Analytic Model of Web Servers in Distributed Environments

Paul Reeser Rema Hariharan
AT&T Labs AT&T Labs
D5-3B20, 200 Laurel Ave D5-3D17, 200 Laurel Ave
Middletown, NJ 07748 Middletown, NJ 07748
+1 732 420 3693 +1 732 420 3743
preeser@att.com rhariharan@att.com
ABSTRACT One approach to performing this server-side scripting is to

In this paper, we illustrate a model-based approach to Web Implement a script-engine (SE) dedicated to processing server-
server performance evaluation, and present an analytic queueingid€ Scripts. Examples of SE implementations are the Active
model of Web servers in distributed environments. Performance S€'Vér Pages (ASP) technology in Microsoft's Internet
predictions from the analytic model match well with the !nformation Server (IIS), or the Java Server Pages (JSP)
performance observed from simulation. The model forms an €chnology in both IIS and Netscape’s Enterprise Server (NES). In
excellent basis for a decision support tool to allow system ASP ap_pll_catlons, for example, IIS retrleyesaflle, parses the _flle
architects to predict the behavior of new systems prior to Of Scripting language content, and interprets the scripting

deployment, or existing systems under new workload scenarios. Statéments. Since scripts are typically interpreted, a complex
script will impede SE performance.

Web server performance in these distributed environments is

Keywords a complex interplay between a variety of factors (e.g., hardware
HTTP, Web, distributed, OO, Java, servlet, script, performance. platform, server operating system, script execution environment,
workload characteristics, network bandwidth, etc). Experience has

1. INTRODUCTION shown that the performance of Web servers can be impacted

Web technologies are currently being employed to provide tremendously by the proper tuning_ of the server components. In
end-user interfaces in distributed computing environments. The Order to properly configure these different components, however,
core element of these Web solutions is a Web server based on thdt is crucial to understand how these components interact and how
HyperText Transfer Protocol (HTTP) running over TCP/IP. Web they impact user-perceived end-to-end performance. Although
servers are required to perform millions of transaction requests [€Sting is essential for assessing performance, there are inherent
per day at an acceptable Quality of Service (QoS) level in terms of limitations to a testing approach for validating Web server
client response time and server throughput. Consequently, aPerformance. Consequently, modeling is critical to further
thorough understanding of the performance capabiliies and understand the _p_erforn_wan_ce _capabllltles and limitations of Web
limitations of Web servers is critical. servers that participate in distributed computing.

In many applications, the Web server performs significant In this paper, we illustrate a model-based approach to Web
dynamic server-side scripting. In these applications, a Web serverServer performance evaluation, and present an analytic queueing
retrieves a file, parses the file for scripting language content, mod_el pf Web servers in dlst_rlbuted environments. Performance
interprets the scripting statements, and executes embedded coddPredictions from the analytic model match well with the
possibly requiring a connection to a remote application for data Performance observed from simulation. The model forms an
processing/transfer. To facilitate this functionality, many servers €Xcellent basis for a decision support tool to allow system
implement the Common Gateway Interface (CGI) standard. architects to pre_dlc_:t the behavior of new systems prior to
However, for each invocation of a CGI application, a new process deployment, or existing systems under new workload scenarios.

is forked and executed, causing significant performance problems 2 RELATION TO PREVIOUS WORK

on the server. To overcome this performance penalty, many Web .
A number of queueing models of Web server performance

servers implement an Application Programming Interface (API)to . .
perform server-side processing without spawning a new process,eX'St in the literature. Slothouber [14] proposes to model a Web

either by interpreting embedded scripting on Web pages, or by S€TVer as an open queueing network. Menascé and Aim&jda [

dynamically loading precompiled code. provide an analysis of the Web application and workload
characteristics that impact performance, and develop queueing
Permission to make digital or hard copies of part or al of models of the server hardware elements. However, while these
this work or personal or classroom use is granted without models are useful to identify performance tradeoffs and perform
fee provided that copies are not made or distributed for high-level capacity planning, they ignore essential low-level
profit or commercia advantage and that copies bear this details of the HTTP and TCP/IP protocols and software, despite
notice and the full citaion on the first page. To copy the fact that these details strongly impact server performance. Van
otherwise, to republish, to post on servers, or to redistribute der Mei, etal [17] propose a detailed simulation model of the low-
to lists, requires prior specific permission and/or afee. level hardware and software components of a Web server, and
Reeser, etal [13] propose a detailed analytic model. However,
WOSP 2000, Ontario, Canada these models fail to address Web servers with significant server-
© ACM 2000 1-58113-195-X/00/09 ...$5.00 side processing that participate in distributed computing.

158

In this paper, we present an enhanced end-to-end analytic3 2 TCP Connection Setup Phase
queueing model of Web servers that incorporates dynamic Server- - gefore information can be exchanged between the client and
side computing in a distributed environment. This model gorer a two-way connection (TCP socket) must be established.

represents a substantial extension of the model proposed in [13]he TCP sub-system consists of a TCP Listen Queue (TCP-LQ)
to include enhancements to the existing HTTP and I/O sub-system gopeq by a "listener” daemon (httpd in the case of HTTP traffic).

models, and introduction of new Script Engine and distributed o Tcp ‘connection is established by the well-known 3-way

backend sub-system models. The basic analytic model presented,;4shake procedure (SYN, SYN-ACK, ACK). Immediately after
here has been validated by comparing performance predictionsihe Tcp socket is established, the transaction request is forwarded
from the model to those from a simulation [17]. The simulation, g the HTTP sub-system for processing. If all slots in the TCP-LQ

in turn, has been validated by comparing to the performance gre gccupied upon arrival of a request, then the request is rejected,
observed in a test lab environment [16], as well as in a real-world o4 the client receives adanection refused” message.

production environment with actual users, authentic arrival

patterns, and realistic Web content and scripting logic [8]. 3.3 HTTP Layer Processing Phase

Analytically solving a queueing model with this level of The HTTP sub-system consists of an HTTP Listen Queue
detail requires a number of simplifying assumptions. The basic (4TTP-LQ) served by a multi-threaded HTTP daemon that
assumptions underlying this model are that inter-arrival times and coordinates the processing performed by a number of (worker)

holding times at each sub-system argenentially distributed, threads. The dynamics of the HTTP sub-system are as follows:
and output file sizes are geometrically distributed. Obviously,

these assumptions seem unrealistic for any real-world scenario.1l. If an HTTP worker thread is available, then the thread
Therefore, we outline a number of extensions to the basic model retrieves the requested file. If the file requires script processing,
to address these assumptions, including enhancements to model then the transaction is forwarded to the SE sub-system (see
HTTP 1.1 (persistent connections), non-Poisson arrival processes, Section 3.4). Otherwise, the static file content is retrieved and
and heavy-tailed distributions. However, since these particular forwarded to the I/O sub-system (see section 3.5). If all /O
extensions have not yet been incorporated or validated, this work buffers are occupied at that time, then the HTTP thread remains
should be viewedgccordingly as preliminary work in progress. idling until an 1/0 buffer becomes available.

Despite these limitations, early evidence from the simulation 2. If there is no HTTP worker thread available, then the
model [8] suggests that while these real-world characteristics transaction request enters the HTTP-LQ (if possible), and waits
(non-Poisson arrivals and heavy-tailed service times) do impact until a thread is assigned to handle the request.
performance at the packet level, they may not strongly manifest 3. If the HTTP-LQ if full, then the transaction request is
themselves in the average end-to-end user-perceived application rejected, the clients receives aofmection refused” message,
performance measures (such as response time and blocking). and the TCP connection is torn down.

This analytic model forms an excellent basis for development .
of a decision support tool for evaluating the performance of Web 3.4 SE L_ayer Processmg Phase)
servers in a distributed environment, allowing system architects to The script-engine (SE) dynamics generally depend heavily
predict the behavior of new systems prior to their deployment, or ©N the Web server implementation and server operating system. In

the behavior of existing systems under new workload scenarios. this section, we attempt to highlight the general performance
issues that arise in SE implementations, without focusing too

3. BASIC DESCRIPTIVE MODEL heavily on a particular technology. The SE sub-system consists of
3.1 Basic HTTP Transaction Flow an SE Listen Queue (SE-LQ) and a pool of handler threads
' The flow of a basic HTTP 1.0 transaction through a Web dedicated to interpreting scripting statements and executing

server is shown in Figure 1. (Extension of the basic model to embedded ~code (e.g, C++, Java). During execution,
HTTP 1.1 is discussed in section 6.1.) Transactions proceed communication with a remote backend server may be needed

through a Web server along four successive phases (sub-systems)(e'g" to perform a database query), possibly requiring a TCP

TCP/IP connection setup, HTTP application processing, Script Connection to the backend server to be established and
. Setup, . pplication p 5INg, Scrip subsequently torn down. The dynamics of the SE sub-system are
Engine (SE) dynamic processing (including interaction with a

distributed backend server), and network 1/O processing and described as follows:
transmission. These phases are discussed in more detail below. 1. If an SE handler thread is available, then the thread executes
the embedded code. If the HTTP/SE implementation operates in

blockingmode (that is, the HTTP thread blocks on a response
TCP HTTP ASP/JSP from the SE — see Figure 2), then the SE thread forwards the
= o SeILENIN® o ects transaction request back to the HTTP thread for further
= o 0000 © —O Remote handling (see section 3.3). Otherwise, if the HTTP/SE
9= o | 0000 o ; |]|]Appl|callo_n :
= o < > U1 eq, Mail implementation operates inon-blocking mode (that is, the
= O~ N Engine) HTTP thread is released as soon as the request is forwarded to
\: 10C the SE sub-system — see Figure 2), then the SE thread forwards
8 %Ok the transaction request directly to the I/O sub-system (see
Web server = I section 3.5). If all I/O buffers are occupied at that time, then the
\J SE thread remains idling until an 1/0 buffer becomes available.
m Co”:;ggg'gn 2. If there is no SE handler thread available, then the
(client] transaction request enters the SE-LQ (if possible), and waits

Figure 1: Model of Basic HTTP Transaction Flows until a thread is assigned to handle the request.

159

3 blocking of incoming transaction requests. In this way,
’ ’ - performance problems in the network will lead to performance
TCcpP HTTP sunduy SE problems throughout the Web server itself.

1 2 . 5b The key to providing a tractable analytic model of these

- intricate dependencies and interactions lies in the ability to de-
:5b 5n 4 couple them, while at the same tinaecurately capturing the
impacts of “downstream” congestion. The approach taken here is
to treat each sub-system as a separate Markovian queue, compute
4 6 oC Backend its_performance in isolation, an_d feed the re_sults back into
System adjacent sub-systems. The resulting model consists of a sequence

of (independent yet coupled) queues, where the arrival rates and
holding times at eachode are iteratively adjusted &xcount for
downstream performance. The resulting system is solved
Figure 2: Modes of HTTP/SE Implementation recursively until convergence.

3. If the SE-LQ if full, then the transaction request is rejected, 4. BASIC ANALYTIC MODEL

the clients receives a tmnection refused” message, and the 4.1 Markovian Queue Refresher

TCP connection is torn down.
Prior to analyzing the various sub-systems, it is convenient
Note that Microsoft's IIS/ASP implementation operates in to review the solution to the general M/M/N/Q Markovian
non-blocking mode, while most other implementations (e.g., queueing system. Assume that arrivals form an i.i.d. Poisson
NES/JSP) typically operate in blocking mode. process with ratd, and that service times are i.i.d. exponentially

. distributed with mean. Let A = At denote the offered load. Let N

3.5 Network I/O Processmg Phase denote the number of independent service stations, and let Q

The 1/O sub-system consists of a number of parallel /O yenote the number of FCFS waiting stations (not including the
buffers, an I/O controller (I0C), the network interface card (NIC), gapice stations). We denote the resulting system as an
and the connection (link) from the Web server to the networl_<. The M(A)/M(T)/N/Q Markovian queueing system [3]. The relevant
conte_nts of the 1/O buffers are drained over th(_e _network _Ilnk to queueing measures follow directly by applying basic queueing
the client as scheduled by the IOC. The IOC visits the different results. In particular. one can readily compute:
I/O buffers in a round-robin fashion, checks whether the I/O -np ’ y pute:

m— 0N-blOCking ===unn: blocking mode

buffers have any data to send, and if so, placetunk of data m = A,N,Q) = the probability of queueing (all service
onto the network connection. stations occupied),

The communication between the server and client is based B = B(A,N,Q) = the probability of blocking (all service +
on the TCP flow control mechanism (see [15] for details). The \yajting stations occupied),
transmission unit for TCP is the maximum segment size (MSS), n = the average number of occupied service stations,
the largest amount of data that TCP will send at one time. Files q = the average number of occupied waiting stations, and

residing in 1/O buffers are (virtually) partitioned into blocks of
one MSS (except for the trailing part of the file). The window
mechanism implies that a block can only be transmitted if the Note that if Q=0, thenB(A,N,0) represents the Erlang B
TCP window is open. The arrival of acknowledgments generally (“blocked calls cleared”) formula [3], and if Qs thenTi(A,N,)

depends on network congestion. Therefore, the rate at which 1/O represents the Erlang C (“blocked calls delayed”) formula [3].
buffers drain their contents is affected by network congestion.

Numerous approaches have been suggested for analytically4.2 TCP Sub-System Model

w = the average waiting time prior to service.

modeling multi-layered communication protocol architectures As described in section 3.2, the TCP sub-system behaves like

such as TCP/IP (see [2] and references therein). a group of N, separate servers, where each “server” represents a
. slot in the TCP-LQ. A service time represents the time between

3.6 Sub-System Interactions the arrival of the connection request at the TCP-LQ and the

~ Tounderstand the end-to-end performance of Web servers, it completion of the TCP handshake, corresponding to one round-
is important to understand the interactions between the sub- trip time (RTT) between the server and the client. We assume that
systems discussed in sections 3.2-3.5. To this end, consider whatncoming requests form a Poisson process with faje (in
happens if the network connection between the Web server andsjjes/second)each with an eponentially distributed holding time
the client is congested. Then the network round-trip time (RTT) it meanT, (in seconds) corresponding to the network RTT.
increases, so that TCP acknowledgments (from client to server) of Accordingly, we model this TCP sub-system as anAp) /

the receipt of file blocks by the client are delayed, implying that i ;) .
the “drain rate” of the 1/0 buffers decreases. This, in turn, implies M(Tned / Negp / O blocking system. (Extension of this basic model

that 1/O buffers become available to the HTTP/SE threads at a © non-Poisson arrival processes will be discussed in section 6.2.)

slower rate, so that these threads may have to wait for a longer __NcOMing connection requests that arrive when alf, NQ
time period to get access to an /O buffer. Since the threads are SI°tS aré occupied are blocked (*connection refused”), and retry

idling as long as they are waiting for an 1/0 buffer to become With probability e, We account for the reattempts by inflating
available, the availability of idle threads goes down. The HTTP the Qﬁered Ioad_ as _foIIows (see Figure 3): The initial offered load
and SE LQs then tend to fill up and overflow, leading to the e (in Erlangs) is given by

160

® o ®
—_— > —_—p || —>| ° = 2 >
Afie Accp ® | Mep(1Brep) ® | AL Biep)(XBhitp) | ¢ | Atop(L1Brep) (1-PBhep) (11Bse)
AtcpTTetnyBrot
)\tcp Btcp)\tcp(1_Btcp) Bhttp)\tcp(1_Btcp) (1_Bhttp) Bse
«— (I« <
}\tcp(l_T[retry) Btot)\tcp =)\file / (1_ Trretry Btot)
Btot = Btcp + Bhttp + Bse - Btchhttp - Btchse - Bhtthse + Btchhtthse
Figure 3: Modes of HTTP/SE Implementation
e = N @) o cverage numiber of occupied HTTP thoadi ihe averse
The total offered Iogd & (including reattempts) is then given by number of occupied HTTP LQ slots,g, and the average waiting
Atcp = afile + Atcpretry Btot (2.2) time in the HTTP LQuay, all follow directly from basic results

where By is the total (TCP + HTTP + SE) LQ blocking
experienced by the incoming requests (analyzed in section 4.4).
Solving for A, yields

Atcp =&/ (1 — Thetry Brot) = MsieTner/ (1 —Thetry Brod) - (2.3)
The probability of finding all TCP LQ slots occupied (ie, the
probability of blocking)B, and the average number of occupied
TCP LQ slots g, follow directly from basic results for the
M/M/N/O blocking system. Then, the effective file request rate
Aicp at the TCP sub-system is given by

}\tcp =Mie [(1 — Thetry Brot) + (2.4)

and the effective file request radgy, offered to the HTTP server
sub-system is given by

)\http = }\tcp (1- Btcp) = Asie (L - Btcp) /1 — Thetry Brod) - (2.5)
Note that the impact of “downstream” congestion on the
TCP sub-system is captured in the calculation of total offered load
A (including reattempts), which in turn impacts the calculations
of the TCP LQ blockingB,, and the total (TCP + HTTP + SE)
LQ blocking ot

4.3 HTTP Sub-System Model

The HTTP sub-system consists of a LQ of sizg{erved
by an HTTP daemon with |, worker threads. The customer

for the M/M/N/Q queueing system. Then, the effective file request
ratels. offered to the SE sub-system is given by

Ase= Anttp (1Britp) = Asie (1-PBrep) (1PBritp) / (1= Thetry Brod)- (3.2)
Next, we compute the average HTTP thread holding time
Thp- IN the case of anon-blocking SE implementation, Ty,
consists simply of the time to process the requested file for
scripting language contenty,, after which the request is
forwarded to the SE sub-system for script execution. The time to
process the fil&,cis given by

Tproc = Tepu max{ [min(nhttp"' "N http) + nse] / Ncpu: 1}1 (3-3)

where T¢,, is the CPU execution time for the HTTP thread to
process the file, fais the average number of occupied SE threads
(analyzed in section 4.4),J\ is the number of CPUs, and I* = 1

if Nngp > 1 (and O otherwise).

Note that the computation af,. takes into account the fact
that the hardware resources (CPUs) are shared among software
threads. The behavior captured in equation 3.3 is best described
as "time-slicing", where each active request gets an equal
proportion of the CPU, and the request service time is linearly
elongated by multiplying by the number of active requests. In
contrast, the behavior of the CPU model in [13] is best described
as "processor-sharing”, where request service time is non-linearly
elongated by dividing by {1 — the CPU utilization}. As we will

occupies the thread from the time at which a thread is assigned togee jn section 5, this change represents a substantial enhancement
the request until the thread becomes available to handle anothergyer the model in [13]. Comparison to simulation and test results

request (including any time the thread waits for a response from
the SE sub-system, or for an I/O buffer to become available). We

assume that incoming transaction requests form a Poisson processg .

with rate Ay, each with an eponentially distributed HTTP
thread holding time with mean,;, We model this HTTP sub-
system as an M) / M(Thip) / Nhp / Qnep queueing/blocking

has demonstrated that the time-slicing model is more accurate.
In the case of &locking SE implementationty, consists of
ime to process the requested filg plus the time the HTTP
thread is blocked waiting for the SE sub-system to return control,
plus the time the HTTP thread is blocked waiting for an output
buffer to become available (in the case that all output buffers are

system. (Extension to non-Poisson arrival processes and heavy-occupied), plus the time the HTTP thread is blocked waiting to

tailed service times will be discussed in sections 6.2 and 6.3.)
Incoming requests that arrive when allQLQ slots are

occupied are blocked, and retry with probability,. As before,

we account for these reattempts by inflating the offered load as

follows (see Figure 3): The total offered load# (including

reattempts) is given by

Ahttp =)\http Thitp = Afie Thitp (l_Btcp) (1~ Thetry Brod) - (3.1)

161

refill the output buffer (in the case that the requested file does not
fit entirely into the buffer in one pass). Thereforgy, is given by

Thitp = Tproc T Wse T Tse + Wiog + Wy (3.4)
wherews, is the average waiting time in the SE LQ andis the
average SE thread holding time (both analyzed in section 4.4),
Woq IS the average waiting time to receive a network output buffer
(analyzed in section 4.5), and, is the average waiting time to
refill the output buffer.

The average waiting time to refill the network output buffer takes into account the fact that the hardware resources (CPUs) are
Wyr IS determined as follows: Assuming that the file size is shared among software threads in a time-slicing manner.

geometrically distributed with parameter p=ddrwhere R is the In the case of aon-blockingSE implementatiornt, consists
average file size (in blocks), then the probability,; that the of the time to execute the requested scripf. (including any
requested file size exceeds the output buffer sigg (M blocks) backend delay), plus the time the SE thread is blocked waiting for
is given by an output buffer to become available (in the case that all output

N buffers are occupied), plus the time the SE thread is blocked

Thyt = 1 — P{file size< Nigg} = 1 — pZ(l_pj—l =(1-p) (3.5 waiting to refill the output buffer (in the case that the requested
= file does not fit entirely in the output buffer in one pass).

for p =1/me and N = Nyp. Similarly, it can be shown that the Thereforegis given by

probability of exceeding two buffer sizes i, _and so on. Too ™ Texec+ Glog + Ghuf - (4.4)

Therefore, the expected number of stages required to write the

entire file into the network output buffer is given by 1 / (Irgyy),

and the expected number of additional stages (beyond the first

Then, the effective file request ralg, offered to the 1/10
sub-system is given by

mandatory write) is given by 1/(¥isu) — 1 =Thur/ (1 —Thu). Apur = Asd 1-Bs) = Asie(1—Brop) (1Britp) (11Bsd/ (1-ThetrBro) . (4.5)

It can then be shown that the average waiting timg; to Note that the impact of “downstream” congestion (in terms
refill the output buffer is given by of 1/0 sub-system buffer size and occupancy) is captured in the

@bt = Niob Tiob Thut/ (1 =Thud) » (3.6) calculation of the average SE thread holding time

wheretyyy, is average block service time (analyzed in section 4.5). 4.5 |/O Sub-System Model

Note that the impact of “downstream” congestion (in terms The 1/0 sub-system consists of,Nnetwork output buffers,
of SE and /0 system occupancy and I/O buffer size) is captured served by a single 1/0 controller in a round-robin (polling)
in the calculation of the average HTTP thread holding tiqg fashion. We assume that incoming requests form a Poisson

process with rate\,,, each with an esonentially distributed
4'4ThSESESUE_SytStem M?defl LO of i db buffer service time with mean,,. We model the assignment of
€ sub-system consists of a LQ of sizg<@rved by N, I/O buffers as an Mpu) / M(Tpu) / Npur / ®© queueing system,

separate script handler threads. We assume that incoming requestsh th buffer holding ti i the i s of
form a Poisson process with rakg, each with an egronentially where the average butier holding timg; captures the impacts o

L L . ; the 1/O controller and the TCP flow control.
distributed SE thread holding time with meag We_ model thls Specifically, the 1/0 sub-system holding time is a function of
SE sub-system as an M@ / M(Tsd /Nse/ Qs queueing/blocking yhe average number of cycles,q required by the /O controller
system. (Extension to non-Poisson arrival processes and heavy+q send the file. The average number of cycles, in turn, is

tailed servi_ce times will be discus_sed in sections 6.2 and 6.3.) determined by the dynamics of the TCP flow control as follows:
Incoming requests that arrive when alkQ.Q slots are assuming that file size is geometrically distributed, the expected

occupied are blocked, and retry with probability,. As before, number of cycles & is given by

we account for these reattempts by inflating the offered load as o _

follows (see Figure 3): The total offered loadsAincluding ncycle:p;E{# cycles | file size=i} (1 — p)* for p = 1/, (5.1)

reattempts) is given by
_ _ where the E{number of cycles | file size = i} is chosen to reflect
Ase™ AseTse™ Mie Tse (1rep) (1Brte) / (1= Thetry Brod)- (4.1) the TCP flow control algorithm and network congestion scenario.
The probability of finding all SE LQ slots occupiefi, the For instance, consider an optimistic scenario (see Table 1):
average number of occupied SE threads the average number if the window size doubles witreach successful transmission
of occupied SE LQ slotsg and the average waiting time in the (1 block, then 2 blocks, then 4 blocks, then 8 blocks, etc), then the
SE LQ wscall follow directly from basic results for the M/M/N/Q E{number of cycles | file size =i} =1, 2,2, 3, 3,3,3,4,4,4,...
queueing system. Then, the total (TCP + HTTP + SE) LQ forfilesizei=1, 2, 3,...
blocking Bi: experienced by incoming requests is given by

Brot = Brep + Brttp (1= Brep) + Bse (1-PBritp) (1—PBrep)- ~ (4.2) Table 1: Number of Cycles vs. File Size (Optimistic Scenario)

Next, we compute the average SE thread holding tiggdn File Size | Cycle 1| Cycle 2| Cycle 3| Cycle 4| Number
the case of dlocking SE implementationt, consists simply of (blocks) | WS=1| WS=2| WS=4| WS =8| of Cycles
the time to execute the requested scripfe. (including any 1 1
distributed backend delay), after which the request is returned to
the HTTP thread for final processing. The time to execute the
SCrptTexeciS given by

Texec™ Tscript max{[min(nse+lv Nse)"'nhttp]/Ncpu ’ 1} + Tpackend (4-3)
whereTtgp is the CPU execution time for the SE thread to run the
script, TrackenaiS the delay associated with communication to the

distributed backend server (eg, a legacy database), and I* = 1 if
Nge > 1 (0 otherwise). Again, note that the computationtgf.

Ol |N[o|o|h~|WIN

N

Rk [RR|R|R|R|R|~
NSNS T N S
INFN FNENIFRYINY SN
Aa|d|w|w|w|w|N[

[y
o

162

On the other hand, consider a pessimistic scenario (see Table 2):

if the window size follows the example sample path: 1 block, then
2 blocks, then 4 blocks (2 of which are not acknowledged), then
1 block (back-off due to congestion), etc, then the E{number of
cycles |filesize=i}=1,2,2,3,3,4,5,5,6,6,... fori=1,2,3,...
The average window size (in blocks) is then given Ry /Mgy .

Table 2: Number of Cycles vs. File Size (Pessimistic Scenario)
Cycle4 # of
WS=1 Cycles
1

FileSize
(blocks)
1

Cyclel]
WS=1
1

Cycle2,
WS=2

Cycle3
WS=4

Cycle5
WS=2

Cycle6
WS=4

Ol |N[o|jo|h~|WIN

1
2

RiR(R[R|R|R|R|R|~
NN NN NN N e
NI NS
N I
[ENTNITNI
olo|o|o|b|w|w|n|n

[y
o

Next, the average elapsed time for each cygjg. consists of
the waiting timewy to acquire control of the output link, plus the
time T, to put a chunk of data on the output link, plus the PC
modem timet,,,qemt0 read the data, plus the network RTE; to
send the data and return the ACK. Therefaggyeis given by

Teycle = Wink + Tiink T Tnet T Tmodem: (5.2)

Equation 5.2 is optimistic from the standpoint that the model
assumes that network and modem service times are independen
of the load on the Web server (no contention between requests).
This assumption is reasonable for most network environments,
since one server typically will not perturb a network. However,
this assumption may be optimistic for the client modem, where
(up to 4) files from the same Web server may be downloading in
parallel. Therefore, a pessimistic bound may be obtained by
multiplying TmogembY 4 in equation 5.2.

The link holding time is clearly impacted by the server load.
Therefore, we model the output link as anM() / M(Tjn) / 1/
queueing system (wheg = Neycie Apyr) i Order to compute the
waiting timewy, to acquire control of the output link.

Finally, the average number of occupied buffegg;,nthe
probability that all Ny output buffers are occupied (the
probability of queueing)g,,, the average number of queued files
(that is, the average number of HTTP/SE threads that are blocked,
waiting for an output buffer) g, and the average waiting time
(that is, the average time that the HTTP/SE thread is blocked,
waiting for a network output bufferdo,, follow directly from
basic results for the M/M/N#$ queueing system.

4.6 End-to-End Performance

The system of equations defined in sections 4.2-4.5 can
easily be solved iteratively until convergence. Although we have
not yet proven that the algorithm is guaranteed to converge to a
unique solution, we have always reached convergence in practice.
For points outside of a very narrow region around the bottleneck
saturation throughput (clarified in section 5), the computational
cost is trivial (10’s of iterations, and 10’s of CPU milliseconds).
For points within this very narrow region, convergence is
achieved through judicious use of a damping algorithm to

163

minimize oscillations, and computational cost is still very
reasonable (100’s of iterations, and a few CPU seconds).

Once the iteration is complete, we can compute the end-to-
end, user-perceived performance metrics. First, the user-perceived
file “connect” timet,yn, consists of the TCP service time plus the
HTTP waiting time. Accordingly, the average user-perceived
“connect” timeTtgyn,is given by

Teonn™= Thet + Whitp - (6.1)

The user-perceived “response” tinigs, consists of the
HTTP processing time, plus the SE waiting and execution times,
plus the 1/O waiting and service times. Accordingly, the average
user-perceived "response” timgs,is given by

Tresp= Tproc T Wse t Texect Wiog T Thuf - (6.2)
The end-to-end service time is then the sum of “connect” and
“response” timesTcom+ Tresp AlSO, the effective end-to-end file
“connect” rateh,,niS given by

)\conn:)\ﬁle (1_{31cp) (1_{3http) (1_859 / (1_ Tﬂ'elry Btot)x

and the effective end-to-end file “error” rakg,, iS given by
Aerror = Afie = Aconn = Avie (1_Tﬂ'etry) Brot/ (1- Thetry Biod)-

5. BASIC MODEL VALIDATION

A simulation model was written to validate the accuracy of
the basic analytic approximation. The simulation assumes Poisson
arrivals and geometric file sizes, but not exponential holding
times. Another difference is that the simulation faithfully captures
sub-system interactions and correlations. The simulation has been
validated extensively against lab measurements; the results of that
validation are documented in [17,16]. The test lab environment
bised more realistic arrival patterns, service times and file sizes. In
addition, the simulation has been validated against a real-world
production environment with actual users, authentic arrival
patterns, and realistic Web content and scripting logic [8].

We performed a variety of numerical experiments. For a
number of realistic scenarios, we computed the server throughput,
blocked load, and average end-to-end response time as a function
of the transaction request rate (TRR). In order to demonstrate the
enhancements over the proposed model in [13], we consider the
same two Internet scenarios. The results are outlined below.

In the first scenario, the Web server is connected to the
Internet via a T1 (1.544 Mbps) line. Clients are connected to the
Internet via 28.8 Kbps modems. The Internet RTT s
exponentially distributed with mean 250ms. The Web server runs
on a single CPU machine, and the total CPU time required by an
HTTP thread is 60ms/file. Clients do not reattempt when blocked.
The TCP LQ size is 1024, the HTTP LQ size is 128, the number
of HTTP threads is 128, and the number of I/O buffers is 256. The
MTU size is 512B, and the average output file size is 4KB. This
scenario is realistic and typical for clients connected to a Web
server via the Internet.

The effective server throughpit,,, the blocked load\ e,
and the average end-to-end service tigg, + Tresp are shown in
Figures 4a-c (respectively) as a function of the TRR. As can
be seen in Figure 4a, the throughput increases linearly up to some
threshold T*, and remains constant as the TRR exceeds T*. One
can readily verify that this maximum throughput T* corresponds
to the performance limit of the CPU (1/0.6617 requests/sec).

As can be seen in Figure 4b, the blocked load remains constant at
0 up to T*, then increases linearly as the TRR exceeds T*.

(6.3)

(6.4)

20

. - I]
=)
g ‘ ‘ ‘ ‘ ‘
&
% 12 — — — — — —— _— Y Y Y - — — — — — —— —
g
g
H
F
:B’ N ‘ ‘ ‘ ‘ ‘
g
£
o
4
8
47 ‘ ‘ ‘ ‘
- sim ulation data
—cnalytic model
= = = modelin [4]
0
0 5 10 15 20 25 30 35 40
file requestrate (transactions/second)
Figure 4a: Server Throughput vs. TRR — Internet Scenario 1
20 &
< E
g
8
g 24— - -— - Y — — — — — e —
2
g
g
8
g
g
=
s§E 8 — — — - - - - _ _
5
£
K
g
L S RN
simulation data
—analytic model
0]
0 5 10 15 20 25 30 35 40
file requestrate (transactions/second)
Figure 4b: Blocked Load vs. TRR — Internet Scenario 1
20
- ‘ ‘
g e A
8
3
3
s
g
5
&
- sim ulation data
‘ —analytic model
= = =modelin [4]
0 | T
0 5 10 15 20 25 30 35 40

file requestrate (transactions/second)

Figure 4c: Client Response Time vs. TRR — Internet Scenario 1

164

60

50—7777777—‘7 ,';7777#7—'—7—
‘ - - - - | I
P | | | |
g
o
P e 3 S
]
| | | |
1o 4 - sim ulation data
—analytic model
- — —modelin [4]
0 T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
file requestrate (transactions/second)
Figure 5a: Server Throughput vs. TRR — Internet Scenario 2
12
I_F'-JI—I—L—-—l
10
. .
% -
. -
z - sim ulation data
—analytic model
- = =modelin [4]
’ 0 10 20 30 40 50 60 70 80 90 100
file request rate (transactions/second)
Figure 5b: Client Response Time vs. TRR — Internet Scenario 2
12 T T T T T
| | | | |
===TCP connection setup (TCP LQ) / ! !
04 0 y--—fF-
| |
===HTTP waiting time (HTTP LQ) ! I/O link queueing
| |
%z 81 ==executiontime (HTTP thread) @ |---- -4 ----"-"-"-"-"-"------—- T f—n—e—t\’l"gr—k—tr—ang—
=l
s I |
s = huffer waiting time (HTTP thread) ! !
I N e A = — tm =
3 =—=network transmission (I/O buffer) ! !]
& | thread blocking
2 4 1 1 1 1 }
| | | | thread: execution
: 1 : ‘ ‘
P [[[o _____d_______
| | | | | .
| | | | thread: assignment
| | | | |
| | | | |
0 + + + T T T + T +
0 10 20 30 40 50 60 70 80 90 100

file request rate (transactions/second)

Figure 5¢: Decomposition of Response Time vs. TRR — Internet Scenario 2

165

As can be seen in Figure 4c, the end-to-end response timeg. MODEL EXTENSIONS

remains fairly constant for TRR below T*, then transitions to a . .
higher plateau when the TRR exceeds T* (where additional 6.1 HTTF_) 11 (PerS|Stent ConneCtlonS) o
The basic model assumes that the TCP connection is set up

requests are blocked). These lower and upper plateaus can be °)
readily explained as follows: in the case of the lower plateau, the @nd torn down for each transaction (file) reclugst_(HTTP 1.0).
contention between requests (thus, queueing delay) is negligible. With HTTP 1.1, multiple file requests can be "pipelined” across
Therefore, the end-to-end service time is determined by summing the same (persistent) TCP socket [10]. This protocol enhancement
the no-load service times at each of the sub-systems. In the case ofS €asily accommodated in the analytic model by adding a
the upper plateau, the delay is determined by the bottleneck feedback loop before the HTTP sub-system, as shown in Figure 6.
resource (in this case, the CPU) at the saturation load T*. Each Let ngonn denote the average number of file requests per TCP
request that is ultimately served (not blocked) arrives when all connection. Then the probability of feedbameanacis given by
Ny threads are busy andu@1 LQ slots are occupied (thus ~ (Mconn — 1) / Neonn - For example, if the requested Web page
seizing the last available slot in the HTTP LQ). The remaining consists of 1 index file plus 11 inline files (images, applets, etc),
components of the end-to-end delay for the non-bottlenecked and the browser allows up to 4 concurrent sockets per page
resources are then determined based on a TRR of T*. request, thengn,= 12/4 = 3 files/connection antleegpack= 2/3.
We observe that the analytic approximation is highly . .
accurate for all values of TRR. Furthermore, the model presented 6.2 NoON-Poisson Arrival Processes
here yields an improvement over the model proposed in [13]. In The basic model assumes that incoming TCP-level file
particular, the enhancement to the HTTP holding time analysis requests form a Poisson process. Clearly, this assumption is
(time-slicing instead of processor-sharing) more accurately approximate. It has been shown that HTTP application-level page
captures both the “knee” and "plateau” of the response time curve. 'équests are reasonably modeled by a Poisson process [11], but
In the second scenario, consider what happens if the HTTP IP-level packet requests exhibit long-range dependence [c.f. 18]
processing bottleneck is alleviated (e.g., by upgrading the CPU or that is likely caused by TCP flow control [1]. File requests
improving the cache performance). Assume that total CPU time is therefore exhibit some measure of "burstiness” that falls in
decreased from 60ms to 10ms. For this scenario, Figures 5a-bbetween these two cases (that is, file requests are more bursty than
depict the throughput and response time as a function of TRR. Page requests, but less correlated than packet requests).
Figure 5a shows that decreasing the required CPU time by a There are a number of approaches to capturing this
factor of 6 increases the maximum throughput by only a factor of burstiness and correlation that are easily amenable to the analytic
less than 3, suggesting that the bottleneck has moved to anothefmodeling techniques employed here. First, we can assume that
sub-system. In fact, one can readily verify that the capacity of the TCP file requests form a batch Poisson process, with mean batch
T1 link has become the limiting bottleneck, restricting the Size equal to the average number of files per page. Second, we can
maximum throughput to T* = 1544/3247 requests/sec. assume that file requests are modeled by a Markov-modulated
Again, we observe that the analytic approximation is highly Poisson process [7]. Finally, we can use any number of two-
accurate for all values of TRR. Furthermore, the model presented M0ment approximations (e.g. [12]). . _
here again yields a dramatic improvement over the model Note that HTTP 1.1 (section 6.1) drives the arrival process
proposed in [13]. In particular, the enhancement to the 1/0 buffer Closer to that of page requests (i.e., a Poisson process). That is,
holding time analysis more accurately captures the tHipug the behavior of the TCP connection request arrival process falls in
threshold (Figure 5a) and response time "knee" (Figure 5b). between that of page requests and that of file requests. In other
In Figure 5¢c, we decompose the end-to-end response time Words, HTTP 1.1 tends to reduce the burstiness and correlation
into the various sub-system component delays. In particular, Petween arrivals to the TCP sub-system, making the Poisson
Figure 5¢ shows the cumulative contributions from the TCP LQ assumption of the basic model somewhat more reasonable.

(connection setup), the HTTP LQ (waiting for thread assignment), Tai : s :

the HTTP thread (request execution time as well as waiting time 6.3 Heav_y Tailed File Distributions

for buffer assignment), and the 1/0O buffer (network transmission). The basic r_node_l assumes that HTTP thre_ad_, SE thread,_ and
I/O buffer holding times are exponentially distributed. Again,

As can be seen, at low loads the delay is dominated by the th i e imate. It has b h that
modem read time (4KB @ 28.8Kbpsl.1s) and the network RTT 1€Se assumptions are clearly approximate. ft has been shown tha
sizes of _static files (i.e., those without significant dynamic

(rl] fc:jr -:-CP setl_Jp * ‘; florldatactiransmlssmrz.?is%. At high _Ioa_ds, . __content) are heavy-tailed [c.f. 4]. To our knowledge, there is no
the delay consists of 1.1s modem time and 1.3s transmission tlmeempirical evidence that dynamic files (i.e., script execution times)

(as before), plus 3.3s waiting for the network link, 1.4s waiting
P cp > 1iTTP 4........ SE

for an output buffer, 1.3s HTTP thread execution time, and 2.7}
waiting for an HTTP thread. These values are consistent with olir
intuition and understanding of the Web server internals. As the
network link (bottleneck) saturates, the I/O buffers fill, causing
the HTTP threads to block, in turn causing the HTTP threads and
LQ to saturate. Thus, the HTTP threaxdecutiortime consists of
128 [threads] x 0.01s [CPU time} 1.3s. The HTTP thread

holding time consists of 1.3s [execution] + 1.4s [waitingR.7s. ‘—@4— 10C Backend
Thus, the HTTP LQ waiting time consists of 128 [LQ slots] x 2.7 System
[thread holding time] + 128 [threads]2.7s.

Note that even though the 1/0O sub-system is the bottleneck in == non-blocking === nu1plocking mode

this scenario, it still agounts for less than 1/2 of the end-to-end
delay (due to sub-system interactions and congestion migration).

Figure 6: Modes of HTTP/SE Implementation

166

are similarly heavy-tailed. Thus, it is not clear that these 9. REFERENCES

exponential assumptions are unrealistic in the case of Web serversm Arvidsson and Karlsson. “On Traffic Models for TCP/IP”

e o e STy, proceedings of e 16 1C, Teeafic Engneering i
X pprop 9 Competitive World, Elsevier11999.

times are heavy-tailed, so that the model can be easily "tuned" to

the particular application workload under consideration. [2] Conway, “A Perspective on the Analytical Performance
It has been shown [4] that heavy-tailed file sizes can be Evaluation of Multi-Layered Communication Protocol
reasonably modeled by multiple job classes, each with different Architectures”, IEEE Journal on Selected Areas in

arrival rates and holding times. The analysis here can be modified Communication§11991.
to accommodate multiple job classes. A number of reasonable
approximations have been proposed to compute the blocking seen[3]
by different job classes offered to a common service system North Holland[11981.

(typically referred to as "parcel” blocking in teletraffic literature). [4] Crovella and Bestravos, “Self-Similarity in World Wide

Many of these approaches arose out of the need to size secondary = eb Traffic: Evidence and Possible Causes”, proceedings of
trunk groups that handle peaked overflow traffic from multiple the ACM/SIGMETRICS conference, ACK1996.

primary trunk groups. Fredericks [6], for example, proposes an

analytic approximation that can be readily incorporated into the [5] Eckberg, “Generalized Peakedness of Teletraffic Processes”,
basic model, thereby accommodating heavy-tailed distributions. proceedings of the 10th ITO1983.

7. CONCLUSIONS & FURTHER WORK [6] Fredericks, A New Aperoach to ParceI_BIo_cking via State

In this paper, we have presented a detailed analytic queueing Dependent Birth Rates”, Bell Laboratories internal

. ! ’ . . . memorandum MM73-3425-3, 29 June 1973.

approximation to predict the user-perceived performance provided
by Web servers with significant server-side processing in [7] Grandell, Doubly Stochastic Poisson Processes, Springer-
distributed computing environments. The "basic" analytic model Verlag11976.
has been validated against simulation as well as lab test 3
measurements, and has been shown to be remarkably accurate fo[r]
the scenarios modeled to date. In addition, the mechanics to
extend the model to accommodaten-Poisson arrivals, long-
range dependence, heavy-tailed distributions, and persistent
connections have been outlined. The resulting "extended" model [9] Menascé and Almeida, Capacity Planning for Web
is well suited to handle a diverse range of application workloads. Performance, Prentice Hall PTIRL998.
This analytic model forms an excellent basis for development of a
decision support tool for evaluating the performance of Web

Cooper, Introduction to Queueing Theory, 2nd Edition,

Hariharan, van der Mei, Ehrlich, Reeser, “Modeling the
Performance of Web Servers Engaged in OO Computing”,
accepted fopublication in an upcoming special issue of
IEEE Transactions on Modeling and Computer Simulation.

[10] Padmanabhan and Mogul, “Improving HTTP Latency”,

servers in distributed environments, allowing system architects to proceedings of the 2nd WWW Confereridé 994.
predict the behavior of new systems prior to their deployment, or [11]Paxson and Floyd, “Wide Area Traffic: Failure of Poisson
the behavior of existing systems under new workload scenarios. Modeling”, IEEE/ACM Transactions on Networkirig1995.

The analytic model has not yet been validated against a real-
world production scenario. However, a variant of the simulation [12]Reeser, “Simple Approximation for Blocking Seen by
model used to benchmark the analytic model has been validated ~ Peaked Traffic with Delayed, Correlated Reattempts”,
against an actual distributed Web server deployment, and has Proceedings of 12th ITC, Teletraffic Science for New Cost-
been shown to be accurate. This evidence suggests that while the Effective Systems, Networks and Services, Elseli#B89.

real-world characteristics (non-Poisson arrivals and heavy-tailed [13] Reeser, van der Mei, Hariharan, “An Analytic Model of a
service times) do impact performance at the packet level, they do Web Server’ proceédings of the 16th ITC. Teletraffic

not st_rongly mqnnfe_st themselves in the average end-to-end user- Engineering in a Competitive World, Elsevigr999.
perceived application performance measures (such as response

time and blocking). Therefore, we are optimistic that the analytic [14]Slothouber, “A Model of Web Server Perfornea,
model will be reasonably accurate when benchmarked against StarNine TechnologieS1996.
real-world scenarios (despite its simplifying assumptions).)

Further work is planned to incorporate the extensions [15] Stev_ens, TCP/IP lllustrated, Volume 1: The Protocols,
outlined in section 6. First, we plan to add a feedback loop to Addison-Wesley11994.
model the effects of HTTP 1.1. Next, we plan to introduce a two- [16]van der Mei, Ehrlich, Reeser, Francisco, “A DSS for Tuning
moment (mean and peakedness [c.f. 5]) characterization of the Web Servers in Distributed OO Network Architectures”,
arrival process, with two job classes. We can then treat each sub- proceedings of the 2nd WISP, ACM1999.

system as a separate,GIM, / N / Q renewal system (along the .) .
lines of [12] and [6]), and solve the system of equations [17]van der Mei, Hariharan, Reeser, “Web Server Performance

iteratively (as with the present model). Modeling”, proceedings of 4th Informs Telecom Conference,
special issue of Telecommunication Systén000.

8. ACKNOWLEDGMENTS [18] willinger, Tagqu, Sherman and Wilson, “Self-Similarity

The authors would like to thank the referees on the WOSP Through High Variability: Statistical Analysis of Ethernet

technical program committee for their insightful comments. LAN Traffic at the Source Level”. IEEE/ACM Transactions
on Networking[11997.

167

