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ABSTRACT 
When software products are assembled from pre-defined 
components, performance prediction should be based on the 
components also. This supports rapid model-building, using 
previously calibrated sub-models or “performance components”, 
in sync with the construction of the product. The specification of 
a performance component must be tied closely to the software 
component specification, but it also includes performance related 
parameters (describing workload characteristics and demands), 
and it abstracts the behaviour of the component in various ways 
(for reasons related to practical factors in performance analysis). 
A useful set of abstractions and parameters are already defined for 
layered performance modeling. This work extends them to 
accommodate software components, using a new XML-based 
language called Component-Based Modeling Language (CBML). 
With CBML, compatible components can be inserted into slots 
provided in a hierarchical component specification based on the 
UML component model. 
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1. INTRODUCTION 
In recent years, Component Based Software Engineering (CBSE) 
has emerged as a promising paradigm for software engineering 
with interest in both academic and industrial communities [8], 
[14]. It brings higher efficiency and better quality to software 
development by using reusable and configurable software 
components. This also offers some potential advantages for 
performance engineering [19] [21]. Since performance properties 
of a software component can be “described” in advance, 
performance sub-models can be built for each software 
component and stored in a library for reuse. Very often, when a 

system is planned, the performance model has to be built from 
scratch even though it may have many pre-existing components. 
This is tedious and error-prone work for large and complex 
systems. If we can re-use the performance sub-models, it should 
be easier to build the system models.  By re-using these sub-
models, system models can be built quickly for many different 
configurations which are tied to software configurations. 
As a matter of fact, component-based modeling has appeared as a 
well-proven approach in some domains, with domain specific 
library of components. Some examples are Hyperformix and 
OpNet. In OpNet, the tool uses a library of pre-built performance 
sub-models for network protocols at different layers, network 
devices such as routers, switches and workstations and others. 
The Hyperformix Strategizer tool also uses a set of pre-built 
performance sub-models for software and hardware. Those sub-
models are stored in a library as well. Layered Queuing (LQ) 
Modeling language [16] [18] is a sort of component-based 
modeling language which models components by tasks and 
interfaces by entries. The research work described in this paper 
extends LQ’s modeling capability to include component sub-
models.  
The goal is component-based modeling which matches the 
capabilities of component-based software engineering and 
generative programming [4]. We expect that a component library 
will be specific to a domain like web services, or to the elements 
of a single product line [3]. On the other hand, we want the 
performance sub-models which can be bound flexibly to the 
system. This is achieved by allowing nested components, and by 
introducing variable parameters to a component. We also want the 
specifications of the performance sub-models to be capable of 
matching the software component specifications, particularly, the 
UML 2 component model specifications [11] since the UML has 
now become a standard for software-modeling notation and 
gained wide acceptance in the industry.  
A general approach to developing component based software 
systems [19] [21] is shown in Figure 1 below. 

 

Library of SW
components 

Product 
Specification 

Components 
Selection 

Adaptation& 
Customization Wiring 

Generates 

Software 
Product 

Figure 1 Component Based Software Development  

 

 
 



 

Based on the pre-defined and calibrated performance components 
and following the same specification for the product, performance 
models can be created as well. This process is illustrated in Figure 
2 below, including a tool LQComposer that we have developed to 
automate the generation of system models, based on a library of 
performance components and an assembly model. 
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Figure 2 Component-Based Performance Modeling 
In previous work the goal of a model-generator that is matched to 
a software product generator, was described in [19]. In this paper 
a model builder and a language are described. CBML is an XML 
(eXtensible Markup Language) [10] based language designed to 
describe layered queuing models with embedded components, and 
also the component sub-models. This language will be introduced 
in the next section. LQComposer creates a solvable LQ model 
from a system definition with component bindings. 

2. COMPONENT-BASED SYSTEM 
SPECIFICATION 

2.1 Specifications for Software Components 
Software components are the basic building blocks in the 
component based development. However, there is no unified  
definition for software components. Szyperski and Councill et. al. 
gave their own definitions in the books [14] [8] respectively. 
Generally speaking, a software component exhibits the following 
characteristics. It is an independent, compositional and deployable 
unit which has clearly defined and documented interfaces 
interacting with other components. Each component has certain 
functionalities and may have explicit context dependencies such 
as operating system or other software components. 
We will take our notation for components from the UML 2 
proposal [11]. A component is a modular unit with well-defined 
interfaces; it can be replaced by any unit that has the equivalent 
functionalities and compatible interfaces. The interfaces of a 
component are classified as provided interfaces and required 
interfaces. Provided interfaces have defined a formal contract of 
services that the component provides to other components while 
required interfaces have defined the services that it requires from 
outside in the system in order to function. These interfaces may 
optionally be organized through ports. The replacement of a 
component may take place at either design time or run-time. The 
substituting component should be able to interact with other 

components or its environment provided that the constraints of the 
interfaces are followed.  
In UML 2, a component can have two different views, external 
view and internal view. The external view is also known as a 
“black-box” view in which it exhibits only the publicly visible 
properties and operations which are encapsulated in the provided 
and required interfaces. The wiring between components is 
specified by dependencies or connectors between component 
interfaces. The internal view is a sort of “white-box” view which 
shows the component internals that realize the functionality of the 
component. An external view is mapped to an internal view by 
using dependencies which are usually shown on structure 
diagrams, or by using delegation connectors that connect to the 
internal parts which are shown on composite structure diagrams.  
Some selected notations for describing components in UML 2 are 
shown in the following table. We use the notation for an interface 
with a port. 

Table 1 Some Notations in UML 2 Components Diagram 
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AppServer is a component. 
Optionally, it may also have two 
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<component>>
AppServer 
right-hand corner.  

A required interface of a 
component, associated with a port.

A provided interface of a 
component, associated with a port.

 graphical notation for CBML we will later customize the 
notation to a square on the boundary to show a required 
ce, and a circle to show a provided interface. 

 Management Information System  
ection presents some component diagrams in UML 2 for a 
ement Information System (MIS) that we have studied. 
diagrams will serve as examples that will be compared with 
rformance component models that we have proposed. The 

ance component models will be introduced in the next 
. The comparison will show how closely they are matched.  

MIS is a typical four-tiered E-business system which 
ts of client browser, web server, application server and 
se servers. Clients send requests to the web server which 
ome processing, and then invokes the application server 

does the specific business computing and invokes 
ions on the database servers backend. After the results have 
orked out, they are sent back to the clients. There are two 
of requests that clients send to the system, reporting 
ts and viewing requests.  
ructure diagram in Figure 3 below shows the composite 
re of components. The wiring between components is 
nted by assembly connectors between provided and 
d interfaces.  
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Figure 3 A Composite Structure of Software Components in 
the Management Information Systems, in UML2 

 
Focusing on the Application Server in Figure 3, we see its 
external view in the middle of the Figure. The internal view of a 
design for this component, with nested components inside it, has 
been renamed AppServer in Figure 4. The reasons for this will be 
clearer below. The nested components are shown with bindings 
between provided and required interfaces, described by 
dependencies.   
The controller interprets the service requests coming to the 
application node. Based on the type of the requests, reporting 
service or viewing service will be invoked. These two services all 
need to access the cache server which provides caching data for 
reuse. The reporting service and viewing service all need some 
database operations. The report server can generate two different 
kinds of reports, big report and small report namely. These 
different reports require very different database operations. 
When we come back to this example we will use a modified 
notation which provides more flexibility. 

3. LAYERED MODELING OF 
COMPONENTS 

3.1 Layered Queueing Network Models 
The Layered Queuing Network Models (LQN) [16] extends the 
traditional queuing network models in that they are capable of 
capturing the impact of multiple layers of software servers. The 
structure of an LQN model resembles the software architecture of 
a system. An LQN model is expressed as a set of objects called 
“tasks”. A task provides services which are represented by  
“entries”. Entries of one task make calls to entries of others 
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Figure 4 An Internal View of the Software Component 
AppServer, to be plugged into ApplicationServer 

 
at lower layers. Tasks are executed on processors. The LQN 
modeling language implies the component-based modeling in that 
a task actually represents a component while an entry represents 
an interface, or part of one (a subset of the interactions at the 
interface, grouped together for their performance characteristics), 
thus one interface may be modeled by several entries, or may be 
split up before modeling by entries. Therefore, a task is a kind of 
component which has provided services represented by entries 
and required services represented by calls to other entries. A task 
has to be executed on a processor which is a required service, too. 
The modeling of sequential executions, parallel executions (AND 
Forks and Joins), alternative executions (OR Forks and Joins) as 
well as repetitive executions is accommodated by “activities”. 
Activities are the smallest unit of computation. It can accept 
requests from entries or send requests to entries. The details of 
modeling with activities can be found in paper [7]. In LQN 
models, both nested components, and components giving the 
required services, are in lower layers (layers are a control 
hierarchy rather than a structure hierarchy). 
An LQN model includes the following workload parameters that 
are used to describe software: 
1. Call parameters. This involves the call patterns between a 

caller and an invoked component or method in the software 
system, and the average number of calls. The call patterns 
are classified as synchronous, asynchronous and forwarding 
calls which are tied very closely to the software. 



 

2. Host demands. This refers to the total average amount of 
time that is consumed by the operations on that host in order 
to complete a service that is represented by an entry. More 
details of the operations, showing the sequence of operations, 
are represented by activities.   

3. Scheduling policy such as FIFO (First Come First Serve), PS 
(Processor Sharing) and priority based. This is exactly the 
same as appeared in the software. 

Overall, LQN models are suitable for modeling component-based 
systems. This research has extended LQN models to support sub-
models, sub-model libraries and sub-model compositions. 

3.2 Components in Layered Models 
An LQN component is a pre-constructed performance sub-model 
that captures the performance attributes of a software component 
or a subsystem. These components are termed CBML components 
which are associated with the CBML language that we have 
proposed and designed.  
We wish to be able to plug different components into a 
compatible location in a system, so the internal view (still called a 
“component”) is separated from the external view, which will be 
called a “slot”. A CBML component can be plugged into a 
compatible slot. It may also have parameters that can include 
CPU demands, service request parameters and configuration 
parameters such as threading levels. Therefore, a CBML 
performance component is a parameterized sub-model that 
captures the performance attributes of a software component. Its 
parameterization reflects variations in design, in features and in 
deployment and configuration. A performance component can be 
instantiated one or more times within a model, with different 
parameters each time. 
A CBML component has interfaces which are classified as 
incoming interfaces or in-ports and outgoing interfaces or out-
ports that correspond to the provided interfaces and required 
interfaces as specified in UML 2 for software components. 
An interface of the CBML component may define a type 
associated with it.  
The deployment of the component to the actual physical 
processors is defined by re-bindable processors which represents 
the concept of “configuration interface” that Bosch has proposed 
in his book [2]. 

3.3 External View of CBML Component 
The external view of a CBML component is by means of a slot 
with interfaces that connect the performance component into the 
system model. At this point the in-ports are represented by circles, 
and the out-ports by squares on the slot boundary. These may be 
seen as customizations of the UML2 component notation, as 
described above. 
An external view of a performance component that corresponds to 
the software component AppServer shown in Figure 4 is 
illustrated in Figure 5 below. 
In this view, <<slot>>, <<in-port>>, <<out-port>> and 
<<component>> are introduced as performance stereotypes.  The 
concept of slot is introduced as a placeholder for a performance 
component that has compatible interfaces. The slot specifies how 
a compatible component can be plugged into the system model  
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Figure 5 An External View of the Performance Component 

AppServer in the MIS 
 

and connected to the rest of the model. The specification of 
wiring is through binding that is defined within the slot. 
A slot has <<in-port>> which is an incoming interface and will be 
connected to the <<in-port>> of the bound component. Its <<out-
port>> is an outgoing interface and will be connected to the 
<<out-port>> of the bound component. 
The interfaces of the slot fill in the role of a black view for a 
compatible performance component. The lollipop sign represents 
an in-port and the square sign means an out-port. 
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3.4 Internal View of CBML Component 
The graphical view of the performance component AppServer is 
illustrated in the Figure 6. 
The <<in-port>> represents an incoming interface of the 
performance component which corresponds to the provided 
interface of the software component in UML 2. The <<out-port>> 
represents an outgoing interface that corresponds to the required 
interfaces of the software component.  
An <<in-port>> represents the services that the component (sub-
model) provides to its clients while an <<out-port>> means the 
services that the component must obtain from its outside in order 
to function. The <<re-bindable-processor>> represents the 
processor that can optionally be replaced by a system processor. 
If it is not replaced, the processor defined in the component will 
be instantiated in the model. 
In this diagram, the internals of the component model are denoted 
by some notations used in LQN models. The rectangles that have 
bold letters inside represent tasks which are a reduced form of 
performance components. The rectangles at the left side of those 
are entries which are equivalent to the provided interfaces of the 
component. The arrows coming from these entries represent 
requests (calls) that the entry makes to other entries of other tasks 
at lower layers. These requests are equivalent to the required 
interfaces of a component. The big circles inside and outside of 
the components represent the processors that the tasks are running 
on. Processors are a kind of service that is required by the tasks 
which represent a component in a reduced form.  
In this component model, the big circle inside the component 
represents an internal processor which is not visible to the outside 
and can not be replaced by other system processors. The outside 
processor denotes a replaceable processor that may be replaced by 
a system processor in the system model. If no system processor is 
specified at instantiation time, then it will be instantiated as the 
default one for the component. 
To describe a component model that will be stored in a library for 
reuse, the following details are needed. 

 Interfaces: incoming and outgoing interfaces which are 
defined as in-ports and out-ports in CBML language. These 
interfaces are mapped to the provided and required 
interfaces of the software component. 

 Re-bindable processors: processors that can be replaced by 
system processors or other component processors in which 
this component has been deployed. 

 Workload parameters: CPU demands and service requests 
parameters such as the mean number of invocations of a 
service of a component. There maybe variables that reflect 
the performance attributes of the software component in 
different context. There are several approaches to obtaining 
these parameters which can be found in [12] [13].  

 Configuration parameters: threading levels and number of 
replications. These can also be variables that can be 
instantiated with different values in different situations. 

3.5 A Nested Component 
A place for a nested CBML component can be defined by a slot 
within the outer component. As for the outer component, the 

binding of a component in this slot is indicated in its binding 
section. The required services must be bound to entities in the 
immediate outer context, that is in the higher level component. 
Instantiation parameters of the inner component can be passed 
through the outer component, to be set in the outermost model.  
The AppServer component shown in Figure 6 has a task 
ReportServer with two entries. To replace it by a subsystem we 
define the slot rptS in its place, as shown in Figure 7. The slot has 
input and output interfaces for the entries and calls of the task. 
The rebindable processor rptP is bound to another rebindable 
processor AsP in the outer component AppServer, which will 
eventually be bound to a system processor 
 
We will exploit this nested slot by attaching a replication 
parameter to it, so that the inner subsystem is replicated for higher 
performance.  
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 Figure 7 Component AppServer with a Nested Component 
ReportServer inside 

One inner component that could be bound into the slot is shown in 
Figure 8, with its bindings. The smallReport and bigReport 
functions are provided by separate servers. Both are executed on a 
single processor rptP, which is made rebindable, and is bound 
here to the same processor as before (that is, to AsP). A more 
complex subsystem model could be defined and bound into the 
slot instead. 
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 Figure 8 An Internal View of the rptS slot, with the 
ReportServer component bound to it 

The number of the ReportServer that need to be instantiated in the 
model can be specified by a parameter in the binding section of 
slot, as shown in the next section. Due to the space limitation, we 
will only give one example that shows two replicated report 
servers instantiated in the AppServer component model. This 
example is shown in Figure 9. 
Figure 9 shows the AppServer component definition produced 
when the inner component is bound in place. The interfaces of the 
slot and the ReportServer have now disappeared after the 
instantiation, and the calls have been redirected to the appropriate 
targets. The tasks inside the dashed box are now running on the 
same processor AsP which is a replaceable processor of the 
component AppServer. 

4. THE CHALLENGE OF PERFORMANCE 
CHARACTERIZATION OF SOFTWARE 
COMPONENTS 

The approach taken here to creating slots and components 
essentially applies the full power of the modeling language for 
systems, to component subsystems. It follows that when the 
component is bound into the slot, the resulting complete model is 
not constrained by the fact that components were used in defining 
it. The result should be that the performance effect of components 
can be fully characterized. We make this claim, and it is useful to 
examine it in the context of differences between components. 

Thus, we will consider how variations between components are 
captured. 
In software design, the use of components and other generative 
elements provides an opportunity to reuse software and also to 
insert variations into a system [4]. Variations can arise both due to 
changes in features, and due to design differences that provide the 
same features (to clean up an aging architecture or to meet a new 
challenge such as larger scales of deployment, for example). 
When describing the performance models for the same 
components, there is a challenge of representing the performance 
effects of these different kinds of variations. We call this the 
performance characterization of the variations. 
In this work the difference between two components that can fit 
into the same slot in the overall system can be represented, in the 
performance model, by: 

• a difference in the CPU demand of an operation, within a 
constant structure of tasks and entries. This might represent a 
change in the features offered by the product, or in the 
algorithms or data structures, without any change in 
concurrency or partitioning of responsibilities. 

• use of different nested components, which could also 
represent a change to the product features, algorithms or data 
structures. 

• a difference in numbers of threads of tasks, or in the software 
configuration in its environment (such as the allocation of 
tasks to processors, or the allocation of priorities to tasks). 
This affects performance through concurrency and 
competition for resources. One may argue that some of these 
are not properties of the software component itself, but of its 
deployment, but in any case these deployment differences 
can be defined.   

• a different pattern or amount of demands for services 
between entities within the submodel, or for required 
services, representing a different partitioning of 
responsibilities within the component subsystem, or a 
different pattern of communication between entities (for 
example the use of call-backs). 

• different required services, due to changes in features offered, 
or in the partitioning of responsibilities between subsystems. 

• a different architecture for the subsystem (a different set of 
internal tasks and entries, with different service relationships 
and concurrency). This might represent a different control 
structure, or large-scale design approach, for example using 
pipelining versus a master-slave architecture. It might also 
arise from adapting the software to a different system 
infrastructure, for example adapting a design that uses 
CORBA for service access, to use Enterprise Java Beans, or 
a Web Services approach instead. 

The above list captures essentially all the software variations the 
authors have been able to gather together. It also suggests how 
models for software features and their variations may be 
represented in a library.  
An important case is a component subsystem which is simply a 
set of sequential objects intended to run in a single process. 
Variations with different algorithms and data structures differ 
only in their CPU demands and possibly their input/output 
demands. They have no differences at the level of cooperating 



 

5. THE CBML LANGUAGE tasks. Although the component is intended to be just part of a 
process, it can be modeled as a task (really a pseudo task, since it 
is not really concurrent) with entries representing the major 
methods, called by the process that invokes the object. The calls 
should be blocking, since calls in sequential processes are 
blocking; in this way its execution is included in that of its caller. 
It should have infinite threads since it does not form a task queue, 
and its execution must be allocated to the same processor as its 
caller so the processor workload is correct. If it is included in 
several processes on different processors then it must be 
instantiated separately for each processor. 

In this work, the LQN language that describes LQN models has 
been extended in order to have more capability and flexibility to 
model software components and component-based systems. This 
extended language is based on XML language and termed CBML 
(Component-Based Modeling Language). A CBML model is 
organized as a structured model which is suitable for XML 
language to describe. The XML schema (XSD schema) describes 
the allowable contents and datatypes that a CBML document may 
have. Some concepts in this modeling language are illustrated in 
the following figures. These figures were generated by the 
XMLSpy schema editor.  In this simple example, the different variations can all be 

represented by one component definition with different sets of 
parameters. Any one of the variations can be constructed, by 
substituting parameter values. This suggests the possibility of 
generating a wide range of component submodels from compact 
parameterized representations. The language CBML defined 
below provides support for the parameters. 

5.1 The Core of CBML 
The core elements that are defined in an LQN model are shown in 
Figure 10. The element slot has been introduced to support nested 
component definition as mentioned in the previous sections. In 
UML 2, the nested components are defined through bindings 
between provided and required interfaces. In our CBML 
performance components, the wiring is done through slots and 
bindings which are defined within the slot. The details of the slot 
will be introduced later.  

The example also shows (in the last sentence) that a component 
may have to specify some constraints as to how it can be bound. 
Other constraints have to do with correct use of a component, by 
matching the type of a request with the type of an offered 
interface. For that purpose it is necessary to type the interfaces in 
slots and component submodels, and to require some form of 
matching. In general there is an issue of compatibility of a 
component with a slot, which is addressed by the proposed 
scheme but which will not be described in detail here. 
Compatibility is addressed partly by typed interfaces; other 
aspects include compatibility of components with the processor 
platform, and the network protocols that some components use. 

A task now has a service point associated with it. This service 
point acts as a required interface of the task. Therefore, a software 
component can be modeled by a task in a reduced form in which, 
its provided interfaces are represented by the task’s entries while 
the required interfaces are represented by the task’s services.   
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    Figure 9 An Internal View of AppServer with two replicated ReportServers components expanded inside it. Processor AsP is 

bound to all the tasks within the dashed line. 



 

 
 

 
Figure 10 Elements defined in LQN Core 

 
However, the details of a software component can be modeled by 
the performance sub-model which has explicit interfaces which 
correspond to the software component design specifications as 
described by UML 2. This sub-model will be introduced in the 
next section. 
In the diagrams that were generated by XMLSpy Schema editor, 
the plus sign means that the details of the element have not been 
expanded. The symbols such as 0..∞ and 1.. ∞ represent the 
cardinality of the element that will appear in the model. The 
dashed lines mean optional elements while solid lines represent 
required elements in the model definition. The switch signs 
represent alternatives. The attributes of the elements have not 
been shown in these diagrams.  

5.2 The CBML Sub-model Definition 
The elements that are defined in CBML Sub-model are illustrated 
in the following Figure 11. Again, the attributes of the elements 
have not been shown.  
A CBML sub-model has defined a section of Interface which 
includes in-port, out-port and Replaceable-Processors that have 
been introduced in the previous section. The attributes of the in-
port and out-port record the information associated with them, 
such as the name of the port, any description of the port and the 
source or target that they are connected from or connected to 
inside the component.  

The element Parameter defined in the sub-model is used for 
specifying component variable parameters. The variable name 
starts with a ‘$’ sign. This element has also defined a default 
value for the parameters. When the component is instantiated in a 
system model, if no instantiation value specified for a variable 
that appears in the component model, then the default one will be 
used. 
A sub-model may or may not have any slots that will bind nested 
components into this component. The definition of slot will be 
detailed in the next section. 

 

 
 

Figure 11 Elements Defined in CBML Sub-model 
 

5.3 The Slot in CBML 
The schema definition of a slot in CBML is illustrated in Figure 
12 below.  

 

 

 

vided 

Figure 12 Elements Defined in a Slot 
A slot has two main parts: Interface and binding. Interface 
specifies the in-ports and out-ports that it has. Interface may be 
associated with a type. The ports have specified the pro
services (by in-ports) and required services (by out-ports).  

The element binding specifies how a compatible component can 
be instantiated and plugged into the system model and connected 
to the rest of the model through this slot. The element parameter 



 

is used to customize the component model with appropriate 
instantiation parameters passed in. The element processor-binding 
specifies how a replaceable processor in the component model 
can be replaced by a system processor. This reflects the aspect of 
component configuration and deployment. The element port-
binding specifies how the slot is wired to the component by their 
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Using a slot, a single class of component model can be 
instantiated as several identically replicated component models in 
the system model if necessary.  There is an attribute “replic_num” 
associated with the definition of slot which can be used to specify 
how many replicas of the component model are needed.  Based on 
this, the calls coming into this slot will be split equally to the 
replicated components. This is very useful in the case of modeling 
several identical software components or sub-systems. An 
example has been described in section 3.5 where the inner 
component has two replicas. The next section will provide a 
practical example of applying this language to model a large 
commercial software pro

ications  are involved. 

On the other hand, using slots facilitates the naming issues 
for the instances of the performance component. Each slot must 

have an id associated with it which is used as
elements in the component model.  

5.4 Special Types of Components 
A performance study may also require component sub-models 
that are not part of the product, but represent parts of its 
environment, such as middleware, file systems, databases or web 
services used by the product. This class of components was 
discussed in [17] under the name of “completions”, because they 
are needed to complete the performance model. In that work it 
was envisaged that they might be added automatically, based on 
special annotations and rules. The slot feature described here is 
suitable for representing explicit services such as databases or file 
systems. However middleware or network sub-models might be 
introduced wherever their use is implied by the configuration (e.g., 
by knowledge of the network used between two specified 
processors). This would require suitable rules for introducing slot
where needed. 

6. AN APPLICATION OF COMPONENTS 
The component model and language were applied to a software 
product line in management information systems, described by 
the overall model 
ApplicationServer were represented by LQN tasks, as shown in 
Figure 13.  
Some of the possible variations in ApplicationServer have 
components with different structure and some 
parameters. Here we will consider parameter changes on the one 
component AppServer defined in Figures 7 and 8. 
There are many possible variations in ApplicationServer. For 
instance, there may be no caching involved. Or it may need to 
access some additional databases. Other possible options may be 
that it needs to access additional servers for specific analysis (e.g. 
for data mining or optimization). By taking different parameters, 
the performance component of AppServer can also model the 
application node whose internals may have different software but 
still accomplish the similar functionalities with different 
performance attributes. A typical case of this is that there may be 
several replicated application nodes deployed on several single 
processors. There may be only one application node deployed on 
one more powerful machine (e.g. multiple processors) too.   The 
size of the thread pool for the report server and cache server can 
also be varied. All these variations can be expressed in th
language.  

ollowing types of variations were considered here: 
The variable threading levels can be described by defining 
the multiplicity of the tasks in LQN model as a variable. 
When the component AppServer is instantiated,
number of threads can then be passed into through the slot 
which binds the AppServer to the system model. 
The variable number of replications of AppServer can be 
achieved by giving a sp
which is the attribute of slot that is bound to AppServer as 
described in section 4.3. 
The number of report servers that are running inside the 
AppServer can also be varied and their replications can also 
be achieved by specifying the value of the attribute 
“replic_num” for the slot that is bo



 

the component AppServer. This value can be passed from 
the outside component AppServer.  

The rebindable processor in AppServer can be used  without 
rebinding (to give a separate platform) or bound to a system 
processor shared with other functions in the system. 
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Figure 13 The Final System Model 
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Figure 14 Response Time for the Base Case 

the base case 

rver and 2 
threads for the smallReport server. The results are shown in 
Figure 15. The response times are both much smaller. 

6.1 Results for some cases 
Some cases were considered that embody these variations, with 
the results shown below. Performance calculations were done by 
the LQN solver [5] [6]. Results are given for response times of the 
Reporting Service (labeled RS) and Viewing Service (labeled VS). 
As the results are only shown to illustrate the type of the 
experiments that are possible, the parameters of the model are not 
given here. The base case has two report servers (each has one 
thread for the smallReport server and five threads for the 
bigReport server) and the cache server is single threaded. The 
application node has two processors. The results of 
are shown in Figure 14. We can see that the response time for 100 
users are about (150, 60) for (RS,VS), respectively. 
The next case introduced 10 threads for the cache se
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Figure 15 Response Time for Multithreaded Cache Server 

and SmallReport Server 
 

The following two cases have introduced two replicated 
AppServers running on two nodes, each with its own single 
processor. 
Figure 16 shows the results for a single threaded Cache Server. 
The response times are better than the base case with no 
replication, but worse than Figure 15, which includes Cache 
Server threads. 
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Figure 16 Response Time for Two Replicated AppServers and 

Single-Threaded Cache Server 
Figure 17 shows results with two replicated AppServers and a 
Cache Server with 10 threads. The response times for 100 users 
are now (RS, VS) (10, 8) roughly, which is the best so far. 

System response time of RS & VS

0

5

10

15

20

25

0 50 100 150 200

No. of users

re
sp

on
se

 ti
m

e(
se

c)

response time of RS response time of VS

 
Figure 17 Response Time for  two Replicated AppServers and 10 threads of 

 
The example results show how certain variations, which were of 
interest in an industrial context, could be addressed using 
components and parameters. The results indicate that the cache 
server really must be multi-threaded, and that this is more 
effective than additional report servers. 
The cases described here only don’t exploit all the features of the 
model and the language. Other examples have exploited the 
ability to bind different submodels, for instance. 

7. RELATED WORK 
Hissam et.al. have argued in favour of a "prediction-enabled 
component technology" (PECT) [9] which includes analysis for 
prediction of the assembly-level properties of a composed system. 
Their concept of analysis is very general, but this work would fit 
well into PECT. They provide an example of performance 
analysis, which is much simpler than the systems described here 
(for example, it does not include concurrency or contention).  
Bertolino and Mirandola [1] describe a CBSE performance 
framework, in which composition is defined by UML sequence 
diagrams for the interactions between components. They do not 
create submodels of components, and they cannot replace one 
component by another, without going through all the modeling 
steps again. Components are modeled only at the object level, 
with no mention of concurrency within a component.  
Languages for software composition are also related to CBML. 
One such language, also based on XML, is XCompose [15]. As 
with CBML, XCompose specifies the services offered by the 
component (its methods) and the services it requires from its 
environment. Unlike CBML however, it specifies composition in 
terms of a usage scenario or program, in which the methods of the 
component are called. CBML describes the number of service 
calls to a component, rather than the sequence; this is a more 
aggregated description suitable for many performance 
calculations. In fact it is also possible to describe sequences of 
calls to component interfaces in CBML. Thus the similarity in 
language facilities is quite strong. 



 

8. CONCLUSIONS 
The language CBML (based on XML and UML2) describes 
performance models of software components and component-
based systems. It has the capability to capture the performance-
related features of software components, their integration and 
deployment in the system, and variations between alternative 
components in a product line. It has been applied to an industrial 
software product, and met (or exceeded) all the needs of the study; 
some of  the results have been briefly described. 
A model assembler tool, not described here, generates 
performance models automatically using a library of component 
sub-models. The performance components are reusable, just like 
the software component themselves. The language and the tool 
have been applied to model a commercial software product in a 
software product line.  
The combination of layered performance modeling and 
components described at an architectural level, as in CBML, 
appears to be well suited to the analysis of software product lines 
and other kinds of component-based systems. Some language 
features that will be required to specify constraints on components 
have been indicated but are not described in this paper. 
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