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ABSTRACT

In this paper we present an approach to automatically de-
rive a performance evaluation model, based on a Queucing
Network Model, from a Software Architecture (SA) spec-
ification. The approach assumes the SA is described by
means of Message Sequence Charts (MSCs) whose objects
arc componcents and interactions arc modelled as message
scquences, that is, how messages are sent and received be-
tween a number of objects. We analyse MSCs in terms of the
trace languages that they generate trying to single out the
real degree of parallelism among components and their dy-
namic dependencies. This information is then used to build
a faithful Qucucing Network Model (QNM) corresponding
to the SA description that forms the basis to conduct perfor-
maunce analysis. The approach builds on our previous work
on performance evaluation of a SA in which we assumed the
SA description given in the formal ADL based on CHAM
(CHemical Abstract Machine). From that description we
could build a finite state model (FSM) of the global sys-
tem behaviour from which we derive a performance model,
a QNM. However, this approach has the drawback of high
cowputational cowmplexity duc to possible state space ex-
plosion of the FSM obtained by the SA description of real
world projects. The new approach is proposed to overcornce
this limitation by considering the MSCs as the SA descrip-
tion from which we derive the performance model. More-
over we observe that in many application domains MSCs or,
using the UML terminology, Sequence Diagrams arc com-
monly in use. Our present work is a step towards a solution
to the performance model production which is both effective
and compatible with many companics softwarc development
standards.
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1. INTRODUCTION

In this paper we present an approach for the automatic
generation of a performance evaluation model, based on a
Qucucing Network Model [15], from a Softwarc Architec-
ture (SA) specification described through Message Sequence
Charts (MSCs)[17, 2].

Given that our ultimate goal is to make quantitative anal-
ysis of complex systems carly in the software life cycle pos-
sible, there arc two main motivations for our work. First,
we believe that the performance model creation should be
automatized as much as possible. If this is the casc the
starting softwarc artifax for the creation must be an accu-
rate specification of the dynamic system behavior, in our
casc the software architecture dynamic behavior. Second,
the dynamic model must be tractable and practical, where
tractable means that it is possible to represent and manip-
ulate it and practical mcans that we could expect system
designer to producce it. In the following we will try to illus-
trate our approach in light of these two main motivations.

MSCs exist in several variations and have been widely used
as a design tools in many cvent-based distributed systems.
Recently, with the increased popularity of UML, some at-
tempts at the use of Sequence Diagrams (SD), the UML
[2, 14] counterparts of MSCs, as the basis for quantitative
analysis of Software Architectures have been proposed [3].
From now on we will interchangeably use the terms MSC
or SD. Our approach assumes the SA is described by means
of Message Sequence Charts where the objects of the MSCs
arc componcents and their interactions are modelled as mes-
sage sequences, that is, how messages are sent and received
between a number of objects. We analyse MSCs in terms of
the trace languages [5] they generate trying to single out the
rcal degree of parallelism among components and their dy-
namic dependencies. This information is then used to build
a faithful QNM modecl corresponding to the SA description
that forms the basis to conduct performance analysis. The
approach builds on our previous work on performance evalu-
ation of a SA in which we defined a methodology for software
performance cvaluation at the SA level which assumed the
SA description given in the formal ADL based on CHAM
(CHemical Abstract Machine) [8, 6]. From that descrip-
tion we could build a finite state model (FSM) of the global
system behaviour whose analysis lead to the definition of a
performance model, i.e. a QNM. In the new approach we
automatically build the QNM from the analysis of the MSCs
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Figure 1: Phases of our approach.

instead of the FSM. A drawback of the previous approach is
that in real world projects often even at the SA description
level FSMs are too big to be represented (duc to the state
cxplosion problem). Our new approach trics to overcome
this limitation by using MSCs. Morcover MSCs are com-
monly in usc in many application domains and constitute
a relevant part, if not the only one, of the design artifacts
dealing with the dynamic behaviour of the system.

MSCs are always described in a limited number, which sup-
posedly describe from the designer point of view, all the
relevant system dynamic behaviors.  Although they repre-
sent an incomplete description of the global system behavior
they are often enough to meaningfully characterize it. Thus
MSCs arc a tool that can be effectively used by the systemn
designers and arc tractable.

Referring to the methodology for performance evaluation of
a SA, as sketched in Figure 1, in this paper we propose to
replace the performance model creation phase.

The paper is organized as follows: in Section 2, the MSCs
formalism and its use to specify software architecture are
introduced. The description of a simple system, the Coin-
pressing Proxy, which will be used throughout the paper to
illustrate the performance model creation is also presented.
Scction 3, briefly summarizes the characteristics of Qucuc-
ing Network Models (QNMs) and of their creation process.
Section 4, presents the theory underlying the derivation of
the QNM from the MSCs specification of a Software Archi-
tecture. The application of the theory to the Compressing
Proxy system is carried out in Section 5. Section 6 adds
some concluding remarks and discusses future work. The
Appendix contains a description of the algorithm to gener-
ate the QNM model.

2. MSCS AND SA

In the general understanding, MSCs illustrate how objects
interact with cach other [13]. They focus on message sc-
quences, that is, how messages are sent and received be-
tween a number of objects. A sequence diagram also reveals
the interaction for a specific scenario i.e. a specific interac-
tion between the objects that happens at some point in time
during the system’s execution. On the horizontal axis there
are the objects involved in the sequence. Each one is rep-
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Figure 2: A MSCs not verifying the non degencracy
property.

4{ Repfal. nTIMES L ‘

events block

Figure 3: MSC with a repeat cycle.

resented by an object rectangle with the object name. The
vertical dashed line represents the object’s lifeline. Commu-
nications between objects are represented as horizontal ar-
rows between object’s lifelines. The end of arrows indicates
the type of communication. In our approach the objects are
substituted by architectural components and obviously the
arrows indicate the time when communication occurs. In
this paper we assume that the MSCs descriptions we deal
with satisfy the following properties:

1. They contain state information about cach componcent;
Each systein component is contained in a MSC;

MSC can contain repeat cycles (Fig.3);

L

They verify the non degeneracy property [5] (Fig.2),
roughly this means that arrows can only occur hori-
zontally;

5. The MSCs must be representative of the major sys-
tem’s behaviours;

6. The MSCs refer to the same initial configuration.

2.1 The Compressing Proxy Architecture

In this scction we present the design of the Compressing
Proxy system. Our description is derived from that given
in [10]. To improve the performance of UNIX-based World
Wide Web browsers over slow networks, one could create
an HTTP (Hyper Text Transfer Protocol) server that com-
presses and uncompresses data that it sends across the net-
work. This is the purpose of the Compressing Proxy, which
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Figure 4: The Compressing Proxy.

weds the gzip compression/decompression program to the
standard HTTT server available from CERN. A CERNHTTT
server consists of filters strung together in series. The filters
communicate using a function-call-based stream interface.
Functions arc provided in the interface to allow an upstream
filter to “push” data into a downstream filter. Thus, a filter
I is said to read data whenever the previous filter in the
series invokes the proper interface function in F'. The inter-
face also provides a function to close the strcam. The gzip
program is also a filter, but at the level of @ UNIX process.
Therefore, it uses the standard UNLX input/output inter-
face, and communication with gzip occurs through UNIX
pipes. An important difference between UNIX filters, such
as gzip, and the CERN HTTP filters is that the UNIX
filters explicitly choose when to read, whereas the CERN
HITP filters are forced to read when data arc pushed at
them. To assemble the Compressing Proxy from the exist-
ing CERN HTTD server and gzip without modification, we
must insert gzip into the HI'TD filter strecam at the ap-
propriatc point. But since gzip doces not have the proper
interface, we must create an adaptor, as shown in Figure 4.
This adaptor acts as a pscudo CERN HTTP filter, commu-
nicating normally with the upstream and downstream filters
through a function-call interface, and with gzip using pipes
connccted to a separate gzip process that it creates.

3. THE QUEUEING NETWORK MODEL

Quecucing Network Models (QNMs) have been extensively
applied to represent and analyse the performance of resource
sharing systems, such as production, communication and
computer systems. A QNM is represented as a network of
queuve which is quantitatively evaluated through analytical
or simulation methods to obtain a sct of measures, the per-
formance indices. A network of queue is a collection of ser-
vice centers, which represent system resources, and a sct
of customers, which represent users sharing the resources.
A QNM can be represented as a directed labelled graph
where nodes are service centers, arcs represent transitions
of customers along nodes and labels on arcs define the rout-
ing probability. Different types or classes of customers with
various characteristics of customer service and routing be-
haviour can be modelled by multiclass queucing networks.
In single class QNM all the customers have the same be-
haviour. QNM can be open, closed or mixed. In an open
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network model there is at least one arc entering and at least
onc arc going out the network. In an open network cach
customers arrives from outside, asks for service at a service
center, possibly queucing for it, and then it cither leaves the
system or asks for service to some other service center. In a
closed network there is no external arrival and exit arc and
there is a constant number of customers circulating in the
system. Multiclass networks can be cither open, closed or
mixed. A mixed network is open with respect to some cus-
tomer types and closed with respect to others. The queucing
capacity of cach service center is formed by a set of servers
and a queuc to keep waiting customers. The queue capac-
ity can be finite to represent system resources with limited
waiting rooms or population constraints. QNMs with finite
capacity qucucs arc morc appropriatc models for systems
with finite buffer and blocking, but their analysis is in gen-
cral more complex than infinite capacity QNMs and it is of-
ten carried on with approximated techniques [18]. This class
of QNMs is referred to as Queucing networks with Blocking
[7, 15, 18]. When a uscr tries to enter a saturated node,
i.c. a nodec whose quecue has attained its maximum capac-
ity, then there is a block. In the literature various models
have been proposed to represent different types of block-
ing mechanisms. We just recall the Blocking After Service
(BAS) mechanism that we shall apply to model system syn-
chronization. Under BAS policy when a customer, after
complction of service at node 4, trics to cnter a saturated
nodce j, is blocked and has to wait at nodc ¢, so blocking the
scervice. The service remains blocked until a buffer position
becomes available in nodc j, i.c. as soon as a customer leaves
node j. When more than onc node arc blocked by a satu-
rated node, we have to define an unblocking discipline. We
refer to FBFU (First Blocked First Unblocked) discipline,
where the first unblocked node is the first onc that has been
blocked. For simplicity, hercafter we only deal with open
models. Informally a QNM can be described by three basic
clements:

e service centers also called nodes
e customers

¢ node inter-connection structure (or topology)

The modelling process with a QNM can be split in three
steps: (1) definition, which normally encompasses the def-
inition of service centers, their number, class of customers
and topology; (2) parameterisation, to define the alterna-
tives of the study, c.g. by selecting the arrival processes
and scrvice rates; (3) evaluation, to obtain a quantitative
description of the system behaviour described by the QNM.

4. FROM THE MSCs TO THE QNM

In this scction we present the algorithm to derive the QNM
performance evaluation model out of the MSCs specifica-
tions of a software architecture. This approach is justified
by the fact that the automata describing the whole system
is often too large. The main idea is to begin from a high
level description of components interactions to extract qual-
itative system’s information. To this aim, in our opinion,
the MSCs formalism is a good choice.



Figure 5: Example of a complete portion of au-
tomata

In order to derive the QNM we must have information such
as communication among components, communication types,
concurrency and ldeterminism among components. All these
information are dynamic so we can take them out only of
a behavioural model of the architecture. MSCs allows for
modelling dynamic behaviour, the common assumption here,
see for example [5], is that it is always possible to synthesize
a global finite state system model out of a set of MSCs. A
MSC then represents a valid path on this automata. In the
following we will refer to this intended global model as the
associated automata. In this paper we will deliberately not
address the issue of which intended model underlies @ MSCs
description, sceveral approaches exist. For the sake of sim-
plicity, in our context it is cnough to know that a suitable
complete model can be synthesized.

The idea, which follows the approach in [5], is to derive
from cach MSC a regular ezpression describing the cvents
sequence performed in the MSC. Then we consider regu-
lar expressions analysis. The analysis consists of comparing
regular expressions in order to find out a prefix. When we
have found this prefix we analyse the remaining parts of
the regular expressions; if these have particular shape (as
listed below) we can deduce the needed information. This
information is collected into scts, called interaction sets. To
make this kind of reasoning as simpler as possible we make
the following non restrictive assumptions on the system’s
model:

e the primitive basic communication between compo-
nents is one to onc;

e the associated automata is complete, i.e. from every
state it is possible to do all possible actions. With
this assumption we can get the parallelism between
components. (Fig.5);

When all interaction scts arc built we derive the QNM;
i.e. we generate inter-connection service centers with finite
and infinite queues, modelling respectively, synchronous and
asynchronous behaviours.

4.1 MSCs Encoding

Following the idea in [5], in order to process algorithmically
the MSCs, we need an encoding. Let M = {M1, Mo, ..., My}
be the MSCs set describing the architectural behaviour; given
a MSC M; € M on components 1, I, ..., P, we intro-
duce the following definitions:

DrrFINITION 1. An cvent e; on a generic MSC M; is a
communication among two components, denoted by an ar-
row.

DEFINITION 2. Given two events e;, ey we define a visual
ordering <; : e; <; er if and only if the event e; precedes
the event ey, in the MSC M; temporal sequence.

DrrINITION 3. Given the event e; the associated label is:
S(Py, )¢ where Py and P» are the sending and recesving
component respectively, in the communication described by
the event e;, ¢ € {s,a} is the communication type, where s
stands for synchronous and a for asynchronous communica-
tion.

DrriNtTION 4. Given eventsel,...,e; the associated trace
is the regular expression Iy ...1l; where:

e [, corresponds to the label of the event ey or to a reg-
ular expression {by...bg}" where by ... by is the trace
associated to the events block as showed in Figure 3;

o foralls,t €{l,...,j} if s <t thene, <;e,.

Following the above definitions we can encode the MSCs.
First we gencrate the labels associated to the cvents; then
we go on building the traces according to the visual ordering
given by the events sequences in the considered MSC. Dur-
ing the labels gencration we produce the Based Interaction
Sets representing all the communication in the MSCs. In
particular if, in the i-th step, we gencerate a label S(1, I%)°
then we put the (P, 1%)° (i.e. the Interaction Pair), in a
set called Based Interaction Set I; = {(1°1, P2)°}.

4.2 Traces Analysis

In this section we describe the traces analysis in order to
generate the Structured Interaction Sets composed of two
Interaction PPairs corresponding to concurrent components,
one to two, two to one and alternative (non deterministic)
communications. The trace analysis is based on a compar-
ison of pairs of traces scarching a matching among their
prefixes. In our approach, in fact, a trace singles out an
automata computation, so a common prefix corresponds to
the time in which two computations begin to have distinct
behaviours. This traces interpretation explains the hypoth-
csis 6 made in Section 2 on the MSCs initial configuration.
Intuitively this idea is justified by the following arguments:

Let T, Ty be traces and X be the common prefiz. If the
states reached by execution of prefit X are not in conflict (
conflict is a relation on states components that establishes
when, given a component, two states represent two mutually
excluswe component behaviours), we affirm that there exists
a global state in the complete automata reachable by the trace
X and from which it is possible to perform the remaining
part of traces T1 and T>.

In the following we illustrate, for cach type of pair of traces,
the corresponding generated Structured Interaction Set .

Trace types:



e A Tracc pair modcls a concurrent behaviour if it has a
labels exchange as:

S(Pe, Py S(Dy, D)2 S(D, 1) S(Ds, P

S(Pe, Pt ... S(P, PP S(P, P S(Ps, ) . ..

where @ # s,t, s #t,7 # ¢ and j # s. In this casc we
build the Structured Interaction Pair:

L ={(P, )%, (P, P)™ }.

e A Tracc pair modcls a one to two communication if it
has a labels exchange as:

S(Pu, Pt ... S(P, P)?S(Py, P 3 S(Ds, D)4 . .

S(Pe, Pt ... S(P, P)?S(Py, P4 S(P, ) . .

where 7 # s and @ # j,s. In this case we build the

Structured Interaction Pair:
Lv = {(Plvpj)cgv (Ph PS)C4}'

e A Tracc pair modcls a two to one communication if it
has a labels exchange as:

S(Pe, Pt ... S(Py, P)?S(Py, D)3 S(Ps, D) . .

S(Pe, Pt ... S(P, P)?S(P, P4 S(Dy, D) . .

where 7 # s and @ # j,s. In this case we build the
Structured Interaction IPair:
L= {(P), P)"™, (P, P)™ }.

e A Trace pair models an alternative communication if
it has a labels exchange as:

S(Pe, P ... S(P, P) S(Ps, Py)3S(Py, ) . ..

S(Po, P ... S(Py, P.) S(Ps, )5 S(Py, P)S ...

where r # s,u #t, i # j,q and j # ¢. In this casc we
build the Structured Interaction Pair:

L" = {(-P?a ]7]_)03’ (-P?a PQ)CS}ND'

In the following we summarize the Structured Interaction
Scts generation algorithm:

For All Traces S; do
For All Traces S; and i # j do
<Find all common prefix p >
<Gencerate Interaction Set for p
from the above rules>
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4.3 QNM Generation

Once we have analysed all traces pairs, the I; compuled
scts arc cxamined in order to associate them to clements of
the QNM. Additional information is necessary to determine
the QN topology. In particular we need to identify internal
and external components of the system. External compo-
nents can be scen as sources which model the production
of system customers or processing clements from which the
system communicates the results to the environment. From
these components we determine whether the resulting QNM
is open or closed. Without loss of generality we assume that
componcnts arc partitioned into two set Ez and In. Let
us informally introduce how the generation QNM algorithm
works. The idea is to analysc the interaction among sys-
tem components (i.c. I; scts) to understand their real level
of concurrency and consequently generate the correspond-
ing QNM. This is very important in order to obtain QNMs
that faithfully represent the given system. The goal is to
understand which components are strongly synchronized so
that they result in a sequential behaviour and which are in-
dependent from cach others and can be concurrently active.
At the beginning cach component is considered as an au-
tonomous server, along the computation it can become part
of a more structured clement. Intuitively, an Interaction Sct
I, = {(P1, I»)*} is modelled as a complex server represent-
ing a unique service composed of Py following I and that
expresses the sequentiality of operations. An Interaction Set
I; = {(P, )"} is modelled by a service center with an infi-
nite buffer that implicitly models the communication chan-
nel. Moreover the algorithm builds the transition I, — %
in the topology of the QNM. The Interaction scts I; =
{(P1, »)°} having an cxternal clement define the service
centers in which there are exogenous arrival (the external cl-
cment is 1) and the service centers from which there are de-
parture (the external clement is ). The algorithm models
a non-deterministic computation, {(P, 1%)®, (PP, P5)°} P,
by introducing a multi-customers service center that at the
cnd of the generation process is transformed in a simple-
customer secrvice center whose service time depends on the
scrvice times of the original classes. To model synchronous
communication among concurrent system componcents, the
algorithm assigns distinct service centers to the communi-
cating components in order to model their independence.
It also associates to the receiver component a service cen-
ter with a zero capacity buffer and imposes a BAS blocking
mechanism to the sender component in order to model syn-
chronization. One to two, {(P, ), (1, P5)?}, and two
to one, {(Pz, )", (Ps,1)?}, communications arc mod-
clled assigning to the involved components distinct service
centers, with a zero capacity buffer if the communication
is synchronous. When all the scts I; have been examined
the algorithm proceeds by performing merging operations
to rcach the final configuration of the scrvice centers. There
arc scveral merging opcerations as listed in the last part of
the algorithm. The result of these merging operations is a
sct of interconnected service centers. The interesting reader
can find in the Appendix a complete description of the al-
gorithm, as well as the definition and graphical notation of
the QNM componcnts clements, with explicit reference to
softwarc architectures.

4.4 Performance Analysis



After the generation of the QNM we can analyze the perfor-
mance model of SA [6, 8]. Duc to the high level of abstrac-
tion od SA, this can be donce cither symbolically through
analytical techniques or by simulation. One can devise the
performance of the given architecture under further hypoth-
csis by suitably instantiating the symbolic parameters or
choosing their values. This information identifics potential
implementation scenarios. Analyzing the behaviour of the
systems in these scenarios can provide useful insigths on how
to carry on the development process in order to satisfy the

chosen performance criteria. msc 1 BIS

5. DERIVING THE QNM FOR THE COM- [CF,| LAd | [CFy] [Gzip|
PRESSING PROXY | L[|
In this section we derive the QNMs associated with the [ repeat. N times ]

Compressing Proxy. First we describe the architectural be- |
haviour by the following MSCs, recalized by the tool [17], @) T ¥
the star (*) symbol stands for a don’t cere state label, i.c. it !
matches with any state labels:

We now apply the methodology presented in Section 4, to repeat: N1 times
carry on the modelling process.

5.1 Encoding of Compressing Proxy MSCs O,* ]
From the definitions in Section 4.1 we derive the traces.
Since we assume that all communications are synchronous,

we can omit the notation for the communication type in the [ endrepeat: N1 times ]
label.
MSCLBIS-Trace: | repeat: N2 times |

{S(CF., Ad)S(Ad, Gzip)™1 S(Gzip, Ad)™“2 S(Ad, CFy)}™

*,1 @)

MSCS8BIS-Trace:

S(CF,, Ad)S(Ad, Gzip)™~' S(Gzip, Ad)*2 S(CF,, Ad)S(Ad,CF,)

endrepeat: N2 times

MSC9BIS-Trace:

S(CF,, Ad)S(Ad, Gzip)~ ' S(CF,, Ad)S(Gzip, Ad) 2 S(Ad, CFy) *,0 | (@]

MSC10BIS-Trace:

| endrepeat: N times |

S(Ad, Gzip)S(Ad, CFy)S(CF,, Ad) >|<!>|<
MSC11BIS-Trace: ; ; ; ;

S(CF., Ad)S(Ad, Gzip)™' S(Gzip, Ad)S(Ad, CF,)

S(CF., Ad)S(Ad, Gzip)™' S(Gzip, Ad)™?

S(Ad, Gzip)2S(CF,, Ad)

Figure 6: The strictly sequential behaviour between
. CF,, Ad, Gzip and CF,.
5.2 Traces Analysis

From the labels we generate the Based Interaction Sets:

I = {(CF,, Ad)*}
I = {(Ad, Gzip)*}
Is = {(Gzip, Ad)}
I, = {(Ad,CF,)"}
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msc 8 BIS msc 9 BIS

[CF, [Ad] [CF;] [Gzip IClFuI | Ald | ICleI IGzlipl
COSCTFS CFS HFS CO> T TF>F>

repeat: N1 times |

[ repeat: N1 times ] [
<><><O|,*><><>< > <_>®<g,_*><x>< 1>

| endrepeat: N1 times | | endrepeat: N1 times |

] COD>LLFID>H S >

| repeat: N2 times

CFOFDF >CO> | repeat: N2 times |

oD CE SO >

| endrepeat: N2 times |

COOTFFo>TF> | endrepeat: N2 times |
CFESEDLTOFDS <_>@<*J,6>< [ >R >
S CF RS XK T ORDS L

_x__x__;__;_ _i__i__i__i_

Figure 8: Iterates the communication CF, to Ad and
Ad Gzip, then re-iterates CF, to Ad before Gzip
ends.

Figure 7: Before Adaptor sends to C'F, it receives a
new stream from CF,.
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msc 10 BIS msc 11 BIS
[CF,| [Ad | [CFy] |Gzip) IClFuI | Ald | IClel IGzlipl
LOOLLF>F S>* > COD>LIF>LH >* >
[ repeat: N1 times ] [ repeat: N1 times ]
CHOQOHCF > > CH OO LF > >
| endrepeat: N1 times | | endrepeat: N1 times |
| repeat: N2 times | CFOFDIF SO0
K OLHIDICF >0 > CFOFOOA > D>
[ endrepeat: N2 times ] [ repeat: N2 times ]
CFOOHF > > ¥ ><O|,*>< * ><A >
CFOFOOA >*F D> | endrepeat: N2 times |
OO LI Cx S>F D> COD>LIF>LH >* >
RGP CEOLEFD XD
i i s i i

Figure 9: CF, sends to Ad, Ad sends to Gzip, Gzip Figure 10: Gzip sends back to Ad before completion
must end and Ad sends to CFy all it did, then Ad is of all work, then Ad sends all to Cfy and can input
ready to get new input. again.
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while from the analysis of traces we can extrapolate the
following Structured Interaction Scts:

e From ainstantiation of MSC8BIS-Trace and MSC9BIS-
Trace we can derive Is = {(Gzip, Ad); (CF., Ad)}, in
fact the partial states msc8(x, [+, I], *, O) and msc9(0O,
[, *], *, %) arc not in conflict, so the associated Inter-
action l’airs arc in the same Interaction Sct:

S(Grip, Ad)S(CL'y, Ad)
S(Cly, Ad)S(Ad, Gzip)
S(CFy, Ad)S(Czip, Ad)

e From a instantiation of MSC10BIS-Trace and MSC11BIS-

Trace we can derive Is = {(Ad, Gzip); (Ad,CFy)}, in
fact the partial states msclO(x, [O, #], *, 1) and mscl1(x
,[*, O], I,*) arc not in conflict, so the associated Inter-
action PPairs arc in the same Interaction Set:

S(Ad, Gzip)S(Ad,CTy)
S(CF,, Ad)S(Ad, Gzip)S(Grip, Ad)
S(Ad,CF)5(Ad, Gzip)

e From a instantiation of MSC8BIS-Trace and MSC1BIS-
Trace we can derive Iy = {(CF,, Ad); (Ad,CFy)}, in
fact the partial states msc8(O, [1, +], *, *) and mscl(x,
[*, 0], I,*) arc not in conflict, so the associated Inter-
action PPairs are in the same Interaction Set:

S(CTy, Ad)S(Ad, CT)
S(CT,, Ad)S(Ad, Czip)S(Gzip, Ad)
S(Ad, CFy)S(C Ty, Ad)

5.3 QNM Generation

By applying the algorithm described in the Appendix with
assumptions Ex = {OF,,CFy} and In = {Ad,Gzip} we
obtain the QNM representing the Compressing Proxy dy-
namic behavior. The resulting model is shown in Figure 11.
The model is an open QNM with two service centers with
finite capacity. We have exogenous arrivals and departures
from the system only from the Ad service center. The tuple

)\

Figure 11: Compressing Proxy QNM.

[CF., Ad, Gzip, Ad, C'Fy] characterizes the service and it
states that a customer requires services to the processing cl-
cments in the order indicated in the tuple. The first clement
of the tuple is an clement in A reflecting that the network
is open. We assume a FCF S discipline.

6. CONCLUSIONS

In this paper we have presented an approach for the au-
tomatic construction ol the performance model of soltware
architecture specified in MSCs. The method allows the au-
tomatic derivation of a QNM that can then be evaluated.
Recently, software architectures have been devised as the
appropriate design level for carrying out quantitalive anal-
ysis [4, 9, 11]. Softwarc architecture represents the first
system abslraction in which both the stalic decomposition
of the system in subsystems and the dynamic interactions
among subsystems is defined. We believe that, in order to
be successful, this kind of analysis has to be automated as
much as possible. Our approach is based on the assump-
tion that, in building the evaluation model, as much work
as possible has to be automatically derived by the Software
Architecture description. This requires to exploit the Soft-
warce Architecture descriptions. As a matter of fact, MSCs
or SDs arc commonly uscd as design tools to model dynamics
of complex event-driven software systems. Although neces-
sarily incomplete, the information provided by MSCs can in
many practical cascs be the only one realistically available.
Finite State Models of complex systems are theorctically
achicvable but practically impossible in many real cases. It
is therefore interesting to rescarch in the direction of implic-
itly synthesizing global information from partial finite rep-
resentations of the system global behaviour like MSCs. The
approach presented in this paper is a first attempt to bypass
the state explosion limitation, we are at present experiment-
ing this approach on the motivating case study [12], whose
complexity is obviously much bigger than the simple Com-
pressing Proxy system. In that case study, carried out in a
joint project with an important Italian telephone company,
we were asked to provide the SA description of (part of)
one of their product system. The ultimate goal was to make
predictive analysis and conduct evaluation of the architec-
tural choices possible, where their primary interest was in
predicting system performance behaviour. We used UML as
the main description notation and we complemented UML
descriptions with the process algebra description language
FSP [1, 16], in order to be able to model the global dynamic
system behavior. This modelling technique was uscless to
analyse the system global behavior due to state explosion,
thus we resorted to (enriched) sequence diagrams. This was
the starting point for the study we presented in this paper.
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APPENDIX

In the following we introduce the algorithm to gencrate
QNM. We assume that for cach component in the MSCs
sct a server exists.

cr=9
CONC =0
for all Intcraction sct I; do
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if |I;| = 1 then
Ysia I = {(p1, p2)°}"
if p1 € EX then
"build CdS.(p2)”
"link ENV a p2”
else if p» € EX then
?link p; a ENV 7
else if ¢ = s then
"build SC(p1,p2)”
CP =CPU{(p1,p2)}
else
"build CdSin(p2)”
cr = CPU{(pl7p2)}
else
"sia I = {(p1,p2)"; (ps, pa) 7}
if (Vispi #£pj,i=1,2A5=3,4)A(c1 =5)A(cz2 =) then
if (p2 € IN) then "build CdS, (p>)”
if (ps € IN) then "build CdS:(p4)”
CONC = CONCU {{pi,p; }Hi=1,2Aj=3,4
Api,p; & Ex}
else if (Vs ;p;i #pj,i #£j) A(ci =a) A{cz = s) then
if (ps € IN) then "build CdS, (p.)’
CONC = CONCU {{pi,p;}Hi=1,2Aj=3,4
Api,p; ¢ Ex}
else if (Vs ;p;i #pj,i #j§) A (ci =a) A{cz =a) then
CONC = CONCU {{pi,p;}Hi=1,2Aj=3,4
/\p’hp] ¢ E$}
else if (p1 =p3) A (p1 € IN) A (p2 # pa)A
(c1 =8)A(c2 =5)A(I; € ND) then
if (p2 € IN) A (ps € IN) then "build SM[(p1, p2); (p1,p4)]”
else if (i € {2,4} t/c p; € IN) then
"build SC(p1,p:i)”
CP =CPU{(p,p:)}
else if (p; = p3) A (p2 #pa) A(c1 = s) A{ca = s) then
if (p1 € IN) then "build CdS?(p.)”
if (p2 € IN) then "build CdS?(p2)”
if (ps € IN) then "build CdS? (ps)”
CONG = CONC U {{p, p1}|p2, p: ¢ P}
else if (p1 = ps) A (p2 # pa) A{cy = s) A (c2 = a) then
»build CdS?(p: )’
if (p2 € IN) then "build CdS?(p2)”
CONC = CONCU {{pz,ps}Ip2,p1 & Ex}
else if (p1 = ps) A (p2 # pa) A{cr =a) A{cz = a) then
"build CdSY (p1)”
CONC = CONC U {{p2,p:}Ip2,p1 & Ex}
else if (p1 # p3) A (p2 = pa) A(c1 = s) A(ca = s) then
"build CdS? (p2)”
CONC = CONC U {{p1, pa}lps, ps ¢ Ex}
else if (p1 # p3) A (p2 = pa) A{cy = a) A(c2 = s) then
”build Cde(pz) € CdSm/(plez)”
"link p1 a p1Cp2 ¢ p1Cp2 a p2”
CONC = CONC U {{p, ps}lps, ps ¢ Fir}
else if (p1 # p3) A (p2 = pa) A{ci = a) A (co = a) then
CONC = CONG U {{p., ps}lpz, s & Fr}
else if (p1 =ps) A (p1 € IN) A (p2 # pa)A



(ci =a)A(c2=a)A (I; € ND) then
CONC = CONCU {{p2,p1}|p2,ps & Ex}
for all CdS.(p) do
in-use= FALSE
for all SM[(p1,pz2); (p1,ps)] do
if (p = p2) then
if 7CdS| (p) non compulsory” then
if (in_usc = FALSE) then
if ({p.,p2} € CONC}) then
"link pr ap2 ”?
?build SC(p1,ps)”
CP =CPU{(pi,p2)}
"delete SM[(p1, p2); (p1,p3)]”
else "CdS in uso”
"link pr ap2 ”?
?build SC(p1,ps)”
?delete SM[(p1,pz); (p1,p3)]”
else "CdS compulsory”
"link pr ap2 ”?
"build SC(py, p3)”
*delete SMI(p1, p2); (s, ps)]
if (p = p3) then
if "CdS|(p) non compulsory” then
if (inusc = FALSE) then
if ({p.,p3} € CONC}) then
7link p1 aps 7
"build SC(p1,pz)”
CP =CPU{(p1,ps)}
?delete SM[(p1, pz); (p1,p3)]”
else "CdS in uso”
7link p; aps 7
"build SC(p.,pz)”
"delete SM[(p1, p2); (p1,p3)]”
else ”CdS compulsory”
7link p; aps”
"build SC(py, pz2)”
"delete SM[(p1,p2); (p1,p3)]”
for all SC((p1,p2)) do
if (p = p2) then
if "CdS;(p) non compulsory” then
if (inusc = FALSE) then
if ({p:,p2} € CONC}) then
7link p1 ap2”
"delete SC(p1,p2)”
in_use=TRUE
CP =CPru{(pi,p2)}
else "CdS in uso”
"link p1 ap2 ”?
"delete SC(p1,p2)”
else 7CdS compulsory”
"link p1 a ps "
"delete SC(p1,p2)”
if (in_use = FALSE) A (CdS(p) non compulsory) then
”delete CdS)(p1)
for all CdS:(p:) do
for all CdS;, (p2) do
if (p1 = p2) then
if (in.usc = TRUE) then
"build CdS;,(Cp2) ¢ CdS\(p2)”
"delete CdSin s (p2)”
”Merge and link all nodes”



