
Simultaneous Demand-Driven Data-flow and Call Graph Analysis

Gagan Agrawal
Department of Computer and Information Sciences

University of Delaware
Newark DE 19716

(302)-831-2783
agrawal@cis.udel.edu

Abstract

Recently, there has been much interest in per-
forming demand-driven data-flow analysis in software
development environments. Demand-driven analysis
techniques compute data-flow fact(s) for a particular
program point, rather than computing data-flow infor-
mation for the entire program. The existing work in
this area, however, assumes that the static call graph
is available for the entire program. Constructing ex-
haustive call graphs can be extremely time and space
inefficient for large object-oriented programs. There-
fore, it is desirable to compute the call graph infor-
mation on a demand basis as well. In this paper, we
present an algorithm for demand-driven construction
of reaching definitions, which also performs call graph
analysis on a demand basis.

1 Introduction

There has been a significant interest in using
demand-driven algorithms for data-flow analysis in
software development environments [9, 14]. Demand-
driven algorithms alleviate the need for expensive
computation of data-flow information for the entire
program. For example, during regression testing or in-
tegration level testing of a code [22], the set of reach-
ing definitions may be required only for a particular
variable at a particular point. Such information can
be computed efficiently through demand-driven algo-
rithms.

Previous demand-driven techniques have concen-
trated on languages like C and Fortran. In perform-
ing demand-driven analysis on a program, these tech-
niques assume complete and accurate call graph in-
formation, i.e., which procedure(s) may be invoked

at which call-site. However, constructing a call
graph is often extremely space and time expensive
for object-oriented languages. The experiments con-
ducted by Chambers et al. at University of Washing-
ton have shown that for several Java programs com-
prising 7,000 to 30,000 lines of code, context-sensitive
call graph construction either took more than 450
MB of space or did not finish execution within 24
hours [7, 11]. If program analysis is not used fre-
quently as part of the software development environ-
ment, call graphs will not be computed and main-
tained. Therefore, in performing demand data-flow
analysis, it is desirable to also construct the call graph
in a demand-driven fashion.

In this paper, we present a demand-driven algo-
rithm for computing the set of reaching definitions at a
program point. In computing the set of reaching defi-
nitions, this algorithm does not assume an existing call
graph. Instead, call graph analysis is also performed
on a demand basis. Only the call-sites that can po-
tentially propagate reaching definitions for a program
point are analyzed for determining the set of proce-
dures that can be invoked there.

Our technique for performing such demand-driven
analysis will be useful in a number of software engi-
neering tasks, like regression testing, integration test-
ing and static assertion checking. Also, the simulta-
neous reaching definition and call graph analysis pre-
sented here can also be generalized for performing
other data-flow analyses with demand call graph anal-
ysis.

The rest of the paper is organized as follows. We
define the problem we are addressing and motivate the
solution in Section 2. The representation Interproce-
dural Flow Graph used for presenting our analysis is
explained in Section 3. Actual analysis is presented
in Section 4. We comment on several aspects of our

1

work and compare it with related work in Section 5
and conclude in Section 6.

2 Problem Definition

In this section, we first describe the language fea-
tures our solution targets. We then state the main
challenges in performing demand-driven analysis for
reaching definitions and call graph construction.

2.1 Language Model

We are interested in treating common object-
oriented languages like C++ and Java. At the same
time, we are interested in focusing on a set of simple
language features, so that we can present the details of
our technique with simplicity.

A class has members fields and member meth-
ods or procedures. We assume that there are no
global variables in the program. A member procedure
of a class is denoted as pclass::pname, where
pclass is the class in which this procedure is de-
fined and pname is the declared name of this proce-
dure. Besides scalar variables, there are variable that
are references or pointers to an object of a declared
class (which we will refer to as the object references).
A base class can be extended by another class. In
such a case, the base class is called a superclass and
the class extending the base class is called a subclass.
A class can only extend one superclass, treating lan-
guages with multiple inheritance is beyond the scope
of this paper. The set of subclasses of a given class

� is constructed transitively by including the class � ,
and any class that extends � or any class already in-
cluded in the set. Similarly, the set of superclasses of
a given class � is constructed transitively by including
the class � , the class that the class � extended or any
class that is extended by a class already included in
the set.

We assume a statically-typed language in which a
new object reference is created by a statement of the
type r = new Classname; . Such a statement
gives the type Classname to the variable r. The
type of this instance of the variable r can only change
as a result of another new statement.

The procedure calls are made as static procedure
calls, in which an explicitly declared procedure is di-
rectly called by its name, or as dynamic procedure
calls. A dynamic procedure call is of the format
r->pname(paramlist). We assume that the ac-
tual procedure invoked at this call-site depends only

upon the type of r, and not on the type of arguments
in the paramlist.

If r is of type Classname, then the procedure in-
voked at this call-site is the procedure pname defined
in the class Classname (if it is defined there) or the
procedure with the name pname declared in the near-
est superclass of Classname. However, the type of
the object that r is a reference to is usually not known
through static declarations. If the static declaration of
r is a reference to an object of the class Declname, r
can be dynamically assigned to an object of any sub-
class of Declname.

We further assume that all parameter passing is by
reference.

2.2 Motivating Example

To motivate the problem, consider the code shown
in Figure 1. We assume that all parameters are passed
by reference and all functions are declared to be vir-
tual (i.e. can be over-written by a derived class). All
member methods and fields are assumed to be pub-
lic for simplicity. The class A is the base class, from
which the class B is derived. Functions P, Q and R are
each defined in both these classes.

Suppose we are interested in computing the set of
reaching definitions for the variable y at the program
point s3. The variable y is passed by reference at the
call-site cs1. Thus, the reaching definition of y at the
program point s3 depends upon the actual procedure
that may be invoked at the call-site cs1. However, the
actual procedure invoked at the call-site cs1, in turn,
depends upon the type of the object reference x. If
x refers to object of type A, then the function A::Q
will be invoked, whereas if x refers to object of type
B, then the function B::Q will be invoked.

The type of the variable x at the program point
cs1, in turn depends upon the type passed as a param-
eter when the functionA::P is invoked. For determin-
ing this, we need to know at which program points can
the function A::P be invoked, and what are the types
of the parameter x at these call-sites. In the absence
of the call graph, it is not known where the procedure
A::P can be invoked. Looking at the class hierar-
chy, we know that this procedure can potentially be
invoked at the call-sites cs3 and cs4. Further back-
ward analysis at the program points cs3 and cs4 can
determine that the procedure A::Q can only be in-
voked at the call-site cs4. Further, the type of the
parameter x that can be passed at cs4 is the reference
to class A. As a result, the procedure actually invoked

2

Class A
�

A::P(A *x, int y)
�

void P(A *x, int y); x.Q(y) ; cs1
void Q(int y); write(y) ; s3
void R() ; �

� main()
�

Class B: public A
�

A* a;
void P(A *x, int y) ; A* b;
void Q(int y) ; int i;
void R() ; ... s4

� a.R() ; cs2
A::Q(int y)

�
a = new B ; s5

y += 1 ; s1 b = new A ; s6
� a.P(b,i) ; cs3
B::Q(int y)

�
a = new A ; s7

y += 2 ; s2 i = 1 ; s8
� a.P(a,i) ; cs4

�

Figure 1. Object-oriented program used as a running example in this paper. Definitions of
functions A::R, B::R and B::P are not provided here.

at the call-site cs1 is A::Q. In turn, we can deter-
mine that the reaching definition of the variable y at
the program point s3 arises from the statement s1.

An alternative approach to performing this analy-
sis will be construct a call graph for the entire pro-
gram [7, 11] and then apply existing techniques for
demand-driven data-flow analysis [9, 14]. The ob-
vious disadvantage of this approach will be that the
call graph for the entire program will need to be con-
structed and maintained. In this code, the call graph
can be constructed with relative ease by simple prop-
agation of types. However, in general this has been
shown to be a very time and space consuming pro-
cess. If only a small number of call-sites may need to
be resolved in determining the set of reaching types,
then exhaustive call graph analysis will only incur un-
necessarily high expenses. Therefore, in performing
demand-driven analysis, it is useful to perform call
graph analysis on a demand-driven basis as well.

3 Interprocedural Flow Graph

We use the interprocedural representation Inter-
procedural Flow Graph (IFG) initially proposed by
Harrold and Soffa [13]. This representation is also
closely based upon the representation Program Sum-

mary Graph (PSG) proposed by Callahan [5]. We ini-
tially give the original definition of IFG and then de-
scribe several extensions of IFG that we use for our
purpose.

A Interprocedural Flow Graph (IFG) is a represen-
tation of the complete program that is much concise as
compared to the Myers’ Supergraph or Interprocedu-
ral Control Flow Graph (ICFG) [16, 17], but is more
detailed than a call graph, and allows flow-sensitive in-
terprocedural analysis.

Data-flow within procedures and between proce-
dures is represented through edges between nodes of
the following four types:

� Entry nodes; there is one entry node for each
formal parameter of each procedure.

� Exit nodes; there is one exit node for each for-
mal parameter of each procedure.

� Call nodes; there is one call node for each actual
parameter at each call-site.

� Return nodes; there is one return node for each
actual parameter at each call-site.

Edges between these nodes can be classified as
intraprocedural and interprocedural. Intraprocedu-
ral edges summarize data-flow within the procedures.

3

This x y

This x y

y

y

This

This Reaching Edges

Entry / Exit Edges

Call / Return Edges

Figure 2. Procedure A::P’s portion of IFG

These edges are inserted after solving the standard
data-flow problem of reaching definitions within each
procedure [1]. Specifically, the intraprocedural edges
are inserted:

� From an entry node to a call node if the value of
the corresponding formal parameter at the pro-
cedure entry reaches the corresponding actual
parameter at the call-site.

� From an entry node to an exit node if the
value of the corresponding formal parameter at
the procedure entry reaches a procedure return
statement.

� From a return node to a call node if the value of
the corresponding actual parameter at the call
return reaches the corresponding actual param-
eter at the call-site.

� From a return node to an exit node if the value of
the corresponding actual parameter at call return
reaches a procedure return statement.

Interprocedural edges in the graph represent bind-
ings of actual parameters to the formal parameters and
vice-versa. Specifically, interprocedural edges are in-
serted:

� From a call node to an entry node to represent
the binding of an actual parameter at the call-
site to the formal parameter at procedure entry.

� From an exit node to a return node to represent
the binding of a formal parameter at the proce-
dure exit to the actual parameter at the call re-
turn.

Procedure A::P’s portion of IFG is shown in Fig-
ure 2.

Consider any call or exit node. The definition of
the parameter this node represents may be generated in
another procedure, in which case this node will have
an entry node or a return node as a predecessor. Al-
ternatively, the reaching definition may be generated
within this procedure. To model this, we associate a
set of reaching definitions with each call or exit node
in the procedure. This set is denoted by LREACH,
which stands for local reaching definitions. If a call or
exit node denotes an object reference, we compute the
possible reaching types of the object reference result-
ing from object creating statements within this proce-
dure. Such a set of locally reaching types is denoted
by LTYPES.

To perform demand-driven call graph analysis, we
make the following two extensions to the original def-
inition and construction method of IFG.

This pointer as a parameter: Consider a call site of
the form r->pname(paramlist). For our analy-
sis, besides having call and return nodes correspond-
ing to each actual parameter in the list paramlist,
we also need to have a call and return node for the
object reference r. We refer to such nodes as nodes
for THIS pointer, consistent with the C++ terminology.
We also insert one THIS pointer node each at proce-
dure entry and return for each procedure.

Demand-Driven Construction: The Interprocedu-
ral Flow Graph is not fully constructed at the begin-
ning of the analysis, since it will require performing
reaching definition analysis on Control Flow Graphs
of all procedures in the program, which can be very ex-
pensive and will defeat the purpose of doing demand-
driven analysis. Instead, the program summary graph
is constructed on a demand basis. If � is the call node

4

for which we are determining the types, we perform a
reachability analysis on the portion of the graph con-
structed and check if � is reachable from one of the
nodes of a procedure � . If so, the CFG of the proce-
dure � is constructed, and intraprocedural edges of the
procedure � ’s portion of IFG are inserted. The por-
tion of IFG constructed in performing the propagation
analysis is referred to as the Partial Interprocedural
Flow Graph (PIFG) and set of nodes in the PIFG is
referred to as the set of influencing nodes.

4 Demand-Driven Analysis

In this section, we describe various phases of our
algorithm for computing reaching definitions and call
graph information on a demand basis.

4.1 Overview of the Algorithm

Given a program point and a variable, we need to
compute the set of reaching definitions for this vari-
able at this program point. If all the reaching defini-
tions are assigned locally, the problem is trivial. Oth-
erwise, we can relate the problem of computing the
reaching definitions at this program point to one of
computing the set of reaching definitions at a set of en-
try and return nodes. For example, in the code shown
in Figure 1, the set of reaching definitions for the vari-
able y at the program point s3 is the same as the set
of reaching definitions for the return parameter cor-
responding to y at the call-site cs1. We denote by�

the set of such return and entry nodes. Once the
set of reaching definitions has been computed for the
nodes in the set

�
, answering the original question is

straight-forward.
The most important goal for our algorithm is to an-

alyze as few procedures as possible while determining
the set of reaching definitions for the set of nodes

�
.

Our algorithm initially assumes a sound or conserva-
tive call graph, i.e., one with much larger number of
edges than what can be taken during actual executions.
This initial sound call graph is constructed using the
results of Class Hierarchy Analysis (CHA) [6]. Such
an initial sound call graph is also not constructed ex-
plicitly for the entire program, but is constructed on
a demand basis. Each procedure’s components are
added only after it is known that this procedure may
influence the the set of reaching definitions for the
nodes in the set

�
.

There are two main phases in our algorithm. Ini-
tially, we perform reachability analysis using the

sound call graph to determine the set of influencing
nodes and to construct the Partial Interprocedural Flow
Graph (PIFG). The second phase involves performing
data-flow propagation on the PIFG to improve the pre-
cision of the call graph using reaching types informa-
tion. In the process, we also refine the reaching types
information.

Our algorithm is presented in the next four sub-
sections. In Section 4.2, we describe the technique
for construction of initial call graph. We then intro-
duce a set of definitions for presenting our work in
Section 4.3. In Section 4.4, we describe the reach-
ability analysis for computing the set of influencing
nodes and constructing the PIFG. Finally, we describe
the technique for improving the precision of the sound
call graph and the precision of the reaching types in-
formation by performing propagation over the set of
influencing nodes in Section 4.5.

4.2 Initial Conservative Call Graph

We can construct a relatively accurate initial call
graph by performing inexpensive Class Hierarchy
Analysis (CHA) [6].

CHA involves having knowledge of all the classes
declared in the entire program, including which class
extends another class, and the set of procedures de-
clared in each of the classes. Consider a call-site of
the form r.rname(), such that the declared type
of r is rclass. Let � be the set of subclasses of
rclass. For each class in the set � , we determine
the nearest superclass (including itself) in which a pro-
cedure with the name rname is declared. Let us de-
note such a set of classes by ��� . Then, as a result
of class hierarchy analysis, we know that the possible
procedures that can be called at this call-site are of the
form pclass::rname, where pclass belongs to
the set ��� .

Alternatively, consider a procedure � of the form
pclass::pname. By knowing all class declarations
in the program, we can determine the set of subclasses
of pclass. By further examining the procedures de-
clared in each of these classes, we can narrow this set
down to classes for which pclass is the earliest su-
perclass for which the procedure pname is defined.
Let us denote such a set by � . The procedure � can be
called at any dynamic call-site of the form r.pname
where the declared type of the reference r belongs to
the set � .

5

Let � be the initial set of nodes
Let � be the procedure to which nodes in � belong
Initialize �������	��
� to �����
Initialize ����������
� to �����
Initialize all nodes to be not marked� ��������������� �! #" �������%$&���(')��*
While �+�����	��
� is not empty

Select and remove vertex � from �+�����	��
�
case (type of u):

call or exit:
foreach predecessor , of �

If , is not marked
�+�����-�.
�0/1�+���2�-��
��43+�.,��

return:
If THIS NODE '5��* is not marked

�+���2�-��
�0/6�+�����	��
�43 THIS NODE '5��*
foreach possibly called function 7

If 798: ��������.
�
����������
�0/6���������
���3��.7;�� ��������������� �! #" �������%$<���('57;*

foreach predecessor , of �
If , is not marked

�+�����-�.
�0/1�+���2�-��
��43+�.,��
entry:

�������	��
�0/1�+�����-�.
�43 THIS NODE '5��*
foreach possible callee function 7

If 798: ��������.
�
����������
�0/6���������
���3��.7;�� ��������������� �! #" �������%$<���('57;*

foreach predecessor , of �
If , is not marked

�+�����-�.
�0/1�+���2�-��
��43+�.,��

Figure 3. Constructing the Partial Inter-
procedural Flow Graph (PIFG)

4.3 Preliminary Definitions

In presenting our technique, we use the follow-
ing definitions. We had earlier defined LREACH and
LTYPES, the set of locally reaching definitions and
locally reaching types.
�>=@?;A�B ��CED The set of predecessors of the node � in

the PIFG. This set is initially defined during the con-
struction of PIFG and is not modified as the type in-
formation becomes more precise.
�>=@F � B ��C�D This relation is only defined if the node �

is an entry node or an exit node. It denotes the name
of the procedure to which this node belongs.

TYPES B �GC : The set of types associated with a node
� in the PIFG during any stage in the analysis. This set
is initially constructed using Class Hierarchy Analysis
and intraprocedural propagation, and is later refined
through data-flow propagation.

RDEFS B �GC : The set of reaching definitions for the
node � .

THIS NODE B �GC : This is the node corresponding to
the THIS pointer at the procedure entry (if � is an entry
node), procedure exit (if � is an exit node), procedure
call (if � is a call node) or call return (if � is a return
node).

THIS TYPE B ��C : If the vertex � is a call node
or a return node, THIS TYPE B ��C returns the types
currently associated with the call node for the THIS

pointer at this call-site. This relation is not defined if
� is an entry or exit node.

PROCS BIHJC : Let H be the set of types associated
with a call node for a THIS pointer. Then, PROCS BIHJC
is the set of procedures that can actually be invoked at
this call-site. This function is computed using Class
Hierarchy Analysis (CHA).

4.4 Constructing the Set of Influencing Nodes

We now describe how we compute the set of nodes
in the PIFG for the entire program that influence the
set of procedures invoked at the given call-site �2K .
The PIFG for the entire program is never constructed.
However, for ease in presenting the definition of the
set of influencing nodes, we assume that the PIFG
components of all procedures in the entire program are
connected based upon the initial sound call graph.

Let
�

be the set of initial nodes in the IFG for
which we are computing the set of reaching defini-
tions.

� B �ML � CON �MLPH

6

� B�� L H C � B�� L ��=;?;A B�� C C N � L H
� �PL H N THIS NODE B�� C+LPH

Starting from any node � in the set
�

, we include
the predecessors of any node already in the set, till we
reach internal nodes that do not have any predecessors.
For any node included in the set, we also include the
corresponding node for the THIS pointer (denoted by
THIS NODE) in the set.

Such a set of influencing node and the partial PIFG
can be constructed by an iterative algorithm, which is
shown in Figure 3. Two main data-structures main-
tained in the algorithm are � F;=��	�2?�
 and ��=@F � �2?�
 .
� F;=��	�2?�
 is the set of nodes whose predecessors have
not been analyzed yet. ��=@F � �2?�
 is the set of proce-
dures that have been analyzed and whose portions of
the PIFG has been constructed.

The algorithm progresses by removing a node from
the � F;=��	�2?�
 . If this node is a call or exit node, all the
predecessors of this node are within the same proce-
dure. These predecessors are added to the � F;=��	�2?�
 .
If the node (removed from the � F;=��	�2?�
) is a re-
turn node, the predecessors of this node are the exit
nodes of the procedures that can be invoked at this
call-site. Such a set of procedures is known (not nec-
essarily accurately) from our construction of the initial
sound call graph. Let � be any such procedure. If � is
not in the set ��=@F � �2?�
 (i.e. it has not been analyzed
yet), then the function ��F�����
 =� �
 ����� �EF;=�
�� F�� B��!C
is invoked. This function analyzes the CFG of the pro-
cedure � to construct its portion of the PIFG. For each
callee of � that has been analyzed, edges from its call
nodes to entry nodes of � and edges from exit nodes of
� to its return nodes are inserted. Similarly, for each
function called by � that has been analyzed, we insert
edges from call nodes at � to its entry nodes from its
exit nodes to the return nodes at � . After all such pro-
cedures called at this call-site have been analyzed and
edges have been inserted, we add the predecessors of
the node to the � F;=��	�2?�
 .

The edges inserted at these call-sites are obviously
based upon an initial sound call graph, that needs to
be refined by our analysis. For this purpose, we need
to know the types associated with the THIS NODE at
the call-site corresponding to the return node. For this
reason, we also add THIS NODE B� C to the � F;=��	�2?�
 .

The actions taken for an entry node are very sim-
ilar to the actions taken for a return node. The only
difference is that instead of analyzing the procedures
that can be called at that call-site, we analyze the pro-
cedures that have a call-site that can invoke this proce-
dure.

The PIFG constructed for our example program is
shown in Figure 4.

4.5 Refining Data-Flow Information

The next step in the algorithm is to perform it-
erative analysis over the set of nodes in the Partial
Program Summary Graph (PIFG) to compute the set
of types associated with the nodes and then compute
the set of reaching definitions. The initial values of
TYPES(v) are computed through class hierarchy anal-
ysis that we described earlier in this section. If a for-
mal or actual parameter is declared to be a reference
to class cname, then the actual runtime type of that
parameter can be any of the subclasses (including it-
self) of cname. Also, the initial value of RDEFS is
the universal set.

The refinement stage for TYPES can be described
by a single equation, which is shown in Figure 5. Con-
sider a node � in PIFG. Depending upon the type of � ,
three cases are possible in performing the update:

1. � is a call or exit node,

2. � is an entry node, and

3. � is a return node.

In Case 1., the predecessors of the node � are the in-
ternal nodes, the entry nodes for the same procedure,
or the return nodes at one of the call-sites within this
procedure. The important observation is that such a
set of predecessors does not change as the type infor-
mation is made more precise. So, the set TYPES B ��C
is updated by taking union of LTYPES B ��C with the
union of the sets TYPES B � C over the predecessors of
the node � .

We next consider case 2, i.e., when the node � is an
entry node. �>=@F � B �GC is the procedure to which the node

� belongs. The predecessors of such a node are call
nodes at all call-sites at which the function ��=;F � B �GC
can possibly be called, as per the initial call graph as-
sumed by performing class hierarchy analysis and in-
traprocedural propagation. Such a set of possible call-
sites for �>=@F � B �GC gets restricted as interprocedural type
propagation is performed. Let � be a call node that is a
predecessor of � . We want to use the set TYPES B � C in
updating TYPES B �GC only if the call-site corresponding
to � invokes ��=;F � B �GC . We determine this by checking
the condition �>=@F � B ��C L PROCS B THIS TYPE B � C C .
The function THIS TYPE B � C determines the types

7

x y

This x y

y

y

This

This

This

 A::P

This
y

B::Q

This
y

A::Q

This y

This y

cs3

This

This b i

cs4

ib

This a i

This a i

Figure 4. Partial Interprocedural Flow Graph Constructed for the Example Program

TYPES(v) �
��� �� LTYPES B ��C�� B��	��
������������� TYPES(p) C if v is call or exit node� ����
����������������� �!���"�#$�����%
 PROCS � THIS TYPE �!������� TYPES(p) if v is an entry node� ����
����������������� �!���"�#$�!���%
 PROCS � THIS TYPE ��������� TYPES(p) C if v is a return node

RDEFS(v) �
��� �� LREACH B �GC�� B��	��
��&���������� RDEFS(p) C if v is call or exit node� ����
����������������� �!���"�#$�����%
 PROCS � THIS TYPE �!������� RDEFS(p) if v is an entry node� ����
����������������� �!���"�#$�!���%
 PROCS � THIS TYPE ��������� RDEFS(p) C if v is a return node

Figure 5. Data-Flow Equation for Propagating Type and Reaching Definition Information

currently associated with the THIS pointer at the call-
site corresponding to � and the function PROCS deter-
mines the set of procedures that can be called at this
call-site based upon this type information.

Case 3 is very similar to the case 2. If the
node � is a return node, the predecessor node �
to � is an exit node. We want to use the set
TYPES B � C in updating TYPES B �GC only if the call-
site corresponding to � can invoke the function
�>=@F � B � C . We determine this by checking the condition
�>=@F � B � C L PROCS B THIS TYPE B �GC C . The function
THIS TYPE B �GC determines the types currently associ-
ated with the THIS pointer at the call-site correspond-
ing to � and the function PROCS determines the set
of procedures that can be called at this call-site based

upon this type information.
The equation for computing the set of reaching def-

initions is analogous and is shown the same figure.
As the type information becomes more refined, more
refined reaching definition information can be com-
puted.

5 Discussion and Related Work

We now explain some of the limitations of our ap-
proach and the possibilities for future work. In per-
forming interprocedural propagation, we have not ad-
dressed the problem of preserving calling context. If
a procedure is invoked at multiple call-sites, a flow-
sensitive interprocedural representation like IFG has

8

invalid or unrealizable paths in it. Propagating data-
flow information along these paths can lead to inac-
curacies. This limitation applies both to our propa-
gation of types information and the reaching defini-
tions information. Another inaccuracy can come in
because of the way we initialize the data-flow values.
We start with an optimistic estimate and then improve
upon it. In performing exhaustive analysis, we would
have preferred to start with a conservative solution and
then add further elements. However, this is not feasi-
bly while performing demand analysis, because of the
way the initial conservative call graph is constructed.

The previous work in the area of call graph con-
struction [2, 3, 4, 7, 8, 10, 11, 12, 15, 19, 18, 20, 21,
23, 25, 24, 26] has only focussed on exhaustive anal-
ysis and has not considered demand-driven analysis.
Similarly, the previous work in the area of demand-
driven data-flow analysis [9, 14] has assumed that a
complete call graph has already been constructed be-
fore initiating the demand-driven analysis.

6 Conclusions

Demand-driven analysis techniques have been
found useful in software engineering environments,
for applications like regression testing, integration
testing and static assertion checking. An impor-
tant limitation of the existing techniques for demand-
driven analysis has been to assume a static call graph.
In this paper, we have presented a novel demand-
driven analysis technique which performs call graph
and reaching definition analysis simultaneously. Only
the call sites that can potentially influence the accu-
racy of the reaching definition information being com-
puted are analyzed. Our technique can significantly
ease computation of data-flow information for object-
oriented programs, for software engineering tasks like
regression testing, integration testing and static asser-
tion checking.

Acknowledgments

This research was supported by NSF CAREER
award ACI-9733520.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[2] David Bacon and Peter F. Sweeney. Fast static anal-
ysis of c++ virtual function calls. In Eleventh An-
nual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’96),
pages 324–341, October 1996.

[3] Michael Burke. An interval-based approach to exhaus-
tive and incremental interprocedural data-flow analy-
sis. ACM Transactions on Programming Languages
and Systems, 12(3):341–395, July 1990.

[4] Brad Calder and Dirk Grunwald. Reducing indirect
function call overhead in C++ programs. In Con-
ference Record of POPL ’94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 397–408, Portland, Oregon, January
1994.

[5] D. Callahan. The program summary graph and flow-
sensitive interprocedural data flow analysis. In Pro-
ceedings of the SIGPLAN ’88 Conference on Program-
ming Language Design and Implementation, Atlanta,
GA, June 1988.

[6] Jeffrey Dean, Craig Chambers, and David Grove. Se-
lective specialization for object-oriented languages.
In Proceedings of the ACM SIGPLAN’95 Conference
on Programming Language Design and Implementa-
tion (PLDI), pages 93–102, La Jolla, California, 18–
21 June 1995. SIGPLAN Notices 30(6), June 1995.

[7] Greg DeFouw, David Grove, and Craig Chambers.
Fast interprocedural class analysis. In Proceedings of
the POPL’98 Conference, 1998.

[8] Amer Diwan, J. Elliot Moss, and K. Mckinley. Sim-
ple and effective analysis of statically typed object-
oriented programs. In Eleventh Annual Conference on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA ’96), pages 292–305, Oc-
tober 1996.

[9] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou
Soffa. Demand-driven computation of interproced-
ual data flow. In Conference Record of POPL ’95:
22nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 37–48, San
Francisco, California, January 1995.

[10] Maryam Emami, Rakesh Ghiya, and Laurie J. Hen-
dren. Context-sensitive interprocedural Points-to anal-
ysis in the presence of function pointers. SIGPLAN
Notices, 29(6):242–256, June 1994. Proceedings of
the ACM SIGPLAN ’94 Conference on Programming
Language Design and Implementation.

[11] David Grove, Greg DeFouw, Jeffrey Dean, and Craig
Chambers. Call graph construction in object-oriented
languages. In Proceedings of the Conference on Ob-
ject Oriented Programming Systems, Languages and
Applications, 1997.

[12] Mary W. Hall and Ken Kennedy. Efficient call graph
analysis. ACM Letters on Programming Languages
and Systems, 1(3):227–242, September 1992.

[13] Mary Jean Harrold and Mary Lou Soffa. Efficient
computation of interprocedural definition-use chains.
ACM Transactions on Programming Languages and
Systems, 16(2):175–204, March 1994.

9

[14] S. Horwitz, T. Reps, and M. Sagiv. Demand interpro-
cedural dataflow analysis. In In SIGSOFT ’95: Pro-
ceedings of the Third ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 104–
115, 1995.

[15] Arun Lakhotia. Constructing call multigraphs using
dependence graphs. In Conference Record of the Twen-
tieth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 273–
284, Charleston, South Carolina, January 1993.

[16] William Landi and Barbara G. Ryder. A safe approx-
imate algorithm for interprocedural pointer aliasing.
ACM SIGPLAN Notices, 27(7):235–248, July 1992.
Proceedings of the ACM SIGPLAN ’92 Conference on
Programming Language Design and Implementation.

[17] E. Myers. A precise interprocedural data flow algo-
rithm. In Conference Record of the Eighth ACM Sym-
posium on the Principles of Programming Languages,
pages 219–230, January 1981.

[18] Jens Palsberg and Patrick O’Keefe. A type system
equivalent to flow analysis. In Conference Record of
POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 367–
378, San Francisco, California, January 1995.

[19] Jens Palsberg and Michael I. Schwartzbach. Object-
oriented type inference. In Proceedings OOPSLA ’91,
ACM SIGPLAN Notices, pages 146–161, November
1991. Published as Proceedings OOPSLA ’91, ACM
SIGPLAN Notices, volume 26, number 11.

[20] Hemant Pande and Barbara Ryder. Data-flow-based
virtual function resolution. In Proceedings of the Third
International Static Analysis Symposium, 1996.

[21] John Plevyak and Andrew A. Chien. Precise concrete
type inference for object-oriented languages. In Ninth
Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA ’94),
pages 324–340, October 1994.

[22] Gregg Rothermel and M. J. Harrold. Analyzing regres-
sion test selection. IEEE Transactions on Software En-
gineering, 1996.

[23] B. Ryder. Constructing the call graph of a pro-
gram. IEEE Transactions on Software Engineering,
SE-5(3):216–226, May 1979.

[24] O. Shivers. The semantics of Scheme control-flow
analysis. In Proceedings of the Symposium on Par-
tial Evaluation and Semantics-Based Program Manip-
ulation, volume 26, pages 190–198, New Haven, CN,
June 1991.

[25] Olin Shivers. Control-flow analysis in Scheme. SIG-
PLAN Notices, 23(7):164–174, July 1988. Proceed-
ings of the ACM SIGPLAN ’88 Conference on Pro-
gramming Language Design and Implementation.

[26] William E. Weihl. Interprocedural data flow analysis in
the presence of pointers, procedure variables and label
variables. In Conference Record of the Seventh An-
nual ACM Symposium on Principles of Programming
Languages, pages 83–94, Las Vegas, Nevada, January
1980.

10

