
Analytic Model of Web Servers in Distributed Environments
Paul Reeser

AT&T Labs
D5-3B20, 200 Laurel Ave

Middletown, NJ 07748
+1 732 420 3693

preeser@att.com

Rema Hariharan
AT&T Labs

D5-3D17, 200 Laurel Ave
Middletown, NJ 07748

+1 732 420 3743

rhariharan@att.com

ABSTRACT
In this paper, we illustrate a model-based approach to Web

server performance evaluation, and present an analytic queueing
model of Web servers in distributed environments. Performance
predictions from the analytic model match well with the
performance observed from simulation. The model forms an
excellent basis for a decision support tool to allow system
architects to predict the behavior of new systems prior to
deployment, or existing systems under new workload scenarios.

Keywords
HTTP, Web, distributed, OO, Java, servlet, script, performance.

1. INTRODUCTION
Web technologies are currently being employed to provide

end-user interfaces in distributed computing environments. The
core element of these Web solutions is a Web server based on the
HyperText Transfer Protocol (HTTP) running over TCP/IP. Web
servers are required to perform millions of transaction requests
per day at an acceptable Quality of Service (QoS) level in terms of
client response time and server throughput. Consequently, a
thorough understanding of the performance capabilities and
limitations of Web servers is critical.

In many applications, the Web server performs significant
dynamic server-side scripting. In these applications, a Web server
retrieves a file, parses the file for scripting language content,
interprets the scripting statements, and executes embedded code,
possibly requiring a connection to a remote application for data
processing/transfer. To facilitate this functionality, many servers
implement the Common Gateway Interface (CGI) standard.
However, for each invocation of a CGI application, a new process
is forked and executed, causing significant performance problems
on the server. To overcome this performance penalty, many Web
servers implement an Application Programming Interface (API) to
perform server-side processing without spawning a new process,
either by interpreting embedded scripting on Web pages, or by
dynamically loading precompiled code.

One approach to performing this server-side scripting is to
implement a script-engine (SE) dedicated to processing server-
side scripts. Examples of SE implementations are the Active
Server Pages (ASP) technology in Microsoft’s Internet
Information Server (IIS), or the Java Server Pages (JSP)
technology in both IIS and Netscape's Enterprise Server (NES). In
ASP applications, for example, IIS retrieves a file, parses the file
for scripting language content, and interprets the scripting
statements. Since scripts are typically interpreted, a complex
script will impede SE performance.

Web server performance in these distributed environments is
a complex interplay between a variety of factors (e.g., hardware
platform, server operating system, script execution environment,
workload characteristics, network bandwidth, etc). Experience has
shown that the performance of Web servers can be impacted
tremendously by the proper tuning of the server components. In
order to properly configure these different components, however,
it is crucial to understand how these components interact and how
they impact user-perceived end-to-end performance. Although
testing is essential for assessing performance, there are inherent
limitations to a testing approach for validating Web server
performance. Consequently, modeling is critical to further
understand the performance capabilities and limitations of Web
servers that participate in distributed computing.

In this paper, we illustrate a model-based approach to Web
server performance evaluation, and present an analytic queueing
model of Web servers in distributed environments. Performance
predictions from the analytic model match well with the
performance observed from simulation. The model forms an
excellent basis for a decision support tool to allow system
architects to predict the behavior of new systems prior to
deployment, or existing systems under new workload scenarios.

2. RELATION TO PREVIOUS WORK
A number of queueing models of Web server performance

exist in the literature. Slothouber [14] proposes to model a Web
server as an open queueing network. Menascé and Almeida [9]
provide an analysis of the Web application and workload
characteristics that impact performance, and develop queueing
models of the server hardware elements. However, while these
models are useful to identify performance tradeoffs and perform
high-level capacity planning, they ignore essential low-level
details of the HTTP and TCP/IP protocols and software, despite
the fact that these details strongly impact server performance. Van
der Mei, etal [17] propose a detailed simulation model of the low-
level hardware and software components of a Web server, and
Reeser, etal [13] propose a detailed analytic model. However,
these models fail to address Web servers with significant server-
side processing that participate in distributed computing.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or
a fee.
Proceedings of WOSP2000, Ottawa, Canada, 9/2000
(c) 2000 ACM. ISBN 1-58113-195-X.

158

Permission to make digital or hard copies of part or all of
this work or personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.

WOSP 2000, Ontario, Canada
© ACM 2000 1-58113-195-X/00/09 ...$5.00

In this paper, we present an enhanced end-to-end analytic
queueing model of Web servers that incorporates dynamic server-
side computing in a distributed environment. This model
represents a substantial extension of the model proposed in [13]
to include enhancements to the existing HTTP and I/O sub-system
models, and introduction of new Script Engine and distributed
backend sub-system models. The basic analytic model presented
here has been validated by comparing performance predictions
from the model to those from a simulation [17]. The simulation,
in turn, has been validated by comparing to the performance
observed in a test lab environment [16], as well as in a real-world
production environment with actual users, authentic arrival
patterns, and realistic Web content and scripting logic [8].

Analytically solving a queueing model with this level of
detail requires a number of simplifying assumptions. The basic
assumptions underlying this model are that inter-arrival times and
holding times at each sub-system are exponentially distributed,
and output file sizes are geometrically distributed. Obviously,
these assumptions seem unrealistic for any real-world scenario.
Therefore, we outline a number of extensions to the basic model
to address these assumptions, including enhancements to model
HTTP 1.1 (persistent connections), non-Poisson arrival processes,
and heavy-tailed distributions. However, since these particular
extensions have not yet been incorporated or validated, this work
should be viewedaccordingly as preliminary work in progress.

Despite these limitations, early evidence from the simulation
model [8] suggests that while these real-world characteristics
(non-Poisson arrivals and heavy-tailed service times) do impact
performance at the packet level, they may not strongly manifest
themselves in the average end-to-end user-perceived application
performance measures (such as response time and blocking).

This analytic model forms an excellent basis for development
of a decision support tool for evaluating the performance of Web
servers in a distributed environment, allowing system architects to
predict the behavior of new systems prior to their deployment, or
the behavior of existing systems under new workload scenarios.

3. BASIC DESCRIPTIVE MODEL
3.1 Basic HTTP Transaction Flow

The flow of a basic HTTP 1.0 transaction through a Web
server is shown in Figure 1. (Extension of the basic model to
HTTP 1.1 is discussed in section 6.1.) Transactions proceed
through a Web server along four successive phases (sub-systems):
TCP/IP connection setup, HTTP application processing, Script
Engine (SE) dynamic processing (including interaction with a
distributed backend server), and network I/O processing and
transmission. These phases are discussed in more detail below.

3.2 TCP Connection Setup Phase
Before information can be exchanged between the client and

server, a two-way connection (TCP socket) must be established.
The TCP sub-system consists of a TCP Listen Queue (TCP-LQ)
served by a "listener" daemon (httpd in the case of HTTP traffic).
A TCP connection is established by the well-known 3-way
handshake procedure (SYN, SYN-ACK, ACK). Immediately after
the TCP socket is established, the transaction request is forwarded
to the HTTP sub-system for processing. If all slots in the TCP-LQ
are occupied upon arrival of a request, then the request is rejected,
and the client receives a “connection refused” message.

3.3 HTTP Layer Processing Phase
The HTTP sub-system consists of an HTTP Listen Queue

(HTTP-LQ) served by a multi-threaded HTTP daemon that
coordinates the processing performed by a number of (worker)
threads. The dynamics of the HTTP sub-system are as follows:

1. If an HTTP worker thread is available, then the thread
retrieves the requested file. If the file requires script processing,
then the transaction is forwarded to the SE sub-system (see
section 3.4). Otherwise, the static file content is retrieved and
forwarded to the I/O sub-system (see section 3.5). If all I/O
buffers are occupied at that time, then the HTTP thread remains
idling until an I/O buffer becomes available.

2. If there is no HTTP worker thread available, then the
transaction request enters the HTTP-LQ (if possible), and waits
until a thread is assigned to handle the request.

3. If the HTTP-LQ if full, then the transaction request is
rejected, the clients receives a “connection refused” message,
and the TCP connection is torn down.

3.4 SE Layer Processing Phase
The script-engine (SE) dynamics generally depend heavily

on the Web server implementation and server operating system. In
this section, we attempt to highlight the general performance
issues that arise in SE implementations, without focusing too
heavily on a particular technology. The SE sub-system consists of
an SE Listen Queue (SE-LQ) and a pool of handler threads
dedicated to interpreting scripting statements and executing
embedded code (e.g., C++, Java). During execution,
communication with a remote backend server may be needed
(e.g., to perform a database query), possibly requiring a TCP
connection to the backend server to be established and
subsequently torn down. The dynamics of the SE sub-system are
described as follows:

1. If an SE handler thread is available, then the thread executes
the embedded code. If the HTTP/SE implementation operates in
blocking mode (that is, the HTTP thread blocks on a response
from the SE – see Figure 2), then the SE thread forwards the
transaction request back to the HTTP thread for further
handling (see section 3.3). Otherwise, if the HTTP/SE
implementation operates innon-blocking mode (that is, the
HTTP thread is released as soon as the request is forwarded to
the SE sub-system – see Figure 2), then the SE thread forwards
the transaction request directly to the I/O sub-system (see
section 3.5). If all I/O buffers are occupied at that time, then the
SE thread remains idling until an I/O buffer becomes available.

2. If there is no SE handler thread available, then the
transaction request enters the SE-LQ (if possible), and waits
until a thread is assigned to handle the request.Figure 1: Model of Basic HTTP Transaction Flows

client
network

TCP

Web server

HTTP ASP/JSP
Servlet Engine

objects

Remote
Application

(eg, Mail
Engine)

IOC

TCP flow control network
connection

network

159

3. If the SE-LQ if full, then the transaction request is rejected,
the clients receives a “connection refused” message, and the
TCP connection is torn down.

Note that Microsoft's IIS/ASP implementation operates in
non-blocking mode, while most other implementations (e.g.,
NES/JSP) typically operate in blocking mode.

3.5 Network I/O Processing Phase
The I/O sub-system consists of a number of parallel I/O

buffers, an I/O controller (IOC), the network interface card (NIC),
and the connection (link) from the Web server to the network. The
contents of the I/O buffers are drained over the network link to
the client as scheduled by the IOC. The IOC visits the different
I/O buffers in a round-robin fashion, checks whether the I/O
buffers have any data to send, and if so, places a chunk of data
onto the network connection.

The communication between the server and client is based
on the TCP flow control mechanism (see [15] for details). The
transmission unit for TCP is the maximum segment size (MSS),
the largest amount of data that TCP will send at one time. Files
residing in I/O buffers are (virtually) partitioned into blocks of
one MSS (except for the trailing part of the file). The window
mechanism implies that a block can only be transmitted if the
TCP window is open. The arrival of acknowledgments generally
depends on network congestion. Therefore, the rate at which I/O
buffers drain their contents is affected by network congestion.

Numerous approaches have been suggested for analytically
modeling multi-layered communication protocol architectures
such as TCP/IP (see [2] and references therein).

3.6 Sub-System Interactions
To understand the end-to-end performance of Web servers, it

is important to understand the interactions between the sub-
systems discussed in sections 3.2-3.5. To this end, consider what
happens if the network connection between the Web server and
the client is congested. Then the network round-trip time (RTT)
increases, so that TCP acknowledgments (from client to server) of
the receipt of file blocks by the client are delayed, implying that
the “drain rate” of the I/O buffers decreases. This, in turn, implies
that I/O buffers become available to the HTTP/SE threads at a
slower rate, so that these threads may have to wait for a longer
time period to get access to an I/O buffer. Since the threads are
idling as long as they are waiting for an I/O buffer to become
available, the availability of idle threads goes down. The HTTP
and SE LQs then tend to fill up and overflow, leading to the

blocking of incoming transaction requests. In this way,
performance problems in the network will lead to performance
problems throughout the Web server itself.

The key to providing a tractable analytic model of these
intricate dependencies and interactions lies in the ability to de-
couple them, while at the same timeaccurately capturing the
impacts of “downstream” congestion. The approach taken here is
to treat each sub-system as a separate Markovian queue, compute
its performance in isolation, and feed the results back into
adjacent sub-systems. The resulting model consists of a sequence
of (independent yet coupled) queues, where the arrival rates and
holding times at eachnode are iteratively adjusted toaccount for
downstream performance. The resulting system is solved
recursively until convergence.

4. BASIC ANALYTIC MODEL
4.1 Markovian Queue Refresher

Prior to analyzing the various sub-systems, it is convenient
to review the solution to the general M/M/N/Q Markovian
queueing system. Assume that arrivals form an i.i.d. Poisson
process with rateλ, and that service times are i.i.d. exponentially
distributed with meanτ. Let A = λτ denote the offered load. Let N
denote the number of independent service stations, and let Q
denote the number of FCFS waiting stations (not including the
service stations). We denote the resulting system as an
M(λ)/M(τ)/N/Q Markovian queueing system [3]. The relevant
queueing measures follow directly by applying basic queueing
results. In particular, one can readily compute:

π ≡ π(A,N,Q) = the probability of queueing (all service
stations occupied),

β ≡ β(A,N,Q) = the probability of blocking (all service +
waiting stations occupied),

n = the average number of occupied service stations,
q = the average number of occupied waiting stations, and
ω = the average waiting time prior to service.

Note that if Q=0, thenβ(A,N,0) represents the Erlang B
(“blocked calls cleared”) formula [3], and if Q=∞, thenπ(A,N,∞)
represents the Erlang C (“blocked calls delayed”) formula [3].

4.2 TCP Sub-System Model
As described in section 3.2, the TCP sub-system behaves like

a group of Ntcp separate servers, where each “server” represents a
slot in the TCP-LQ. A service time represents the time between
the arrival of the connection request at the TCP-LQ and the
completion of the TCP handshake, corresponding to one round-
trip time (RTT) between the server and the client. We assume that
incoming requests form a Poisson process with rateλfile (in
files/second),each with an exponentially distributed holding time
with meanτnet (in seconds) corresponding to the network RTT.
Accordingly, we model this TCP sub-system as an M(λfile) /
M(τnet) / Ntcp / 0 blocking system. (Extension of this basic model
to non-Poisson arrival processes will be discussed in section 6.2.)

Incoming connection requests that arrive when all Ntcp LQ
slots are occupied are blocked (“connection refused”), and retry
with probability πretry. We account for the reattempts by inflating
the offered load as follows (see Figure 3): The initial offered load
afile (in Erlangs) is given by

Figure 2: Modes of HTTP/SE Implementation

1
TCP

2
HTTP

3

5b
SE

5n
5b

6
IOC

4

Backend
System

non-blocking blocking mode

160

afile = λfileτnet . (2.1)

The total offered load Atcp (including reattempts) is then given by

Atcp = afile + Atcpπretryβtot , (2.2)

where βtot is the total (TCP + HTTP + SE) LQ blocking
experienced by the incoming requests (analyzed in section 4.4).
Solving for Atcp yields

Atcp = afile / (1 – πretry βtot) = λfileτnet / (1 – πretry βtot) . (2.3)

The probability of finding all TCP LQ slots occupied (ie, the
probability of blocking)βtcp and the average number of occupied
TCP LQ slots ntcp follow directly from basic results for the
M/M/N/0 blocking system. Then, the effective file request rate
λtcp at the TCP sub-system is given by

λtcp = λfile / (1 – πretry βtot) , (2.4)

and the effective file request rateλhttp offered to the HTTP server
sub-system is given by

λhttp = λtcp (1 – βtcp) = λfile (1 – βtcp) / (1 – πretry βtot) . (2.5)

Note that the impact of “downstream” congestion on the
TCP sub-system is captured in the calculation of total offered load
Atcp (including reattempts), which in turn impacts the calculations
of the TCP LQ blockingβtcp and the total (TCP + HTTP + SE)
LQ blockingβtot.

4.3 HTTP Sub-System Model
The HTTP sub-system consists of a LQ of size Qhttp served

by an HTTP daemon with Nhttp worker threads. The customer
occupies the thread from the time at which a thread is assigned to
the request until the thread becomes available to handle another
request (including any time the thread waits for a response from
the SE sub-system, or for an I/O buffer to become available). We
assume that incoming transaction requests form a Poisson process
with rate λhttp, each with an exponentially distributed HTTP
thread holding time with meanτhttp. We model this HTTP sub-
system as an M(λhttp) / M(τhttp) / Nhttp / Qhttp queueing/blocking
system. (Extension to non-Poisson arrival processes and heavy-
tailed service times will be discussed in sections 6.2 and 6.3.)

Incoming requests that arrive when all Qhttp LQ slots are
occupied are blocked, and retry with probabilityπretry. As before,
we account for these reattempts by inflating the offered load as
follows (see Figure 3): The total offered load Ahttp (including
reattempts) is given by

Ahttp = λhttp τhttp = λfile τhttp (1–βtcp) / (1– πretry βtot) . (3.1)

The probability of finding all HTTP LQ slots occupiedβhttp,
the average number of occupied HTTP threads nhttp, the average
number of occupied HTTP LQ slots qhttp, and the average waiting
time in the HTTP LQωhttp all follow directly from basic results
for the M/M/N/Q queueing system. Then, the effective file request
rateλseoffered to the SE sub-system is given by

λse= λhttp (1–βhttp) = λfile (1–βtcp) (1–βhttp) / (1– πretry βtot). (3.2)

Next, we compute the average HTTP thread holding time
τhttp. In the case of anon-blocking SE implementation,τhttp

consists simply of the time to process the requested file for
scripting language contentτproc, after which the request is
forwarded to the SE sub-system for script execution. The time to
process the fileτproc is given by

τproc = τcpu max { [min(nhttp+ I*, N http) + nse] / Ncpu , 1}, (3.3)

where τcpu is the CPU execution time for the HTTP thread to
process the file, nse is the average number of occupied SE threads
(analyzed in section 4.4), Ncpu is the number of CPUs, and I* = 1
if Nhttp > 1 (and 0 otherwise).

Note that the computation ofτproc takes into account the fact
that the hardware resources (CPUs) are shared among software
threads. The behavior captured in equation 3.3 is best described
as "time-slicing", where each active request gets an equal
proportion of the CPU, and the request service time is linearly
elongated by multiplying by the number of active requests. In
contrast, the behavior of the CPU model in [13] is best described
as "processor-sharing", where request service time is non-linearly
elongated by dividing by {1 – the CPU utilization}. As we will
see in section 5, this change represents a substantial enhancement
over the model in [13]. Comparison to simulation and test results
has demonstrated that the time-slicing model is more accurate.

In the case of ablockingSE implementation,τhttp consists of
the time to process the requested fileτproc, plus the time the HTTP
thread is blocked waiting for the SE sub-system to return control,
plus the time the HTTP thread is blocked waiting for an output
buffer to become available (in the case that all output buffers are
occupied), plus the time the HTTP thread is blocked waiting to
refill the output buffer (in the case that the requested file does not
fit entirely into the buffer in one pass). Therefore,τhttp is given by

τhttp = τproc + ωse+ τse+ ωioq + ωbuf , (3.4)

whereωse is the average waiting time in the SE LQ andτse is the
average SE thread holding time (both analyzed in section 4.4),
ωioq is the average waiting time to receive a network output buffer
(analyzed in section 4.5), andωbuf is the average waiting time to
refill the output buffer.

+

π

λtcp(1–βtcp)(1–βhttp)

λtcp(1–βtcp)βhttpλtcpβtcp

λtcp(1–βtcp)

λtcp(1–πretry)βtot

λtcpπretryβtot

λfile
λtcp

λtcp = λfile / (1– πretry βtot)
βtot = βtcp + βhttp + βse – βtcpβhttp – βtcpβse – βhttpβse + βtcpβhttpβse

λtcp(1–βtcp)(1–βhttp)(1–βse)

λtcp(1–βtcp)(1–βhttp)βse

Figure 3: Modes of HTTP/SE Implementation

161

The average waiting time to refill the network output buffer
ωbuf is determined as follows: Assuming that the file size is
geometrically distributed with parameter p=1/nfile, where nfile is the
average file size (in blocks), then the probabilityπbuf that the
requested file size exceeds the output buffer size Niob (in blocks)
is given by

N

πbuf = 1 – P{file size≤ Niob} = 1 – p∑(1–p)i–1 = (1–p)N (3.5)
i=1

for p = 1/nfile and N = Niob. Similarly, it can be shown that the
probability of exceeding two buffer sizes isπbuf

2, and so on.
Therefore, the expected number of stages required to write the
entire file into the network output buffer is given by 1 / (1 –πbuf),
and the expected number of additional stages (beyond the first
mandatory write) is given by 1/(1–πbuf) – 1 =πbuf / (1 – πbuf).

It can then be shown that the average waiting timeωbuf to
refill the output buffer is given by

ωbuf = Niob τiob πbuf / (1 – πbuf) , (3.6)

whereτiob is average block service time (analyzed in section 4.5).
Note that the impact of “downstream” congestion (in terms

of SE and I/O system occupancy and I/O buffer size) is captured
in the calculation of the average HTTP thread holding timeτhttp.

4.4 SE Sub-System Model
The SE sub-system consists of a LQ of size Qseserved by Nse

separate script handler threads. We assume that incoming requests
form a Poisson process with rateλse, each with an exponentially
distributed SE thread holding time with meanτse. We model this
SE sub-system as an M(λse) / M(τse) / Nse / Qse queueing/blocking
system. (Extension to non-Poisson arrival processes and heavy-
tailed service times will be discussed in sections 6.2 and 6.3.)

Incoming requests that arrive when all Qse LQ slots are
occupied are blocked, and retry with probabilityπretry. As before,
we account for these reattempts by inflating the offered load as
follows (see Figure 3): The total offered load Ase (including
reattempts) is given by

Ase= λseτse= λfile τse(1–βtcp) (1–βhttp) / (1– πretry βtot). (4.1)

The probability of finding all SE LQ slots occupiedβse, the
average number of occupied SE threads nse, the average number
of occupied SE LQ slots qse, and the average waiting time in the
SE LQωse all follow directly from basic results for the M/M/N/Q
queueing system. Then, the total (TCP + HTTP + SE) LQ
blockingβtot experienced by incoming requests is given by

βtot = βtcp + βhttp (1– βtcp) + βse(1–βhttp) (1– βtcp). (4.2)

Next, we compute the average SE thread holding timeτse. In
the case of ablocking SE implementation,τse consists simply of
the time to execute the requested scriptτexec (including any
distributed backend delay), after which the request is returned to
the HTTP thread for final processing. The time to execute the
scriptτexecis given by

τexec= τscript max{[min(nse+1, Nse)+nhttp]/Ncpu , 1} + τbackend, (4.3)

whereτscript is the CPU execution time for the SE thread to run the
script, τbackendis the delay associated with communication to the
distributed backend server (eg, a legacy database), and I* = 1 if
Nse > 1 (0 otherwise). Again, note that the computation ofτexec

takes into account the fact that the hardware resources (CPUs) are
shared among software threads in a time-slicing manner.

In the case of anon-blockingSE implementation,τse consists
of the time to execute the requested scriptτexec (including any
backend delay), plus the time the SE thread is blocked waiting for
an output buffer to become available (in the case that all output
buffers are occupied), plus the time the SE thread is blocked
waiting to refill the output buffer (in the case that the requested
file does not fit entirely in the output buffer in one pass).
Therefore,τse is given by

τse= τexec+ ωioq + ωbuf . (4.4)

Then, the effective file request rateλbuf offered to the I/O
sub-system is given by

λbuf = λse(1–βse) = λfile(1–βtcp)(1–βhttp)(1–βse)/(1–πretryβtot). (4.5)

Note that the impact of “downstream” congestion (in terms
of I/O sub-system buffer size and occupancy) is captured in the
calculation of the average SE thread holding timeτse.

4.5 I/O Sub-System Model
The I/O sub-system consists of Nbuf network output buffers,

served by a single I/O controller in a round-robin (polling)
fashion. We assume that incoming requests form a Poisson
process with rateλbuf, each with an exponentially distributed
buffer service time with meanτbuf. We model the assignment of
I/O buffers as an M(λbuf) / M(τbuf) / Nbuf / ∞ queueing system,
where the average buffer holding timeτbuf captures the impacts of
the I/O controller and the TCP flow control.

Specifically, the I/O sub-system holding time is a function of
the average number of cycles ncycle required by the I/O controller
to send the file. The average number of cycles, in turn, is
determined by the dynamics of the TCP flow control as follows:
assuming that file size is geometrically distributed, the expected
number of cycles ncycle is given by

∞

ncycle = p∑E{# cycles | file size=i} (1 – p)i–1 for p = 1/nfile, (5.1)
i=1

where the E{number of cycles | file size = i} is chosen to reflect
the TCP flow control algorithm and network congestion scenario.

For instance, consider an optimistic scenario (see Table 1):
if the window size doubles witheach successful transmission
(1 block, then 2 blocks, then 4 blocks, then 8 blocks, etc), then the
E{number of cycles | file size = i} = 1, 2, 2, 3, 3, 3, 3, 4, 4, 4,…
for file size i = 1, 2, 3,…

File Size
(blocks)

Cycle 1
WS = 1

Cycle 2
WS = 2

Cycle 3
WS = 4

Cycle 4
WS = 8

Number
of Cycles

1 1 1
2 1 1 2
3 1 2 2
4 1 2 1 3
5 1 2 2 3
6 1 2 3 3
7 1 2 4 3
8 1 2 4 1 4
9 1 2 4 2 4
10 1 2 4 3 4

Table 1: Number of Cycles vs. File Size (Optimistic Scenario)

162

On the other hand, consider a pessimistic scenario (see Table 2):
if the window size follows the example sample path: 1 block, then
2 blocks, then 4 blocks (2 of which are not acknowledged), then
1 block (back-off due to congestion), etc, then the E{number of
cycles | file size = i} = 1, 2, 2, 3, 3, 4, 5, 5, 6, 6,… for i = 1,2,3,…
The average window size (in blocks) is then given by nfile / ncycle .

FileSize
(blocks)

Cycle1
WS=1

Cycle2
WS=2

Cycle3
WS=4

Cycle4
WS=1

Cycle5
WS=2

Cycle6
WS=4

of
Cycles

1 1 1
2 1 1 2
3 1 2 2
4 1 2 1 3
5 1 2 2 3
6 1 2 2 1 4
7 1 2 2 1 1 5
8 1 2 2 1 2 5
9 1 2 2 1 2 1 6
10 1 2 2 1 1 2 6

Next, the average elapsed time for each cycleτcycle consists of
the waiting timeωlink to acquire control of the output link, plus the
time τlink to put a chunk of data on the output link, plus the PC
modem timeτmodemto read the data, plus the network RTTτnet to
send the data and return the ACK. Therefore,τcycle is given by

τcycle = ωlink + τlink + τnet + τmodem. (5.2)

Equation 5.2 is optimistic from the standpoint that the model
assumes that network and modem service times are independent
of the load on the Web server (no contention between requests).
This assumption is reasonable for most network environments,
since one server typically will not perturb a network. However,
this assumption may be optimistic for the client modem, where
(up to 4) files from the same Web server may be downloading in
parallel. Therefore, a pessimistic bound may be obtained by
multiplying τmodemby 4 in equation 5.2.

The link holding time is clearly impacted by the server load.
Therefore, we model the output link as an M(λlink) / M(τlink) / 1 / ∞
queueing system (whereλlink = ncycle λbuf) in order to compute the
waiting timeωlink to acquire control of the output link.

Finally, the average number of occupied buffers nbuf, the
probability that all Nbuf output buffers are occupied (the
probability of queueing)πioq, the average number of queued files
(that is, the average number of HTTP/SE threads that are blocked,
waiting for an output buffer) qioq, and the average waiting time
(that is, the average time that the HTTP/SE thread is blocked,
waiting for a network output buffer)ωioq follow directly from
basic results for the M/M/N/∞ queueing system.

4.6 End-to-End Performance
The system of equations defined in sections 4.2-4.5 can

easily be solved iteratively until convergence. Although we have
not yet proven that the algorithm is guaranteed to converge to a
unique solution, we have always reached convergence in practice.
For points outside of a very narrow region around the bottleneck
saturation throughput (clarified in section 5), the computational
cost is trivial (10’s of iterations, and 10’s of CPU milliseconds).
For points within this very narrow region, convergence is
achieved through judicious use of a damping algorithm to

minimize oscillations, and computational cost is still very
reasonable (100’s of iterations, and a few CPU seconds).

Once the iteration is complete, we can compute the end-to-
end, user-perceived performance metrics. First, the user-perceived
file “connect” timeτconn consists of the TCP service time plus the
HTTP waiting time. Accordingly, the average user-perceived
“connect” timeτconn is given by

τconn= τnet + ωhttp . (6.1)

The user-perceived “response” timeτresp consists of the
HTTP processing time, plus the SE waiting and execution times,
plus the I/O waiting and service times. Accordingly, the average
user-perceived "response" timeτrespis given by

τresp= τproc + ωse+ τexec+ ωioq + τbuf . (6.2)

The end-to-end service time is then the sum of “connect” and
“response” times,τconn+ τresp. Also, the effective end-to-end file
“connect” rateλconn is given by

λconn= λfile (1–βtcp) (1–βhttp) (1–βse) / (1– πretry βtot), (6.3)

and the effective end-to-end file “error” rateλerror is given by

λerror = λfile – λconn= λfile (1–πretry) βtot / (1– πretry βtot). (6.4)

5. BASIC MODEL VALIDATION
A simulation model was written to validate the accuracy of

the basic analytic approximation. The simulation assumes Poisson
arrivals and geometric file sizes, but not exponential holding
times. Another difference is that the simulation faithfully captures
sub-system interactions and correlations. The simulation has been
validated extensively against lab measurements; the results of that
validation are documented in [17,16]. The test lab environment
used more realistic arrival patterns, service times and file sizes. In
addition, the simulation has been validated against a real-world
production environment with actual users, authentic arrival
patterns, and realistic Web content and scripting logic [8].

We performed a variety of numerical experiments. For a
number of realistic scenarios, we computed the server throughput,
blocked load, and average end-to-end response time as a function
of the transaction request rate (TRR). In order to demonstrate the
enhancements over the proposed model in [13], we consider the
same two Internet scenarios. The results are outlined below.

In the first scenario, the Web server is connected to the
Internet via a T1 (1.544 Mbps) line. Clients are connected to the
Internet via 28.8 Kbps modems. The Internet RTT is
exponentially distributed with mean 250ms. The Web server runs
on a single CPU machine, and the total CPU time required by an
HTTP thread is 60ms/file. Clients do not reattempt when blocked.
The TCP LQ size is 1024, the HTTP LQ size is 128, the number
of HTTP threads is 128, and the number of I/O buffers is 256. The
MTU size is 512B, and the average output file size is 4KB. This
scenario is realistic and typical for clients connected to a Web
server via the Internet.

The effective server throughputλconn, the blocked loadλerror,
and the average end-to-end service timeτconn + τresp, are shown in
Figures 4a-c (respectively) as a function of the TRR λfile. As can
be seen in Figure 4a, the throughput increases linearly up to some
threshold T*, and remains constant as the TRR exceeds T*. One
can readily verify that this maximum throughput T* corresponds
to the performance limit of the CPU (1/0.06≈ 17 requests/sec).
As can be seen in Figure 4b, the blocked load remains constant at
0 up to T*, then increases linearly as the TRR exceeds T*.

Table 2: Number of Cycles vs. File Size (Pessimistic Scenario)

163

Figure 4a: Server Throughput vs. TRR – Internet Scenario 1

0

4

8

1 2

1 6

2 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

f i l e r e q u e s t r a t e (t r a n s a c t i o n s / s e c o n d)

se
rv

er
th

ro
ug

hp
ut

(t
ra

ns
ac

tio
ns

/s
ec

on
d)

s i m u l a t i o n d a t a

a n a l y t i c m o d e l

m o d e l i n [4]

Figure 4b: Blocked Load vs. TRR – Internet Scenario 1

0

4

8

1 2

1 6

2 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

f i l e r e q u e s t r a t e (t r a n s a c t i o n s / s e c o n d)

bl
oc

ke
d

lo
ad

 (
tra

ns
ac

tio
ns

/s
ec

on
d)

s i m u l a t i o n d a t a

a n a l y t i c m o d e l

Figure 4c: Client Response Time vs. TRR – Internet Scenario 1

0

4

8

1 2

1 6

2 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

f i l e r e q u e s t r a t e (t r a n s a c t i o n s / s e c o n d)

av
er

ag
e

de
la

y
(s

ec
on

ds
)

s i m u l a t i o n d a t a

a n a l y t i c m o d e l

m o d e l i n [4]

164

Figure 5a: Server Throughput vs. TRR – Internet Scenario 2

0

1 0

2 0

3 0

4 0

5 0

6 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

f i l e r e q u e s t r a t e (t r a n s a c t i o n s / s e c o n d)

se
rv

er
th

ro
ug

hp
ut

(t
ra

ns
ac

tio
ns

/s
ec

on
d)

s i m u l a t i o n d a t a

a n a l y t i c m o d e l

m o d e l i n [4]

Figure 5b: Client Response Time vs. TRR – Internet Scenario 2

0

2

4

6

8

1 0

1 2

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

f i l e r e q u e s t r a t e (t r a n s a c t i o n s / s e c o n d)

av
er

ag
e

de
la

y
(s

ec
on

ds
)

s i m u l a t i o n d a t a

a n a l y t i c m o d e l

m o d e l i n [4]

Figure 5c: Decomposition of Response Time vs. TRR – Internet Scenario 2

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

file request rate (transactions/second)

av
er

ag
e

de
la

y
(s

ec
on

ds
)

TCP connection setup (TCP LQ)

HTTP waiting time (HTTP LQ)

execution time (HTTP thread)

buffer waiting time (HTTP thread)

network transmission (I/O buffer)

thread assignment

thread execution

thread blocking

I/O link queueing
+ network trans

165

As can be seen in Figure 4c, the end-to-end response time
remains fairly constant for TRR below T*, then transitions to a
higher plateau when the TRR exceeds T* (where additional
requests are blocked). These lower and upper plateaus can be
readily explained as follows: in the case of the lower plateau, the
contention between requests (thus, queueing delay) is negligible.
Therefore, the end-to-end service time is determined by summing
the no-load service times at each of the sub-systems. In the case of
the upper plateau, the delay is determined by the bottleneck
resource (in this case, the CPU) at the saturation load T*. Each
request that is ultimately served (not blocked) arrives when all
Nhttp threads are busy and Qhttp-1 LQ slots are occupied (thus
seizing the last available slot in the HTTP LQ). The remaining
components of the end-to-end delay for the non-bottlenecked
resources are then determined based on a TRR of T*.

We observe that the analytic approximation is highly
accurate for all values of TRR. Furthermore, the model presented
here yields an improvement over the model proposed in [13]. In
particular, the enhancement to the HTTP holding time analysis
(time-slicing instead of processor-sharing) more accurately
captures both the “knee” and "plateau" of the response time curve.

In the second scenario, consider what happens if the HTTP
processing bottleneck is alleviated (e.g., by upgrading the CPU or
improving the cache performance). Assume that total CPU time is
decreased from 60ms to 10ms. For this scenario, Figures 5a-b
depict the throughput and response time as a function of TRR.
Figure 5a shows that decreasing the required CPU time by a
factor of 6 increases the maximum throughput by only a factor of
less than 3, suggesting that the bottleneck has moved to another
sub-system. In fact, one can readily verify that the capacity of the
T1 link has become the limiting bottleneck, restricting the
maximum throughput to T* = 1544/32≈ 47 requests/sec.

Again, we observe that the analytic approximation is highly
accurate for all values of TRR. Furthermore, the model presented
here again yields a dramatic improvement over the model
proposed in [13]. In particular, the enhancement to the I/O buffer
holding time analysis more accurately captures the throughput
threshold (Figure 5a) and response time "knee" (Figure 5b).

In Figure 5c, we decompose the end-to-end response time
into the various sub-system component delays. In particular,
Figure 5c shows the cumulative contributions from the TCP LQ
(connection setup), the HTTP LQ (waiting for thread assignment),
the HTTP thread (request execution time as well as waiting time
for buffer assignment), and the I/O buffer (network transmission).

As can be seen, at low loads the delay is dominated by the
modem read time (4KB @ 28.8Kbps≈ 1.1s) and the network RTT
(1 for TCP setup + 4 for data transmission≈ 1.3s). At high loads,
the delay consists of 1.1s modem time and 1.3s transmission time
(as before), plus 3.3s waiting for the network link, 1.4s waiting
for an output buffer, 1.3s HTTP thread execution time, and 2.7s
waiting for an HTTP thread. These values are consistent with our
intuition and understanding of the Web server internals. As the
network link (bottleneck) saturates, the I/O buffers fill, causing
the HTTP threads to block, in turn causing the HTTP threads and
LQ to saturate. Thus, the HTTP threadexecutiontime consists of
128 [threads] x 0.01s [CPU time]≈ 1.3s. The HTTP thread
holding time consists of 1.3s [execution] + 1.4s [waiting]≈ 2.7s.
Thus, the HTTP LQ waiting time consists of 128 [LQ slots] x 2.7s
[thread holding time] ÷ 128 [threads]≈ 2.7s.

Note that even though the I/O sub-system is the bottleneck in
this scenario, it still accounts for less than 1/2 of the end-to-end
delay (due to sub-system interactions and congestion migration).

6. MODEL EXTENSIONS
6.1 HTTP 1.1 (Persistent Connections)

The basic model assumes that the TCP connection is set up
and torn down for each transaction (file) request (HTTP 1.0).
With HTTP 1.1, multiple file requests can be "pipelined" across
the same (persistent) TCP socket [10]. This protocol enhancement
is easily accommodated in the analytic model by adding a
feedback loop before the HTTP sub-system, as shown in Figure 6.

Let nconn denote the average number of file requests per TCP
connection. Then the probability of feedbackπfeedbackis given by
(nconn – 1) / nconn . For example, if the requested Web page
consists of 1 index file plus 11 inline files (images, applets, etc),
and the browser allows up to 4 concurrent sockets per page
request, then nconn= 12/4 = 3 files/connection andπfeedback= 2/3.

6.2 Non-Poisson Arrival Processes
The basic model assumes that incoming TCP-level file

requests form a Poisson process. Clearly, this assumption is
approximate. It has been shown that HTTP application-level page
requests are reasonably modeled by a Poisson process [11], but
IP-level packet requests exhibit long-range dependence [c.f. 18]
that is likely caused by TCP flow control [1]. File requests
therefore exhibit some measure of "burstiness" that falls in
between these two cases (that is, file requests are more bursty than
page requests, but less correlated than packet requests).

There are a number of approaches to capturing this
burstiness and correlation that are easily amenable to the analytic
modeling techniques employed here. First, we can assume that
TCP file requests form a batch Poisson process, with mean batch
size equal to the average number of files per page. Second, we can
assume that file requests are modeled by a Markov-modulated
Poisson process [7]. Finally, we can use any number of two-
moment approximations (e.g. [12]).

Note that HTTP 1.1 (section 6.1) drives the arrival process
closer to that of page requests (i.e., a Poisson process). That is,
the behavior of the TCP connection request arrival process falls in
between that of page requests and that of file requests. In other
words, HTTP 1.1 tends to reduce the burstiness and correlation
between arrivals to the TCP sub-system, making the Poisson
assumption of the basic model somewhat more reasonable.

6.3 Heavy-Tailed File Distributions
The basic model assumes that HTTP thread, SE thread, and

I/O buffer holding times are exponentially distributed. Again,
these assumptions are clearly approximate. It has been shown that
sizes of static files (i.e., those without significant dynamic
content) are heavy-tailed [c.f. 4]. To our knowledge, there is no
empirical evidence that dynamic files (i.e., script execution times)

π

Figure 6: Modes of HTTP/SE Implementation

TCP HTTP SE

IOC
Backend
System

non-blocking blocking mode

166

are similarly heavy-tailed. Thus, it is not clear that these
exponential assumptions are unrealistic in the case of Web servers
with significant server-side processing (the focus of this analysis).
Nevertheless, it is appropriate to consider a model where holding
times are heavy-tailed, so that the model can be easily "tuned" to
the particular application workload under consideration.

It has been shown [4] that heavy-tailed file sizes can be
reasonably modeled by multiple job classes, each with different
arrival rates and holding times. The analysis here can be modified
to accommodate multiple job classes. A number of reasonable
approximations have been proposed to compute the blocking seen
by different job classes offered to a common service system
(typically referred to as "parcel" blocking in teletraffic literature).
Many of these approaches arose out of the need to size secondary
trunk groups that handle peaked overflow traffic from multiple
primary trunk groups. Fredericks [6], for example, proposes an
analytic approximation that can be readily incorporated into the
basic model, thereby accommodating heavy-tailed distributions.

7. CONCLUSIONS & FURTHER WORK
In this paper, we have presented a detailed analytic queueing

approximation to predict the user-perceived performance provided
by Web servers with significant server-side processing in
distributed computing environments. The "basic" analytic model
has been validated against simulation as well as lab test
measurements, and has been shown to be remarkably accurate for
the scenarios modeled to date. In addition, the mechanics to
extend the model to accommodatenon-Poisson arrivals, long-
range dependence, heavy-tailed distributions, and persistent
connections have been outlined. The resulting "extended" model
is well suited to handle a diverse range of application workloads.
This analytic model forms an excellent basis for development of a
decision support tool for evaluating the performance of Web
servers in distributed environments, allowing system architects to
predict the behavior of new systems prior to their deployment, or
the behavior of existing systems under new workload scenarios.

The analytic model has not yet been validated against a real-
world production scenario. However, a variant of the simulation
model used to benchmark the analytic model has been validated
against an actual distributed Web server deployment, and has
been shown to be accurate. This evidence suggests that while the
real-world characteristics (non-Poisson arrivals and heavy-tailed
service times) do impact performance at the packet level, they do
not strongly manifest themselves in the average end-to-end user-
perceived application performance measures (such as response
time and blocking). Therefore, we are optimistic that the analytic
model will be reasonably accurate when benchmarked against
real-world scenarios (despite its simplifying assumptions).

Further work is planned to incorporate the extensions
outlined in section 6. First, we plan to add a feedback loop to
model the effects of HTTP 1.1. Next, we plan to introduce a two-
moment (mean and peakedness [c.f. 5]) characterization of the
arrival process, with two job classes. We can then treat each sub-
system as a separate GI2 / M2 / N / Q renewal system (along the
lines of [12] and [6]), and solve the system of equations
iteratively (as with the present model).

8. ACKNOWLEDGMENTS
The authors would like to thank the referees on the WOSP
technical program committee for their insightful comments.

9. REFERENCES
[1] Arvidsson and Karlsson, “On Traffic Models for TCP/IP”,

proceedings of the 16th ITC, Teletraffic Engineering in a
Competitive World, Elsevier1999.

[2] Conway, “A Perspective on the Analytical Performance
Evaluation of Multi-Layered Communication Protocol
Architectures”, IEEE Journal on Selected Areas in
Communications1991.

[3] Cooper, Introduction to Queueing Theory, 2nd Edition,
North Holland1981.

[4] Crovella and Bestravos, “Self-Similarity in World Wide
Web Traffic: Evidence and Possible Causes”, proceedings of
the ACM/SIGMETRICS conference, ACM1996.

[5] Eckberg, “Generalized Peakedness of Teletraffic Processes”,
proceedings of the 10th ITC 1983.

[6] Fredericks, “A New Approach to Parcel Blocking via State
Dependent Birth Rates”, Bell Laboratories internal
memorandum MM73-3425-3, 29 June 1973.

[7] Grandell, Doubly Stochastic Poisson Processes, Springer-
Verlag1976.

[8] Hariharan, van der Mei, Ehrlich, Reeser, “Modeling the
Performance of Web Servers Engaged in OO Computing”,
accepted forpublication in an upcoming special issue of
IEEE Transactions on Modeling and Computer Simulation.

[9] Menascé and Almeida, Capacity Planning for Web
Performance, Prentice Hall PTR 1998.

[10]Padmanabhan and Mogul, “Improving HTTP Latency”,
proceedings of the 2nd WWW Conference1994.

[11]Paxson and Floyd, “Wide Area Traffic: Failure of Poisson
Modeling”, IEEE/ACM Transactions on Networking1995.

[12]Reeser, “Simple Approximation for Blocking Seen by
Peaked Traffic with Delayed, Correlated Reattempts”,
proceedings of 12th ITC, Teletraffic Science for New Cost-
Effective Systems, Networks and Services, Elsevier1989.

[13]Reeser, van der Mei, Hariharan, “An Analytic Model of a
Web Server”, proceedings of the 16th ITC, Teletraffic
Engineering in a Competitive World, Elsevier1999.

[14]Slothouber, “A Model of Web Server Performance”,
StarNine Technologies1996.

[15]Stevens, TCP/IP Illustrated, Volume 1: The Protocols,
Addison-Wesley1994.

[16]van der Mei, Ehrlich, Reeser, Francisco, “A DSS for Tuning
Web Servers in Distributed OO Network Architectures”,
proceedings of the 2nd WISP, ACM1999.

[17]van der Mei, Hariharan, Reeser, “Web Server Performance
Modeling”, proceedings of 4th Informs Telecom Conference,
special issue of Telecommunication Systems2000.

[18]Willinger, Taqqu, Sherman and Wilson, “Self-Similarity
Through High Variability: Statistical Analysis of Ethernet
LAN Traffic at the Source Level”, IEEE/ACM Transactions
on Networking1997.

167

