting in the queue, and 0 otherwise,
� + is 1 if

the tagged job is being processed by a server and 0 otherwise,���
is 1 if the tagged job is completed, and 0 otherwise, and��
is 1 if the server fails while processing the tagged job

and 0 otherwise. Suppose we want to compute the response
time distribution of a transaction, given that the system was
in a particular state , - # ��� ��� � � ���%
	� , -�� Ω, at the
time of its arrival. We proceed by setting the initial state
of the tagged job model to ��� ��� � � ��� �

1
�
0
�
0
�
0

. This

state represents the arrival of a tagged job to the system,
when the state was ��� ��� � � ���%

. The transitions between

states should be such that the tagged job gets a server only
when all the

�
jobs that were in front of it get servers,

so as to represent the FIFO queueing discipline. Note that
we do not model new arrivals of transactions to this system,
because transactions arriving after the tagged transaction are
irrelevant to the computation of response time distribution
of the tagged job. The tagged job is either processed or
there is a server failure during its processing. Thus, either��� #

1 or
�� #

1. States in which either
��� #

1 or
�� #

1 are
made absorbing states. (We can generate this Markov model
also using a Stochastic Reward Net specification.) Note that
since no new transaction arrivals are modeled, we do not
have different “phases” of Markov models in this case.

The probability that the response time is less than � , then,
is the probability of the tagged job Markov chain being in
a state where

��� #
1 at time � . This can be found by

solving the tagged job Markov model for its time-dependent
state probability. Denote the state probability vector for the
tagged job model with initial state , -�� Ω, by ��� , and
let �����)���
 denote the probability of being in any of the
absorbing states where

��� #
1 at time � . Thus, for the

specified deadline
�
, we can find ����� � �
 . Then,

� -
is 1 if

��� � � ��
 $ 1 * � and 0 otherwise. We can now find
�(-

’s for
all � � Ω, by creating a tagged job model corresponding to
each � � Ω.

The availability at time
�
, is then given by - �

Ω
�	- � - � ��
 .

Since the steady-state probabilities of this system are peri-
odic, the steady-state availability of such a system will also
be periodic with a period of 24 hours. Let '%� "�
 denote the
steady state availability at

"
hours after the beginning of a

24 hour period. Then, '%� "�
 is given by - � - � - � "�
 , where� � "(
 is given by Equations (8)-(10).

5 Example

Consider a distributed system with five identical servers.
Each server can process 1200 transactions per hour. Each
server has a mean time to failure (MTTF) of 4000 hours and
a mean time to restore (MTTR) of 4 hours. The transac-
tion arrival rate is 600 transactions per hour from time 0 to
10 hours, 4000 transactions per hour from 10 to 16 hours
and 2000 transactions per hour from 16 to 24 hours. The
maximum number of transactions waiting to be processed
in this system can be 50. The system is considered to be
failed at any time if at that time the probability that a trans-
action has a response time of less than 9 seconds is less than
80 %. Given this definition, we would like to compute the
steady-state availability of the system.

We solve the model as described in the previous sections;
i.e. to compute the steady state probabilities, we use the first
Markov model. We do this by first computing the DTMC
steady state vector as follows : we set the initial state to that

which has all servers operational and no transactions in the
system, and compute

� � 10

,
� � 16

and

� � 24

as described
in Section 3, and repeat this process by setting the initial
state probability of the Phase 1 Markov model to

� � 24

and
then re-computing

� � 10

and so on. After iterating this pro-
cess a few times until convergence is achieved we set � to
the converged value of

� � 24

. Then setting the initial prob-

ability of the Phase 1 Markov model to � , the probability� � "(
 may be computed for 0
� " �

10, by solving the Phase
1 Markov model for time-dependent probabilities from 0 to
10 hours. Similarly, by setting the initial probability of the
Phase 2 Markov model to � � 10

, and solving the Phase 2

Markov model for time-dependent probabilities from 0 to 6
hours, we get � � "�
 for 10 � "��

16. Finally, by setting the
initial probability of the Phase 3 Markov model to � � 16

,

and solving the Phase 3 Markov model for time-dependent
probabilitiesfrom 0 to 8 hours, we get � � "�
 for 16 � " �

24.
Once we have the state probabilities, we can compute the

availability also as described in the previous section, using
the tagged job model. Since we are mainly interested in
steady-state availability, we compute it by using the vector� � "(
 . This will give us the steady-state availability '%� "�
 ,
0
�," �

24.

0.0 4.0 8.0 12.0 16.0 20.0 24.0
s

0.960

0.970

0.980

0.990

1.000

A
(s

)

Figure 1. Steady-state Availability for a 1-day
period

Figure 1 shows the instantaneous availability over a pe-
riod of one day, when the system has reached steady-state,
for this example.(Though the curves look perfectly vertical,
as if there are discontinuities in the plot, this is the effect of
granularity of the plot, and in fact there will be a gradual
change in the availability at 10 and 16 hours). Note that
the availability in the 6-hour peak period in the middle of
the day is, as expected, significantly lower than the avail-
ability during the other hours in the day. The availability
in each interval quickly reaches a steady-state in that inter-
val : that availability is 99.9999982 % in the first interval,
96.986841 % in the second interval, and 99.994225 % in the
third interval.

To calculate the downtime per month (30 days), we can
integrate numerically, the curve shown in Figure 1. Thus

Downtime per month
#

30 � � 24 *
� 24

0
'�� "(
 � "(
 hours �

The downtime per month using this calculation in this
case, is 325 minutes (5.4 hours). If the availability require-
ment is that downtime be less than one hour per month, this
model tells us that five servers are not enough to meet this
requirement.

5.1 “Implicit” Model Approach

We can compare this approach with a more simple ap-
proach for calculating availability with an implicit notion
of performance, as discussed in Section 1. For using this
approach to compute the steady-state availability of the sys-
tem, we must first determine the minimum number of servers
that is required to be operational for the system to be con-
sidered available. This is determined by using a separate
performance model.

For each of the time-intervals where transaction arrival
rate is constant, we can use an

��� �����
model (assuming

that buffer space is large enough) to compute the steady-
state response time distribution of the system for each

�
,� #

1
� ���(� � 5, where

�
is the number of servers. The response

time distributionof the
���������

model is given by a closed-
form expression which can be found in [3].

For the arrival rates = 600, 4000 and 1200 per hour, the
probability of the steady state response time being less than
9 seconds is shown in Table 1 for the number of servers,�%#

1
� �(��� � 5. It is clear from the table that for the first

� = 1 � =2 � = 3 � = 4 � = 5	
= 600 0.60 0.93 0.95 0.95 0.95	
= 4000 0.78 0.93	
= 2000 0.55 0.92 0.95 0.95

Table 1. Response Time Probabilities Using��� �����
model

10 hours, at least 2 out of 5 servers are required to meet
the performance requirement; for the next 6 hours, all five
servers are required and for the next 8 hours, at least 3 servers
are required. This evaluates to 5 � 10 � 10 % unavailability
in the first 10 hours, 0.5 % unavailability in the next 6 hours,
and 10 � 6 % unavailability in the next 8 hours.

This is equivalent to 54 minutes of downtime per month
(30 days). If the availability requirement is for the down-
time to be less than one hour every month, then this analysis
tells us that five servers are enough for meeting the require-
ment (albeit closely). Thus, there is a substantial difference

between the estimates made using this implicit model, and
estimates made using explicit user-perceived availability. As
described earlier, the user-perceived availability takes into
account the possibility of system failure purely due to not
meeting the response time requirement, which may or may
not be triggered due to server failures. Therefore, the down-
time estimate, in this case, was larger using this method as
compared with the implicit model (this is not always true).
The issue of whether performance degradation due to the
random nature of arrivals and due to queueing should be
“counted” while estimating downtime is a debatable one.
However, we argue that irrespective of whether the cause
was a server failure or simply a temporary congestion, the
user will perceive the degradation of the performance. If this
perceived degradation is substantial enough, it will result in
the user determining the system to be “unavailable”. Thus if
a user-perceived definition of availability is to be accepted,
we believe it must reflect this perception as accurately as
possible.

6 Approximate Method for computing User-
Perceived Availability

The method for computing availability using Markov
models as described in Section 3 and Section 4 has sev-
eral disadvantages. First, if the buffer space for waiting
transactions is large (which is likely in modern systems,
where memory is fairly cheap), the number of states gen-
erated will be simply too large and the model will become
essentially unsolvable. Second, the tagged job approach for
computing response-time distribution is a tedious one where
the response time model must be solved for each initial state,
for all states generated in the steady state model. Therefore
a simpler way to compute the user-perceived availability is
necessary.

We do this by following the expected approach of de-
composing the model into a server failure and repair model
and the transaction arrival and service model. We solve the
transaction model for response time performance in steady-
state assuming that the number of operational servers and
the transaction arrival rate does not change in a short time.
Such an approximation is acceptable because the time-scales
of the failure-repair events and the duration of "phases" are
orders of magnitude higher than the time-scales of transac-
tion arrivals and service. Note though, that we do this while
still keeping the availability definition strictly in terms of
the user-perceived performance. Thus though we use a two-
level model to solve for this availability, our definition of
availability does not change to being “two level”.

Let us first compute the probability at any instant in the
steady-state of the transaction model that the system is avail-
able as defined by Equation (1), given that there are

�
servers

operational at that time. For doing that, we basically use

Equations 2 through 5 of Section 2. The first quantity that
can be computed is � �	. - , which is the probability that an
arriving transaction misses the deadline, given that the sys-
tem is in state , - , where , - # � is now simply the number
of transactions in the system. Recall that we assume ex-
ponential service time � for the servers. Thus, given �
transactions in the system and

�
servers, the response time

 is a 5�� � ���
 random variable, if � � �
; and is the

sum of an 5
� ��' ��� ��� �!� ��* � � 1

random variable and

an 5�� � ���
 random variable, if � $ � . Let

�����
	�� ��
 # 1 * � ��� � � � 11

and

������ � ��
 # 1 *
- � �� ���

0

� � � ��
 ��
!

� � � � � � � 12

Then

� � . - # � ���
	 � ��
	� � � � �# � �������� �����
	
 � ��
�� � $ � (13)

where � represents the convolution operator. Given the
� � . - ’s, the

� -
’s can be found using Equation (4).

To find the probability of having � transactions in the
system we assume a simple

���������
model. (Since, as

mentioned before, transaction buffer sizes can be quite large,
we assume an infinite buffer space.) If � # 	 � � � , where 	
is the transaction arrival rate, the steady state probabilities
for an

���������
model where � � � are given by :

Π0
� � � 1� � �

0

� ��
!
� � ��

! � 1 *�� �
 � � 1

(14)

Π� # � ��
!

Π0 1
� � � � * 1 (15)

Π� # � ��
!
� � � 1 Π0

� $ � (16)

Now, it is clear that there will be a certain threshold!
after which all

� -
’s with � $!

will be 0. Then, the
conditional steady-state availability is given by #"- � 0

� -
Π
-
.

Recall that this entire calculation was made under the
condition that there are

�
servers operational and that the

transaction arrival rate is 	 . Denote the availability derived
in such a way by ' �%$ & , and let

� �
denote the probability

that there are exactly
�

out of � servers available. Let� # � � ��
 � �
 denote the availability of a single server
Then

� � # � !�
! ��� * �	
 !

� � � 1 * �!
�' � � � � 17

Then, ' & # ' � �
1 ' �%$ & � � , is the availability of the

system under a certain load 	 . Assuming the transaction
load pattern as described in Section 3, the downtime in
minutes per day is given by :

� � 1 *+' &
1

 � � 0 � � 1 * ' &
2

 � � � 1 * � 0
� � 1 *+' &
3

 � � 24 * � 1
�� � 60 � (18)

The followingshows the approximate method of comput-
ing user-perceived availability, in a step-by-step algorithmic
manner :

1. First compute
� �

for
� #

1
� �(��� � � .

2. For each transaction arrival rate 	 # 	 1
� 	 2 and 	 3, do

the steps 3 thru 7.

3. For each number of servers
� # �

0
� �(��� � � , where

�
0

is the minimum number of servers for which 	 � � 0 � ,
do steps 4 thru 6.

4. For � # 0
�
1
�
2
� ��� � , compute

� -
, by computing � �	. - as

shown in Equation (13), until
� -

is zero for some � # !
,

after which all
� -

’s will be zero.

5. For � # 0
� ���(� � ! , compute Π

-
, the steady-state proba-

bilities.

6. Set ' �%$ &�# "- � 0

� -
Π
-

7. Set ' & # ' � � �
0
' �%$ & � � .

8. Compute downtime minutes per day as shown in Equa-
tion (18).

Using the approximate model for computing, the steady-
state user-perceived availability for the example system in
Section 5 is 99.9999 % for the first 10 hours, 96.9861 % for
the next 6 hours, and 99.9943 % for the next 8 hours. The
downtime estimate is 326.16 minutes per month. Thus, for
the given failure, repair, transaction arrival, and transaction
service rates, this approximation is very good.

6.1 Examples

The approximation allows us to answer what-if ques-
tions quickly, and therefore allows for efficient evaluation
of design alternatives. Thus, for example, in Section 5, we
determined from the user-perceived downtime measure, that
five servers were not enough to meet the maximum one-hour
downtime requirement. Using the approximate method, we
can carry out the same calculation for � #

6 servers. The
downtime in this case turns out to be 27.9 minutes per month,
which meets the requirement. Therefore, we conclude that
we need six servers to satisfy the downtime requirement.

As another example, consider the same system, but with
a different load pattern. We consider a very sharp peak hour
load on the system : let us assume that 	 1

#
600 transactions

per hour from 0 to 10 hours, 	 2
#

5500 from 10 to 14 hours,
and 	 3

#
600 again from 14 hours to 24 hours. For this sys-

tem, with the same performance-availability requirements,
we would like to determine the number of servers necessary
to again meet a maximum one hour per month downtime
requirement. Using the approximate method, we determine
the downtime for � #

5
�
6 and � #

7 servers. The fol-
lowing table shows the downtime estimates in minutes per
month using the approximate model and the implicit model
for these three cases.

N User Perceived Implicit Model
5 3436.8 7200
6 506.4 43
7 40.4 0.15

Table 2. Comparison of User-Perceived Down-
time vs Implicit Model Downtime in minutes

Thus we need 7 servers to satisfy the downtime require-
ment in this case. Note that unlike other cases, when we
have 5 servers, the implicit model downtime estimate is
larger than the user-perceived downtime estimate. This is
so because the steady-state probability of missing the dead-
line when the load is 5500 transactions per hour, and there
are 5 servers, is 0.62 which is less than 0.8. Thus according
to the implicit model, with 5 servers the system cannot be
considered available, and therefore, the system is unavail-
able for 4 hours, which is 7200 minutes per month. The
downtime in the rest of the day when there is low load is
almost negligible. The user-perceived availability in the
four-hour peak period is, on the other hand, 52.3 %. In this
case, this measure is allowing for the random occurrence
that the number of transactions in the system is low, even in
the peak period, and when the user may perceive the system
to be “available”. Therefore, user-perceived downtime is
smaller than the implicit model downtime, in this case.

7 Summary and Conclusions

In this paper, we presented a formal definition of avail-
ability for transaction processing systems for which an in-
formal notion of system failure due to degraded system
performance already existed. The definition is simple, ex-
plicit and is a natural representation of the users’s perfor-
mance/availability expectation of a typical transaction pro-
cessing system. We presented a Markov model that can be
used to compute the availabilityas defined in this paper. The

Markov model was solved numerically, using existing tools.
We also presented an approximate method of computing this
user-perceived availability.

We conclude that this measure more appropriately re-
flects availability as actually perceived by the user and
should be the measure of choice for systems for which the
user perceived availability is important.

Acknowledgements

The author would like to thank Paul Reeser for many in-
sightful comments, and Gagan L. Choudhury for reviewing
this paper.

References

[1] G. Ciardo, A. Blakemore, P. F. Chimento, and K. S. Trivedi.
Automated generation and analysis of Markov reward mod-
els using stochastic reward nets. In A. Freidman and
J. W. Miller, editors, Linear Algebra, Markov Chains, and
Queueing Models, IMA Volumes in Mathematics and its Ap-
plications, volume 48, pages 145–191.Springer-Verlag, Hei-
delberg, 1993.

[2] G. Ciardo, J. Muppala, and K. Trivedi. SPNP: Stochastic
Petri net package. In Proc. Int. Conf. on Petri Nets and
Performance Models, pages 142–150, Kyoto, Japan, Dec.
1989.

[3] R. B. Cooper. Introduction to Queueing Theory. CEEPress
Books, Washingtion, D.C., U.S.A., 3rd edition, 1990.

[4] Y. Levy and P. E. Wirth. A unifying approachto performance
and reliability objectives. In M. Bonatti, editor, Teletraffic
Science for New Cost-Effective Systems, Networks and Ser-
vices, ITC-12, pages 1173–1179,Amsterdam, 1989. Elsevier
Science Publishers, B. V. (North-Holland).

[5] B. Melamed and M. Yadin. Numerical computation of
sojourn-time distributions in queueing networks. J. ACM.,
31(4):839–854, Oct. 1984.

[6] J. K. Muppala, K. S. Trivedi, V. Mainkar, and V. Kulkarni.
Numerical computation of response time distributions us-
ing stochastic reward nets. Annals of Operations Research:
Special Issue on Queuing Networks, 48:155–184, 1994.

[7] J. K. Muppala, S. P. Woolet, and K. S. Trivedi. Real-time
performance in the presence of failures. IEEE Computer,
pages 37–47, May 1991.

[8] K. G. Shin and C. M. Krishna. New performance measures
for design and evaluation of real-time multiprocessors. Com-
puter Systems Science and Engineering, 1(4):179–192, Oct.
1986.

[9] K. G. Shin, C. M. Krishna, and Y.-H. Lee. Optimal dynamic
control of resources in a distributed system. IEEE Trans-
actions on Software Engineering, 15(10):1188–1198, Oct.
1989.

[10] J. A. Stankovic and K. Ramamritham. Hard Real-Time Sys-
tems. IEEE Computer Society Press, Los Angeles, CA, 1988.

[11] R. W. Wolff. Poisson arrivals see time averages. Oper. Res.,
30(2), Mar.-Apr. 1982.

