
 1

Performance Comparison of Dynamic Web Platforms

Tony Hansen, Varsha Mainkar and Paul Reeser
AT&T Labs

200 Laurel Ave, Room D5-3C12, Middletown, NJ 07748 USA
Phone 1 732-420-3714, Fax 1 732-368-1919
Email { tony , mainkar , preeser } @att.com

Keywords: Dynamic, Web, CGI, FastCGI, C++, Java, Servlets, JSP, Performance, Comparison

Over the last few years, the World Wide Web has transformed itself from a static content-distribution
medium to an interactive, dynamic medium. The Web is now widely used as the presentation layer for a
host of on-line services such as e-mail and address books, e-cards, e-calendar, shopping, banking, and
stock trading. As a consequence, HTML files are now typically generated dynamically after the server
receives the request. From the Web-site providers’ point of view, dynamic generation of HTML pages
implies a lesser understanding of the real capacity and performance of their Web servers. From the Web
developers’ point of view, dynamic content implies an additional technology decision: the Web
programming technology to be employed in creating a Web-based service. Since the Web is inherently
interactive, performance is a key requirement, and often demands careful analysis of the systems. In this
paper, we compare four dynamic Web programming technologies from the point of view of performance.
The comparison is based testing and measurement of two cases: one is a case study of a real application
that was deployed in an actual Web-based service; the other is a trivial application. The two cases provide
us with an opportunity to compare the performance of these technologies at two ends of the spectrum in
terms of complexity. Our focus in this paper is on how complex vs. simple applications perform when
implemented using different Web programming technologies. The paper draws comparisons and insights
based on this development and performance measurement effort.

1. INTRODUCTION

The World Wide Web (WWW) first emerged a decade ago as a medium to render hypertext

documents that were stored on the Internet, on a user’s computer, using special software (the browser)

and a new protocol (HTTP: HyperText Transfer Protocol). For the first few years, the WWW grew primarily

as a new medium in which static content could be published, and information shared. The content was

published in the form of HTML (HyperText Markup Language) files, which were served by Web servers,

on requests from browsers. However, over the last few years the WWW has transformed itself from a

static content-distribution medium to an interactive, dynamic medium. Content on the Web is now often

personalized, and therefore dynamically generated. The Web is now widely used as the presentation layer

for a host of on-line services such as e-mail, e-cards, e-calendar, and address books, shopping, banking,

and stock trading. As a consequence, the HTML files that are rendered by the client’s browser are now

typically generated dynamically after the Web server has processed the user’s request.

This dynamic generation of HTML files has not happened without an associated performance cost.

Just when Internet users were getting accustomed to “click-and-wait” on dial-up lines due to graphics-rich

 2

Web-sites, dynamically generated content started proliferating on the Web. Now users must wait not only

for the network delay but also for the server-side processing delay associated with serving a request

dynamically. In many cases, this is turning out to be the largest component of the delay. From the Web-

site providers’ point of view, dynamic generation of HTML pages implies a lesser understanding of the real

capacity of their Web servers. The vendor-provided “hits-per-second” capacity of the Web server is no

longer enough, as this only pertains to static HTML files.

From the Web developers’ point of view, dynamic Web content implies an additional technology

decision: the Web programming technology to be employed in creating a Web-based service or product.

This decision is based on several factors. Among the factors considered are ease of programming,

richness of features, maintainability, reliability, and performance. Since the Web is inherently interactive,

performance is a key requirement, and often demands careful analysis of the systems.

In this paper, we compare the performance of four Web programming technologies, namely Java

Servlets, Java Server Pages, CGI/C++ and FastCGI/C++. The comparison is based on two cases: one is

a case study of a complex application that was deployed in an actual Web-based service; the other is a

“trivial” application. The methodology of performance analysis was stress testing and measurement.

Performance measurement (rather than modeling) made most sense in this effort, since a quick

turnaround of results was necessary and the accuracy of results was required to be high.

The two cases (i.e., the complex and the trivial) provided us with an opportunity to compare

performance of these technologies at two ends of the spectrum of applications, in terms of complexity.

The performance “order” of different technologies is seldom absolute – it depends greatly on the nature of

the application. Our focus in this paper is on how complex vs. simple applications perform when

implemented using different Web programming technologies. The paper draws comparisons and insights

based on this development and performance measurement effort.

The main observations from this work were as follows: In general, FastCGI outperformed CGI, while

JSP outperformed Java servlets. In the case of a complex application, the CGI-based technologies

outperformed the Java-based technologies by 3-4x, with Java performance limited by software

bottlenecks in the JVM. In the case of a trivial application, the relative performance was reversed, as Java

outperformed CGI by 2-3x.

 3

The rest of the paper is organized as follows: in Section 2 we provide the motivation for conducting

such a comparative study, and in Section 3 we describe briefly the technologies that we compared.

Section 4 describes the performance measurement and analysis methodology, Section 5 describes the

case-study testing results in detail, and Section 6 describes the results of testing a trivial application.

Finally, Section 7 summarizes our results, and Section 8 provides some concluding remarks.

2. MOTIVATION

The application context for this study was a new Web-based messaging service. The effort centered

on the development of a “page generation engine” to perform dynamic Web page construction in a

distributed environment (see Figure 2-1). Given accelerated time-to-market goals and limited development

time, the natural choice of technology was the one perceived to be powerful, feature-rich, and yet easy to

use and deploy – Java servlets.

The distributed execution environment consists of a front-end sub-system running a standard Web

server and a Java virtual machine (JVM) servlet engine, plus a back-end sub-system of servers

implementing the business logic and data (e.g., POP/IMAP mail servers, SMTP gateways, LDAP/X.500

directory servers, etc.). The page engine consists of a number of Web page templates and Java servlets.

The Web page templates are HTML files, but with tags from a proprietary scripting language that specify

how to collect dynamic data that customizes these HTML files to the particular request. Collectively, these

servlets:

 4

• parse the requested template for scripting language (dynamic) content,

• issue the appropriate back-end requests to process the business logic or retrieve the required data,

• process the returned data into the necessary data structures,

• perform protocol conversion (as necessary), and

• construct the Web page to return to the user.

The protocol/language between the end-user and the Web server is HTTP/HTML, and that between

the Java servlets and the back-end is determined by the particular application (e.g., IMAP, LDAP, etc.).

Within the JVM environment, data is passed between the various servlets as eXtensible Markup

Language (XML) data structures. Hence, the scripts perform a variety of protocol and language

conversions during the course of request execution.

2.1. Initial Measurements

We conducted a series of stress tests using a commercial load driver to generate repeated requests

to the servlet engine at various levels of concurrency (simulated users). The test configuration consisted

of a Windows NT server running the load generation scripts (driver), a Solaris server running the front-end

software, and a Solaris server running the back-end application (for this test, a POP3/IMAP4 mail server

and an LDAP directory server). Hardware (CPU, memory, disk, I/O) and software resource consumptions

were measured on all machines. In addition, end-to-end user-perceived response times were measured.

FRONT-END SERVER

WEB SERVER

WEB PAGE
TEMPLATES

•••

HTTP THREADS

JAVA VM

•••

Servlet THREADS

SERVLETS

Figure 2-1: System Architecture

BACK-END SERVER

DATA LOGIC

APPLICATION 2

DATA LOGIC

APPLICATION 1
•••

POP
IMAP
SMTP
LDAP
X.500

 5

The driver scripts emulated a prescribed number of concurrent users repeatedly generating the same

request (e.g., read message, send message, etc.). The number of concurrent simulated users was varied

from 1 to 20. The number of repeated requests per user at each concurrency level (typically 2000) was

sufficient to achieve statistical stability. The tests were run in “stress” mode; that is, as soon as a user

receives a response, it immediately submits the next request (i.e., with negligible client delay). Each of the

N simulated users does so independently and in parallel. As a result, the concurrency level (i.e., the

number of requests in the system) equals N at all times.

The results of the stress tests for a particular request type (read a 20KB message) are shown in

Figures 2-2 and 2-3. In particular, Figure 2 -2 plots the end-to-end response time on the left-hand axis,

and the front-end CPU utilization on the right-hand axis, as a function of the concurrency level. As can be

seen, the response time curve begins to ride along a linear asymptote (shown by the dotted line) after only

7 concurrent users. That is, response time increases proportionally with the number of users, indicating

saturation in a closed system [1]. Additionally, CPU utilization levels off after 11 users at 65-70%

(indicating a non-CPU system bottleneck).

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

C O N C U R R E N T U S E R S

N
o

rm
al

iz
ed

 R
E

S
P

O
N

S
E

 T
IM

E

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

C
P

U
 U

T
IL

IZ
A

T
IO

N
 (

%
)

R e s p o n s e t i m e

C P U u t i l i z a t i o n

Figure 2-2: Stress Test Results

 6

Equivalently, Figure 2-3 plots end-to-end response time as a function of throughput (requests/sec). As

can be seen, the maximum system throughput peaks at about 2 requests/sec, and then degrades under

overload to about 1½ requests/sec. In other words, there was actually a drop in capacity of 25% (a

“concurrency penalty”), likely due to context switching, object/thread management, garbage collection, etc.

 A sizing analysis based on the expected customer growth and usage behavior, together with these

initial capacity results, suggested that the resulting hardware costs would be prohibitively large. It was also

clear that the scalability of this application was poor. The resource consumption results demonstrated that

the application could not make full use of the resources available to it (especially CPU). Thus, scalability

would have to be achieved by adding more servers, rather than more CPUs.

The first question to be answered was whether or not the application was implemented in the most

optimal manner. The initial phase of the performance enhancement effort was in this direction. Several

key optimizations were performed on the Java servlet code, and several critical bottlenecks were

discovered and resolved in the end-to-end architecture (described in a separate paper [1]). The resulting

improvement in the read request throughput is shown in Figure 2-4.

Sizing analysis on the improved and optimized code showed that the resource requirements were still

quite substantial, and the application still hit a premature wall (in terms of scalability). The CPU continued

to level off, now at about 90%. As a consequence to this analysis, an additional effort was launched to re-

assess the choice of the dynamic technology itself. The plan was to analyze applications that had the

Figure 2-3: Equivalent Load Test Results

0 0 . 5 1 1 . 5 2 2 . 5 3

T H R O U G H P U T (r e q u e s t s / s e c)

N
o

rm
al

iz
ed

 R
E

S
P

O
N

S
E

 T
IM

E

Figure 2-4: Optimized Results

0 1 2 3 4 5 6 7 8

T H R O U G H P U T (r e q u e s t s / s e c)

N
o

rm
al

iz
ed

 R
E

S
P

O
N

S
E

 T
IM

E
O r ig i n a l I m p l e m e n t a t i o n

P e r f o r m a n c e - O p t i m iz e d

 7

same functionality, but were implemented in different languages or technologies, within identical

environments. The technologies chosen, including the initial version, were Java servlets, Java Server

Pages (JSP), Common Gateway Interface (CGI) with C++ programs, and Fast CGI with C++ programs.

The following section gives a brief introduction to these Web-programming technologies.

3. DYNAMIC WEB PLATFORMS

There are myriad different technologies employed to produce HTML files dynamically, after the arrival of

an HTTP request. CGI, FastCGI, Java Servlets, JSP, Active Server Pages (Windows NT only), PHP

Hypertext Preprocessor, JavaBeans, and Enterprise JavaBeans are among the many technologies

currently used for dynamic processing of Web requests. In this effort we choose to focus on four

technologies: CGI, FastCGI, Java Servlets and JSP. The following subsections give a brief overview of

each of these technologies.

3.1. CGI

Common Gateway Interface (CGI) [2] was the earliest technology used to service an HTTP request by

a program, rather than by sending a static file. In this technology, a program is written in any language (C,

C++, Perl, shell, etc.) for processing a user request and generating output in a browser-viewable format

(HTML, GIF, etc.). When a request arrives with a URL pointing to the CGI program, the Web server

creates a separate process running that particular CGI program. The Web server sets various

environment variables with request information (remote host, HTTP headers, etc.), and sends user input

(form variables) to the CGI process over standard input. The CGI process writes its output to standard

output. When the processing is complete, the CGI process exits, and the Web server sends the output to

the browser. When the next request comes in, all of these steps are repeated.

CGI performance is affected greatly by the overhead of process creation every time a dynamic

request is served. In Unix, the operating system creates the CGI process by first cloning the Web server

process (which is a large process) and then starting the CGI program in the address space of that clone.

This requires a lot of system resources and is the main reason for performance problems in this

technology.

 8

3.2. Fast CGI

FastCGI [3] addresses the process creation problem in CGI by having processes that are persistent. In

this technology, the Web server creates a process for serving dynamic requests either at startup or after

the first dynamic request arrives. After creation, this process waits for a request from the Web server.

When the Web server gets a request that requires dynamic processing, it creates a connection to the

FastCGI process (over a pipe, if local, or TCP/IP if on a remote machine), and sends all the request

information on this connection to the process. After processing is done, the FastCGI process sends output

back on the same connection to the Web server (using a Web server API), which in turn forwards it to the

client browser. The Web server then closes the connection, and the FastCGI process goes back to

waiting for a new connection from the Web server. Thus, FastCGI essentially eliminates the overhead of

process creation, potentially improving CGI performance greatly.

3.3. Java Servlets

Java was first introduced as a technology for sending platform-independent code from a Web server

to a Web browser, where these “Java applets” would run inside an environment called the Java Virtual

Machine (JVM). As Java grew in popularity, the scope of Java grew to fit the demand. “Server-side Java

applets” – Java servlets [4] – were introduced, allowing developers to use Java to write programs on the

server that process dynamic requests. The main advantage of these servlets was the use of Java’s

natural multi-threading architecture. When a request comes in, a new Java thread is created to execute

the servlet program. The servlet accesses user information using the servlet API, processes it and sends

the output back to the Web server, using a special API to interface with the Web server. The Web server

returns this output to the browser. Servlets are quite popular because they are based in Java technology,

and offer all of the features that make Java programming so popular. Initially, they were also claimed to

have solved the performance problems of CGI, since thread creation is much more lightweight than

process creation.

3.4. Java Server Pages

Java Server Pages (JSP) [5] is a technology that allows programmers to cleanly separate the

presentation part of an HTML file from the information part, which is created dynamically. A JSP file

contains standard HTML code, interspersed with the JSP code that specifies how to “fill in” the

 9

“placeholders” for the dynamic code. This separation of functionality addresses a difficulty faced in servlet

or CGI development, where the programs had to return the dynamically generated content in HTML format

so as to be displayed by the Web browser. That is, the HTML formatting was part of the servlet code, and

any changes to the HTML design meant changing the servlet code itself. Developers solve this problem by

writing HTML template files with “tags” (the technique used in this application), that are processed by the

servlet, and replaced with dynamically generated information. However, this implied that each servlet

development team came up with its own custom tags. Now, JSP offers a de-facto standard for doing just

that. A JSP file is compiled into a servlet, so in the end it uses Java servlet technology, but with a different

programming interface.

4. TESTING ENVIRONMENT & METHODOLOGY

As described in Section 2, the messaging application was originally built using a page generation

engine programmed in Java servlets. The page generation engine was a specific case of software that

can be termed as template server programs. Template server programs use Web templates to specify the

look and feel of a Web page, and employ tags that are read and interpreted by the server program. For

our performance comparison effort, we chose other such template server programs.

For the CGI case, an existing C++ CGI template server program was that implemented the same

functionality. The relevant changes (optimizations) were made to the original servlet implementation to

bring the differences down to the essential technology differences. For example, in these tests, the

servlets do not use the XML interface for data exchange, but call each other using method calls and pass

objects internally. The FastCGI implementation was done specifically for the testing, by minimally

changing the CGI C++ code.

JSP is essentially a standardized Java template server technology. A new JSP implementation was

done for the purpose of testing.

The environment used to do the performance tests was as follows:

• Server hardware: 2x360Mhz Sun Ultra-60, with 0.5 GB memory.

• Network: Gigabit Ethernet.

• Server software: Solaris 2.6, JDK 1.2.1, Jrun 2.3.3 servlet engine.

 10

• Web servers: Netscape 4.1 and Apache 1.3.121.

• Load generation client: PC with Windows NT.

• Load generation software: Silk Performer™ 3.6.

The setup of each of the tests was as follows:

• All servers were stopped and re-started before each test.

• Each virtual user (programmed in Silk Performer) does a typical session where the user logs in, lists

messages, reads some messages of varying sizes and then logs out. There are no think times

between the transactions issued by the user. As soon as the user process gets a response back, it

issues the next transaction.

The test started with one user and added a user every 10 minutes, increasing up to 30 users (enough to

stress the fastest of our implementations).

4.1. Performance Measurement

Measurements were taken at both the client and the server. Client measurements were recorded

using Silk Performer, while server measurements were recorded using standard Unix measurement tools

(sar, netstat, mpstat, ps).

The throughput (in sessions/second) at the client was calculated in the Silk Performer user script by

counting the total number of sessions completed by all users in the 10-minute window during which the

number of users remained the same, and dividing this number by 600 seconds. The response times (to

complete one session) were recorded and an average in the 10-minute window was calculated.

On the server side, 10-second snapshots of server measurements were taken (CPU, memory), and were

used to produce the 10-minute averages. (Taking snapshots on a smaller scale allowed us to see

transient states of the server resources.)

1 For implementation reasons, we had to use two different Web servers in the performance tests (FastCGI could work only

with the Apache server). The CGI and FastCGI tests are with the Apache Web server, and the Java tests are with the Netscape

Web server. Sanity checks were done to confirm that this variation in the test environment would not affect the major conclusions of

this study. Specifically, the CGI implementation was measured in both the Netscape as well as the Apache environment, and did

not show major differences that would affect any conclusions derived in this paper.

 11

4.2. Converting “ Stress Tests” to “ Load Tests”

Using the averaged measurements in the 10-minute windows gives us the measurements

corresponding to increasing numbers of users: i.e. response time with 1, 2, …, 30 users, or CPU utilization

with 1, 2, …, 30 users. However, just knowing how many virtual users were generating load on the server

does not necessarily tell us the actual load on the server in its correct unit: session requests/second (e.g.

see Figures 2-2 and 2-3). For example, if a system has reached its saturation point, adding users may not

proportionally increase the session setup rate at the server (or even at all). This is because the users are

essentially slowed down by the system response time, and can only generate load as fast as the system

capacity permits [1]. It is important, therefore, to derive the real metric of load: the session requests sent

to the server per unit time, and plot performance measures against this metric.

In our case, the Silk Performer script was programmed to record the number of sessions completed

during a 10-minute window corresponding to a certain number of users, therefore we had direct

measurements of the sessions/second (i.e. the throughput).

In the plots depicted in the following section, each sample point (average response time, CPU

utilization, page faults, etc.) corresponds to the average measurement from the 10-minute window

corresponding to a certain number of users. However, the unit of the X-axis is the corresponding

throughput (in sessions/second), not the number of users. Readers should keep this in mind while

studying the graphs, as some of the sample points are clustered together. This clustering occurs because

after system saturation, although the number of users can be increased, the throughput does not increase

(it may, in fact, decrease).

4.3. Analysis approach

The purpose of this study was not only to understand which implementation performed best, but also

to pinpoint the bottleneck resources for each technology, and to gain insight into why one technology out-

performed the other. For each implementation, we carried out the following steps:

• Determined the maximum achievable throughput using stress tests

• If possible, found the bottleneck resource, and verified that the resource capacity was equal to the

maximum throughput achieved by that implementation.

 12

• Where the exact bottleneck resource was not identifiable, we eliminated resources that could not

be bottlenecks.

We also used the two applications to understand the effect of the complexity of the applications. For both

the cases, the above steps were done.

The measurements we took were CPU time, and page fault rate, to monitor the usage of the processor

and memory resource, respectively. To gain further insight, we also studied the user time and system time

used by each implementation, separately.

The results and insights are described in the next section.

5. RESULTS AND COMPARISON – MESSAGING APPLICATION

The main metric used to compare the technologies was the maximum achievable throughput, gated

by a response time criterion. Figure 5-1 shows the average session response time vs. session throughput.

There are two observations one may make from this chart. First, the throughput thresholds up to which the

system is essentially stable, with response times within “reasonable bounds” and increasing gracefully are

as follows:

Technology Throughput

Java servlet 0.6 sessions/second
JSP 0.8 sessions/second
CGI 2.0 sessions/second
Fast CGI 2.5 sessions/second

Table 5-1: Maximum throughput under stable condition

Above these thresholds, response times increase sharply, indicating that the system has become

unstable.

 13

Response Time vs. Throughput

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.00 0.50 1.00 1.50 2.00 2.50

sessions/second

se
co

n
d

s
Java servlet

Java Server Pages

CGI

Fast CGI

Figure 5-1: Response Time vs. Throughput

Second, given a performance requirement of 10 seconds average session response time, the throughput

at which this requirement can be met, for each case is:

Technology Throughput

Java servlet 0.66 sessions/second
JSP 0.86 sessions/second
CGI 2.1 sessions/second
Fast CGI 2.6 sessions/second

Table 5-2: Maximum throughput gated by response time requirement

In this case it turns out that the thresholds at which the systems become unstable are reached before

the response time criterion is violated. The capacity of the system should be determined by the minimum

of these two, so Table 5-1 shows the capacity of each of the technologies, in terms of maximum

achievable throughput. FastCGI/C++ is the clear winner in this metric, followed by CGI/C++, JSP and Java

servlets, in that order. The following analysis tries to understand why this happens and what the

bottlenecks encountered by each technology are.

 14

5.1. Bottleneck Analysis

Several system resources are potential bottlenecks: CPU, memory, network, back-end systems, the

load generator, software resources such as thread limits, buffer sizes, and Java-specific resources, etc. In

the following sections we examine the possibility of each of these resources being the bottleneck.

CPU

We start with a look at the CPU. Figure 5-2 shows CPU utilization plotted against throughput, for each

case. We see from the chart that both the CGI and FastCGI implementations were able to make full use

of the CPU. However, both the JSP and Java servlet implementations use up to about 90% of the CPU,

after which the throughput starts dropping and the CPU utilization starts dropping, although more users

are being added. This drop alone is not a symptom of a problem (CPU utilization should always increase

and decrease with throughput). However if you observe Figure 5-1 again, you can see that at the points

where CPU utilization stops increasing, the response times continue increasing sharply, as more users

are added. This leads to the conclusion that the Java technologies reach a non-CPU bottleneck.

CPU Utilization vs. Throughput

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.50 1.00 1.50 2.00 2.50

sessions/second

 c
p

u
 u

ti
l :

 u
sr

 +
 s

ys

Java servlet

Java Server Pages

CGI

Fast CGI

Figure 5-2: CPU utilization vs. throughput

 15

CPU time per session vs. Throughput

0

500

1000

1500

2000

2500

3000

0.00 0.50 1.00 1.50 2.00 2.50

sessions/second

C
P

U
 m

ill
is

ec
s

p
er

 s
es

si
o

n Java servlet

Java Server Pages

CGI

Fast CGI

Figure 5-3: CPU ms per session

Some insight into use of the CPU resource can be gained by calculating the actual CPU time used by

each session. If ρ is the utilization and λ is the throughput, then this time is given by τ = ρ/λ. Figure 5-3

shows τ (in ms) used by each session, plotted against the throughput. This is an interesting chart; it

shows quite a steady plot for the CGI/FastCGI implementations, but a highly variable one for the Java

technologies. Also, asymptotically, the Java implementations show a trend of increasing CPU time per

session, as the number of users increases, suggesting that execution time in the Java implementations is

greatly influenced by factors such as the size of the Java heap.

Technology Average CPU ms per session ((((ττττ)))) X FastCGI ms

Java servlet 2468 ms 3.2
JSP 2131 ms 2.8
CGI 981 ms 1.3
Fast CGI 765 ms 1.0

Table 5-3: Average CPU time per session

The average CPU time per session for all implementations is shown in Table 5-3 (along with the factor

by which this is worse than the fastest implementation). In the case of the CGI/C++ implementation, the

 16

average value of τ is 981 ms. Since there are 2 CPUs in the server machine, the overall CPU throughput

is 2 × 1000/981 = 2.04 sessions/second, which corresponds almost exactly to the maximum throughput as

determined in Table 5-1. Thus, the CPU is the bottleneck resource in the CGI implementation.

A similar analysis for FastCGI shows CPU throughput to be 2 × 1000/765 = 2.61 sessions/second,

which again corresponds to the maximum throughput for FastCGI as determined in Table 5-1. Thus, the

CPU is the bottleneck resource for the FastCGI implementation.

The average CPU time per session for the servlet implementation is 2468 ms, which implies that the

CPU throughput should be 0.8 sessions/second. This is higher than the achieved throughput of 0.6

sessions/second, and further confirms that the servlet implementation runs into a non-CPU bottleneck.

Similarly, the CPU throughput of the JSP implementation is 0.93, which again is higher than the achieved

throughput of 0.8 sessions/second.

A further analysis of how the CPU times are actually used is shown in Table 5-4.

Technology
Time spent in system mode

as % of overall CPU utilization
Actual ms spent
in system mode

Actual ms spent
in user mode

Java servlet 7 % 173 2295
JSP 9 % 192 1939
CGI 51 % 500 481
Fast CGI 44 % 337 428

Table 5-4: Breakdown of CPU milliseconds by user vs. system mode

This reaffirms the effects of the characteristics of each technology: most of the time in the CGI

implementation is spent in creating the CGI process, which is done in system mode. Almost all of the

improvement that FastCGI does is on this time (reducing it to 337 from 500). However, it still remains

substantial, possibly due to the setting up and tearing down of connections, and due to some initial

creation of Apache Web server processes (until they reach a certain maximum).

Memory

Since CPU was not the bottleneck in the Java implementations, we turned our attention to memory

bottlenecks. A measure of memory problems is paging activity; specifically, page faults. Page faults occur

either when multiple processes sharing a page try to write to it, in which case a copy of the page must be

made, or when needed pages have been reclaimed by the operating system. Page fault activity increases

when a process size becomes too large, when a file is read into memory, or when a process is started,

 17

since this involves bringing code into memory. Figure 5-4 shows page faults/second vs. sessions/second.

The chart shows that in fact it is the CGI implementation that has the highest indicators of paging activity.

(Note that the Y-axis has a logarithmic scale). The paging activity for the FastCGI and the Java

technologies is an order of magnitude lower than that of CGI. The high paging activity in the CGI

implementation is clearly due to the process creation that occurs whenever a dynamic page generation

request arrives. The initial increase in paging activity in the FastCGI case is due to the creation of Apache

Web server processes. The activity levels off once the specified maximum number of processes has been

created. Since the CGI and FastCGI implementations showed higher throughputs, we ruled out paging as

the bottleneck in the Java implementations.

Page Faults/sec vs. Throughput

1.00

10.00

100.00

1000.00

10000.00

0.00 0.50 1.00 1.50 2.00 2.50

sessions/second

P
ag

e
fa

u
lt

s
p

er
 s

es
si

o
n

Java servlet

Java Server Pages

CGI

Fast CGI

Figure 5-4: Paging Comparison

Other resources

For the CGI/FastCGI C++ implementations, the CPU is the clear bottleneck. In the case of the Java

implementations, we can rule out the capacity of the back-end mail and directory servers, the load

generation system, and the LAN as the bottleneck, since a higher throughput was achieved by the CGI

technologies. This analysis points to only one possibility, i.e. that of a software bottleneck. Since the Java

 18

implementations were highly optimized, we concluded that these were not due to poor implementation, but

rather to bottlenecks inherent in the Java technology.

6. RESULTS AND COMPARISON – TRIVIAL APPLICATION

The analysis in Section 5 showed that time spent in the Java servlets was mainly in user mode, and

although this technology improves substantially on the process creation overhead, it lost that benefit due

to the poor performance of the actual application code. This was most likely because the application being

studied was a complex one, involving parsing text, connecting to remote machines, encrypting/decrypting

(of session cookies), etc. It is fair, therefore, to compare these technologies in another scenario, where

the actual processing done was simple. As an extreme case, we carried out a set of performance tests in

the case where each of the dynamic technologies was used trivially, to simply return a static file.

Figure 6-1 shows a chart of response time vs. throughput for two technologies on which tests were

done: Java servlet, and C++ CGI. A session in this test includes the same transactions as in the earlier

test, except that the files returned as a result of the transaction are static HTML files.

Response Time vs. Throughput

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 1 2 3 4 5 6 7 8

sessions/second

se
co

n
d

s

Java servlet

CGI

Figure 6-1: Response Time vs. Throughput Comparison – trivial computation

 19

Table 6-1 shows the maximum achieved throughput under stable conditions by each of the

technologies. This table shows a very interesting reversal of order of performance compared to Section 52.

In fact, it confirms the expectation that if processing is not dominated by user-mode processing, and is

simple enough that it does not expose underlying Java bottlenecks, then Java servlets can be very fast.

Technology Maximum Throughput (sessions/sec)

Java Servlet 7.2
CGI 2.8

Table 6-1 : Maximum Throughput - trivial computation

CPU Utilization vs. Throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

sessions/second

cp
u

 u
ti

l :
 u

sr
 +

 s
ys

Java servlet

CGI

Figure 6-2: CPU utilization vs. throughput – trivial computation

Figure 6-2 shows that in this case, it is the C++ CGI implementation that runs into a non-CPU

bottleneck (CPU utilization peaks at 93%, then flattens out, even as throughput degrades). The Java

servlet in this case drives the CPU to its maximum capacity. Figure 6-3 also shows the CPU time per

2 Note that the tests in this section were carried out under a somewhat different configuration than the messaging application

tests (Netscape 3.6, instead of Netscape 4.1 and Apache Web servers). Therefore, absolute results from these tests (such as

throughput, CPU milliseconds, page faults, etc.) should not be compared with the corresponding tests in Section 5. We only

compare tests within these sections and the relative order of performance of the technologies across the two types of tests.

 20

session vs. throughput. As the throughput rate increases, the CPU time per session used by the CGI

implementation increases, whereas the Java servlet CPU time per session levels off.

Table 6-2 shows the breakdown of the CPU time into user mode and system mode computation. The

CGI-C++ implementation spends an average of 80% of its processing time in the system mode. The

expectation is that this is due to the excessive amount of process creation that this implementation needs

to do. Figure 6-4 confirms this: the page fault rate of the CGI implementation is two orders of magnitude

larger than that of the servlet implementation. Clearly, the system is thrashing – it is spending all its time in

paging activity while spending lesser time doing useful work, resulting in the throughput dropping sharply.

Technology
CPU time per

transaction in ms
% of total CPU time

spent in system mode
Actual ms in
system mode

Actual ms in
user mode

Servlet 237 38% 90 147
CGI 715 81% 579 136

Table 6-2: CPU milliseconds spent in user vs. system mode: trivial computation

CPU time per session vs. Throughput

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8

sessions/second

C
P

U
 m

ill
is

ec
s

p
er

 s
es

si
o

n

Java servlet

CGI

Figure 6-3: CPU ms per session – trivial computation

 21

Page Faults/sec vs. Throughput

1.00

10.00

100.00

1000.00

10000.00

100000.00

0 1 2 3 4 5 6 7 8

sessions/second

P
ag

e
fa

u
lt

s
p

er
 s

es
si

o
n

Java servlet

CGI

Figure 6-4: Paging Activity Comparison

7. SUMMARY AND INSIGHTS

The two suites of tests that were carried out provided important insights into the performance behavior of

different Web programming technologies. In summary, the following explains why the order of

performance seen was the way it was in the testing of the messaging application:

• Java servlets were the worst performing because the implementation and the technology involved

essentially three steps of interpretation of a program at different levels:

1. The proprietary scripting language that was “interpreted” by the Java servlet.

2. The Java servlet that was interpreted by (or at least ran inside) a Java Virtual Machine.

3. The Java Virtual Machine that itself ran on the host CPU.

The existence of these three layers contributes to the large amount of CPU used. Additionally, the

Java Virtual Machine layer contributes to the non-CPU bottlenecks observed in the analysis.

• Java Server Pages improved on Java servlets because it took out the first of the three steps listed

above. In the JSP implementation, a file with the HTML script, and the Java code that constitutes the

dynamic part of the file, are compiled as a whole into one Java servlet. Thus, when a request arrives,

 22

the servlet runs, fetching the necessary data from the back-end systems, but it no longer interprets a

template file. This reduces the CPU overhead, which results in JSP performance being better than the

servlet/template combination. However, since JSP is a Java technology, it eventually runs into the

same software bottlenecks at the virtual machine level that the servlet implementation encounters.

• The CGI/C++ implementation basically does steps 1 and 3 of the steps outlined above (in a different

way). It is native code interpreting a tag-based template file, which produces an HTML file as a result.

Not having to go through the 2nd layer reduced the CPU overhead greatly. Additionally, there are no

implicit software resources or mechanisms that become bottlenecks. Thus, this implementation was

able to use the CPU more efficiently and more fully (driving it to its maximum capacity). However, the

CPU spends a lot of time in system mode doing work related to creation of the CGI processes.

• FastCGI eliminates the CGI overhead of recurrent process creation, and consequently reduces the

paging overhead. The CPU overhead is reduced, and FastCGI improves performance over CGI. As in

CGI, FastCGI is unencumbered by any of the software bottlenecks that are characteristic of the Java

technology. Therefore, FastCGI is the best performing of the technologies compared.

In summary, the reason why the performance order was reversed in the trivial application test was that

the actual processing was much smaller compared to the overhead associated with each technology.

Since the Java servlet technology has the least pre-computation overhead (creating a thread instead of a

process), it was the best performing in this test.

8. CONCLUSIONS

We used stress testing and measurement methodology to determine the performance pros and cons

of using a particular technology to implement a template server. In this study, FastCGI/C++ turned out to

be the best choice of dynamic Web platform from the performance point of view. This is because most

applications supporting a major service will likely be complex, thus exposing the software bottlenecks

inherent in Java technology. On the other hand this study showed that if the Web programs are simple,

then the performance penalties that Java imposes are small, and JSP may be the right choice.

In reality, in most of the Web-based services, all priorities are subject to an overall cost-benefit

analysis, not focused just on performance. Product management teams may set performance

requirements initially; however, if a Java-based technology offers less development time, fewer problems

 23

to system integration and deployment teams, and wider support, then the requirements may be relaxed.

Further, Java technology is constantly improving, and any measurement study should be updated with

newer versions of the technology. In any scenario, however, comparative performance measurement

studies are always called for - this work was illustrative of how such a study can be done using stress

testing, measurement, and bottleneck analysis.

ACKNOWLEDGEMENTS

The authors thank Mehdi Hosseini-Nasab, Wai-Sum Lai, and Patricia Wirth for their helpful comments.

REFERENCES

1. Reeser, “Using Stress Test Results to Drive Performance Modeling: A Case Study in “Gray-Box”
Vendor Analysis”, submitted to the 17th International Teletraffic Congress (ITC), September 2001, Brazil.
2. “The Common Gateway Interface”, Internet document by the NCSA Software Development Group,
http://www.w3.org/CGI.
3. “FastCGI: A High Performance Web Server Interface”, Technical White Paper by Open Market, Inc.,
http://www.fastcgi.com/devkit/doc/fastcgi-whitepaper/fastcgi.htm, April 1996.
4. “An Introduction to Java Servlets”, by Hans Bergsten, The Web Developers Journal,
http://www.webdevelopersjournal.com/articles/intro_to_servlets.html, March 1999.
5. “Java Server Pages”, http://java.sun.com/products/jsp.

