

Performance Modeling from Software Components
Xiuping Wu, Murray Woodside

Carleton University
Dept. of Systems and Computer Engineering

Ottawa, ON, K1S 5B6
1(613)520-5721

{xpwu | cmw}@sce.carleton.ca
ABSTRACT
When software products are assembled from pre-defined
components, performance prediction should be based on the
components also. This supports rapid model-building, using
previously calibrated sub-models or “performance components”,
in sync with the construction of the product. The specification of
a performance component must be tied closely to the software
component specification, but it also includes performance related
parameters (describing workload characteristics and demands),
and it abstracts the behaviour of the component in various ways
(for reasons related to practical factors in performance analysis).
A useful set of abstractions and parameters are already defined for
layered performance modeling. This work extends them to
accommodate software components, using a new XML-based
language called Component-Based Modeling Language (CBML).
With CBML, compatible components can be inserted into slots
provided in a hierarchical component specification based on the
UML component model.

General Terms
Performance, Design, Languages

Keywords
Software performance, layered queue model, software component,
generative programming, modular submodel, CBML, LQN,
performance prediction.

1. INTRODUCTION
In recent years, Component Based Software Engineering (CBSE)
has emerged as a promising paradigm for software engineering
with interest in both academic and industrial communities [8],
[14]. It brings higher efficiency and better quality to software
development by using reusable and configurable software
components. This also offers some potential advantages for
performance engineering [19] [21]. Since performance properties
of a software component can be “described” in advance,
performance sub-models can be built for each software
component and stored in a library for reuse. Very often, when a

system is planned, the performance model has to be built from
scratch even though it may have many pre-existing components.
This is tedious and error-prone work for large and complex
systems. If we can re-use the performance sub-models, it should
be easier to build the system models. By re-using these sub-
models, system models can be built quickly for many different
configurations which are tied to software configurations.
As a matter of fact, component-based modeling has appeared as a
well-proven approach in some domains, with domain specific
library of components. Some examples are Hyperformix and
OpNet. In OpNet, the tool uses a library of pre-built performance
sub-models for network protocols at different layers, network
devices such as routers, switches and workstations and others.
The Hyperformix Strategizer tool also uses a set of pre-built
performance sub-models for software and hardware. Those sub-
models are stored in a library as well. Layered Queuing (LQ)
Modeling language [16] [18] is a sort of component-based
modeling language which models components by tasks and
interfaces by entries. The research work described in this paper
extends LQ’s modeling capability to include component sub-
models.
The goal is component-based modeling which matches the
capabilities of component-based software engineering and
generative programming [4]. We expect that a component library
will be specific to a domain like web services, or to the elements
of a single product line [3]. On the other hand, we want the
performance sub-models which can be bound flexibly to the
system. This is achieved by allowing nested components, and by
introducing variable parameters to a component. We also want the
specifications of the performance sub-models to be capable of
matching the software component specifications, particularly, the
UML 2 component model specifications [11] since the UML has
now become a standard for software-modeling notation and
gained wide acceptance in the industry.
A general approach to developing component based software
systems [19] [21] is shown in Figure 1 below.

Library of SW
components

Product
Specification

Components
Selection

Adaptation&
Customization Wiring

Generates

Software
Product

Figure 1 Component Based Software Development

Based on the pre-defined and calibrated performance components
and following the same specification for the product, performance
models can be created as well. This process is illustrated in Figure
2 below, including a tool LQComposer that we have developed to
automate the generation of system models, based on a library of
performance components and an assembly model.

Library of
performance
components

Product
Specification

Submodels
Selection

Adaptation&
Customization Wiring

LQComposer

Application
Performance

Model

Assembly
Model

Figure 2 Component-Based Performance Modeling
In previous work the goal of a model-generator that is matched to
a software product generator, was described in [19]. In this paper
a model builder and a language are described. CBML is an XML
(eXtensible Markup Language) [10] based language designed to
describe layered queuing models with embedded components, and
also the component sub-models. This language will be introduced
in the next section. LQComposer creates a solvable LQ model
from a system definition with component bindings.

2. COMPONENT-BASED SYSTEM
SPECIFICATION

2.1 Specifications for Software Components
Software components are the basic building blocks in the
component based development. However, there is no unified
definition for software components. Szyperski and Councill et. al.
gave their own definitions in the books [14] [8] respectively.
Generally speaking, a software component exhibits the following
characteristics. It is an independent, compositional and deployable
unit which has clearly defined and documented interfaces
interacting with other components. Each component has certain
functionalities and may have explicit context dependencies such
as operating system or other software components.
We will take our notation for components from the UML 2
proposal [11]. A component is a modular unit with well-defined
interfaces; it can be replaced by any unit that has the equivalent
functionalities and compatible interfaces. The interfaces of a
component are classified as provided interfaces and required
interfaces. Provided interfaces have defined a formal contract of
services that the component provides to other components while
required interfaces have defined the services that it requires from
outside in the system in order to function. These interfaces may
optionally be organized through ports. The replacement of a
component may take place at either design time or run-time. The
substituting component should be able to interact with other

components or its environment provided that the constraints of the
interfaces are followed.
In UML 2, a component can have two different views, external
view and internal view. The external view is also known as a
“black-box” view in which it exhibits only the publicly visible
properties and operations which are encapsulated in the provided
and required interfaces. The wiring between components is
specified by dependencies or connectors between component
interfaces. The internal view is a sort of “white-box” view which
shows the component internals that realize the functionality of the
component. An external view is mapped to an internal view by
using dependencies which are usually shown on structure
diagrams, or by using delegation connectors that connect to the
internal parts which are shown on composite structure diagrams.
Some selected notations for describing components in UML 2 are
shown in the following table. We use the notation for an interface
with a port.

Table 1 Some Notations in UML 2 Components Diagram

Graphical Notation Description

AppServer is a component.
Optionally, it may also have two
protruding rectangles in the upper

<

In our
UML
interfa

2.2 A
This s
Manag
These
the pe
perform
section
This
consis
databa
does s
which
operat
been w
types
reques
The st
structu
represe
require

<component>>
AppServer
right-hand corner.

A required interface of a
component, associated with a port.

A provided interface of a
component, associated with a port.

 graphical notation for CBML we will later customize the
notation to a square on the boundary to show a required
ce, and a circle to show a provided interface.

 Management Information System
ection presents some component diagrams in UML 2 for a
ement Information System (MIS) that we have studied.
diagrams will serve as examples that will be compared with
rformance component models that we have proposed. The

ance component models will be introduced in the next
. The comparison will show how closely they are matched.

MIS is a typical four-tiered E-business system which
ts of client browser, web server, application server and
se servers. Clients send requests to the web server which
ome processing, and then invokes the application server

does the specific business computing and invokes
ions on the database servers backend. After the results have
orked out, they are sent back to the clients. There are two
of requests that clients send to the system, reporting
ts and viewing requests.
ructure diagram in Figure 3 below shows the composite
re of components. The wiring between components is
nted by assembly connectors between provided and
d interfaces.

<<component>>
Client

<<component>>
WebServer

<<component>>
ApplicationServer

<<component>>
DBServer

webService

webService

viewService

viewService

reportService

reportService

cacheDBop

cacheDBop

bigReptDBop

bigReptDBop

smReptDBop

smReptDBop

Figure 3 A Composite Structure of Software Components in
the Management Information Systems, in UML2

Focusing on the Application Server in Figure 3, we see its
external view in the middle of the Figure. The internal view of a
design for this component, with nested components inside it, has
been renamed AppServer in Figure 4. The reasons for this will be
clearer below. The nested components are shown with bindings
between provided and required interfaces, described by
dependencies.
The controller interprets the service requests coming to the
application node. Based on the type of the requests, reporting
service or viewing service will be invoked. These two services all
need to access the cache server which provides caching data for
reuse. The reporting service and viewing service all need some
database operations. The report server can generate two different
kinds of reports, big report and small report namely. These
different reports require very different database operations.
When we come back to this example we will use a modified
notation which provides more flexibility.

3. LAYERED MODELING OF
COMPONENTS

3.1 Layered Queueing Network Models
The Layered Queuing Network Models (LQN) [16] extends the
traditional queuing network models in that they are capable of
capturing the impact of multiple layers of software servers. The
structure of an LQN model resembles the software architecture of
a system. An LQN model is expressed as a set of objects called
“tasks”. A task provides services which are represented by
“entries”. Entries of one task make calls to entries of others

<<component>>
AppServer

<<component>>
Controller

<<component>>
viewServer <<component>>

ReportService

ReportServer

bigReport smReport

1..* 1..*

reportService viewService

<<component>>
cacheServer

smReptDBop cacheDbop

cacheData cacheData

cacheData

cacheDBopsmReptDBop bigReptDBop

reportService

reportService viewService

viewService

bigReptDBop

Figure 4 An Internal View of the Software Component
AppServer, to be plugged into ApplicationServer

at lower layers. Tasks are executed on processors. The LQN
modeling language implies the component-based modeling in that
a task actually represents a component while an entry represents
an interface, or part of one (a subset of the interactions at the
interface, grouped together for their performance characteristics),
thus one interface may be modeled by several entries, or may be
split up before modeling by entries. Therefore, a task is a kind of
component which has provided services represented by entries
and required services represented by calls to other entries. A task
has to be executed on a processor which is a required service, too.
The modeling of sequential executions, parallel executions (AND
Forks and Joins), alternative executions (OR Forks and Joins) as
well as repetitive executions is accommodated by “activities”.
Activities are the smallest unit of computation. It can accept
requests from entries or send requests to entries. The details of
modeling with activities can be found in paper [7]. In LQN
models, both nested components, and components giving the
required services, are in lower layers (layers are a control
hierarchy rather than a structure hierarchy).
An LQN model includes the following workload parameters that
are used to describe software:
1. Call parameters. This involves the call patterns between a

caller and an invoked component or method in the software
system, and the average number of calls. The call patterns
are classified as synchronous, asynchronous and forwarding
calls which are tied very closely to the software.

2. Host demands. This refers to the total average amount of
time that is consumed by the operations on that host in order
to complete a service that is represented by an entry. More
details of the operations, showing the sequence of operations,
are represented by activities.

3. Scheduling policy such as FIFO (First Come First Serve), PS
(Processor Sharing) and priority based. This is exactly the
same as appeared in the software.

Overall, LQN models are suitable for modeling component-based
systems. This research has extended LQN models to support sub-
models, sub-model libraries and sub-model compositions.

3.2 Components in Layered Models
An LQN component is a pre-constructed performance sub-model
that captures the performance attributes of a software component
or a subsystem. These components are termed CBML components
which are associated with the CBML language that we have
proposed and designed.
We wish to be able to plug different components into a
compatible location in a system, so the internal view (still called a
“component”) is separated from the external view, which will be
called a “slot”. A CBML component can be plugged into a
compatible slot. It may also have parameters that can include
CPU demands, service request parameters and configuration
parameters such as threading levels. Therefore, a CBML
performance component is a parameterized sub-model that
captures the performance attributes of a software component. Its
parameterization reflects variations in design, in features and in
deployment and configuration. A performance component can be
instantiated one or more times within a model, with different
parameters each time.
A CBML component has interfaces which are classified as
incoming interfaces or in-ports and outgoing interfaces or out-
ports that correspond to the provided interfaces and required
interfaces as specified in UML 2 for software components.
An interface of the CBML component may define a type
associated with it.
The deployment of the component to the actual physical
processors is defined by re-bindable processors which represents
the concept of “configuration interface” that Bosch has proposed
in his book [2].

3.3 External View of CBML Component
The external view of a CBML component is by means of a slot
with interfaces that connect the performance component into the
system model. At this point the in-ports are represented by circles,
and the out-ports by squares on the slot boundary. These may be
seen as customizations of the UML2 component notation, as
described above.
An external view of a performance component that corresponds to
the software component AppServer shown in Figure 4 is
illustrated in Figure 5 below.
In this view, <<slot>>, <<in-port>>, <<out-port>> and
<<component>> are introduced as performance stereotypes. The
concept of slot is introduced as a placeholder for a performance
component that has compatible interfaces. The slot specifies how
a compatible component can be plugged into the system model

 <<in-port>>
reportService

<<in-port>>
viewService

<<slot>>
ApplicationServer

<<component>>
AppServer

<<out-port>>
cacheDBop

<<out-port>>
smReptDBop

<<out-port>>
bigReptDBop

Figure 5 An External View of the Performance Component

AppServer in the MIS

and connected to the rest of the model. The specification of
wiring is through binding that is defined within the slot.
A slot has <<in-port>> which is an incoming interface and will be
connected to the <<in-port>> of the bound component. Its <<out-
port>> is an outgoing interface and will be connected to the
<<out-port>> of the bound component.
The interfaces of the slot fill in the role of a black view for a
compatible performance component. The lollipop sign represents
an in-port and the square sign means an out-port.

viewCtrl controllerreportCtrl

viewServerview

cacheServercache

bigReportsmallReport reportServer

<<component>>
AppServer

<<in-port>>

viewService

<<in-port>>

reportService

<<out-port>>

smReptDBop

<<out-port>>

bigReptDBop

CtrlP

AsP <<out-port>>

cacheDBop

<<re-bindable-processor>>

Figure 6 An Inter ance Component

AppServer in the MIS
nal View of the Perform

3.4 Internal View of CBML Component
The graphical view of the performance component AppServer is
illustrated in the Figure 6.
The <<in-port>> represents an incoming interface of the
performance component which corresponds to the provided
interface of the software component in UML 2. The <<out-port>>
represents an outgoing interface that corresponds to the required
interfaces of the software component.
An <<in-port>> represents the services that the component (sub-
model) provides to its clients while an <<out-port>> means the
services that the component must obtain from its outside in order
to function. The <<re-bindable-processor>> represents the
processor that can optionally be replaced by a system processor.
If it is not replaced, the processor defined in the component will
be instantiated in the model.
In this diagram, the internals of the component model are denoted
by some notations used in LQN models. The rectangles that have
bold letters inside represent tasks which are a reduced form of
performance components. The rectangles at the left side of those
are entries which are equivalent to the provided interfaces of the
component. The arrows coming from these entries represent
requests (calls) that the entry makes to other entries of other tasks
at lower layers. These requests are equivalent to the required
interfaces of a component. The big circles inside and outside of
the components represent the processors that the tasks are running
on. Processors are a kind of service that is required by the tasks
which represent a component in a reduced form.
In this component model, the big circle inside the component
represents an internal processor which is not visible to the outside
and can not be replaced by other system processors. The outside
processor denotes a replaceable processor that may be replaced by
a system processor in the system model. If no system processor is
specified at instantiation time, then it will be instantiated as the
default one for the component.
To describe a component model that will be stored in a library for
reuse, the following details are needed.

 Interfaces: incoming and outgoing interfaces which are
defined as in-ports and out-ports in CBML language. These
interfaces are mapped to the provided and required
interfaces of the software component.

 Re-bindable processors: processors that can be replaced by
system processors or other component processors in which
this component has been deployed.

 Workload parameters: CPU demands and service requests
parameters such as the mean number of invocations of a
service of a component. There maybe variables that reflect
the performance attributes of the software component in
different context. There are several approaches to obtaining
these parameters which can be found in [12] [13].

 Configuration parameters: threading levels and number of
replications. These can also be variables that can be
instantiated with different values in different situations.

3.5 A Nested Component
A place for a nested CBML component can be defined by a slot
within the outer component. As for the outer component, the

binding of a component in this slot is indicated in its binding
section. The required services must be bound to entities in the
immediate outer context, that is in the higher level component.
Instantiation parameters of the inner component can be passed
through the outer component, to be set in the outermost model.
The AppServer component shown in Figure 6 has a task
ReportServer with two entries. To replace it by a subsystem we
define the slot rptS in its place, as shown in Figure 7. The slot has
input and output interfaces for the entries and calls of the task.
The rebindable processor rptP is bound to another rebindable
processor AsP in the outer component AppServer, which will
eventually be bound to a system processor

We will exploit this nested slot by attaching a replication
parameter to it, so that the inner subsystem is replicated for higher
performance.

viewCtrl controllerreportCtrl

viewServerview

<<component>>
AppServer

<<in-port>>

viewService

<<in-port>>

reportService

<<out-port>>

smReptDBop

<<out-port>>

bigReptDBop

CtrlP

AsP <<out-port>>

cacheDBop

<<re-bindable-processor>>

<<slot >>

rptS

smReptDBop bigReptDBop cacheData

bigReport smReport

cacheServercache

 Figure 7 Component AppServer with a Nested Component
ReportServer inside

One inner component that could be bound into the slot is shown in
Figure 8, with its bindings. The smallReport and bigReport
functions are provided by separate servers. Both are executed on a
single processor rptP, which is made rebindable, and is bound
here to the same processor as before (that is, to AsP). A more
complex subsystem model could be defined and bound into the
slot instead.

rptP

<<in-port>>

smallReport

<<in-port>>

bigReport

<<out-port>>

bigReptDBop

<<out-port>>

smReptDBop

bigReport bigService smallReport smlService

<<component>>

ReportServer

<<re-bindable-processor>>

<<out-port>>

cacheData

<<in-port>>

smallReport

<<in-port>>

reportService

<<out-port>>

smReptDBop

<<out-port>>

bigReptDBop
AsP <<out-port>>

cacheDBop

<<re-bindable-processor>>

 Figure 8 An Internal View of the rptS slot, with the
ReportServer component bound to it

The number of the ReportServer that need to be instantiated in the
model can be specified by a parameter in the binding section of
slot, as shown in the next section. Due to the space limitation, we
will only give one example that shows two replicated report
servers instantiated in the AppServer component model. This
example is shown in Figure 9.
Figure 9 shows the AppServer component definition produced
when the inner component is bound in place. The interfaces of the
slot and the ReportServer have now disappeared after the
instantiation, and the calls have been redirected to the appropriate
targets. The tasks inside the dashed box are now running on the
same processor AsP which is a replaceable processor of the
component AppServer.

4. THE CHALLENGE OF PERFORMANCE
CHARACTERIZATION OF SOFTWARE
COMPONENTS

The approach taken here to creating slots and components
essentially applies the full power of the modeling language for
systems, to component subsystems. It follows that when the
component is bound into the slot, the resulting complete model is
not constrained by the fact that components were used in defining
it. The result should be that the performance effect of components
can be fully characterized. We make this claim, and it is useful to
examine it in the context of differences between components.

Thus, we will consider how variations between components are
captured.
In software design, the use of components and other generative
elements provides an opportunity to reuse software and also to
insert variations into a system [4]. Variations can arise both due to
changes in features, and due to design differences that provide the
same features (to clean up an aging architecture or to meet a new
challenge such as larger scales of deployment, for example).
When describing the performance models for the same
components, there is a challenge of representing the performance
effects of these different kinds of variations. We call this the
performance characterization of the variations.
In this work the difference between two components that can fit
into the same slot in the overall system can be represented, in the
performance model, by:

• a difference in the CPU demand of an operation, within a
constant structure of tasks and entries. This might represent a
change in the features offered by the product, or in the
algorithms or data structures, without any change in
concurrency or partitioning of responsibilities.

• use of different nested components, which could also
represent a change to the product features, algorithms or data
structures.

• a difference in numbers of threads of tasks, or in the software
configuration in its environment (such as the allocation of
tasks to processors, or the allocation of priorities to tasks).
This affects performance through concurrency and
competition for resources. One may argue that some of these
are not properties of the software component itself, but of its
deployment, but in any case these deployment differences
can be defined.

• a different pattern or amount of demands for services
between entities within the submodel, or for required
services, representing a different partitioning of
responsibilities within the component subsystem, or a
different pattern of communication between entities (for
example the use of call-backs).

• different required services, due to changes in features offered,
or in the partitioning of responsibilities between subsystems.

• a different architecture for the subsystem (a different set of
internal tasks and entries, with different service relationships
and concurrency). This might represent a different control
structure, or large-scale design approach, for example using
pipelining versus a master-slave architecture. It might also
arise from adapting the software to a different system
infrastructure, for example adapting a design that uses
CORBA for service access, to use Enterprise Java Beans, or
a Web Services approach instead.

The above list captures essentially all the software variations the
authors have been able to gather together. It also suggests how
models for software features and their variations may be
represented in a library.
An important case is a component subsystem which is simply a
set of sequential objects intended to run in a single process.
Variations with different algorithms and data structures differ
only in their CPU demands and possibly their input/output
demands. They have no differences at the level of cooperating

5. THE CBML LANGUAGE tasks. Although the component is intended to be just part of a
process, it can be modeled as a task (really a pseudo task, since it
is not really concurrent) with entries representing the major
methods, called by the process that invokes the object. The calls
should be blocking, since calls in sequential processes are
blocking; in this way its execution is included in that of its caller.
It should have infinite threads since it does not form a task queue,
and its execution must be allocated to the same processor as its
caller so the processor workload is correct. If it is included in
several processes on different processors then it must be
instantiated separately for each processor.

In this work, the LQN language that describes LQN models has
been extended in order to have more capability and flexibility to
model software components and component-based systems. This
extended language is based on XML language and termed CBML
(Component-Based Modeling Language). A CBML model is
organized as a structured model which is suitable for XML
language to describe. The XML schema (XSD schema) describes
the allowable contents and datatypes that a CBML document may
have. Some concepts in this modeling language are illustrated in
the following figures. These figures were generated by the
XMLSpy schema editor. In this simple example, the different variations can all be

represented by one component definition with different sets of
parameters. Any one of the variations can be constructed, by
substituting parameter values. This suggests the possibility of
generating a wide range of component submodels from compact
parameterized representations. The language CBML defined
below provides support for the parameters.

5.1 The Core of CBML
The core elements that are defined in an LQN model are shown in
Figure 10. The element slot has been introduced to support nested
component definition as mentioned in the previous sections. In
UML 2, the nested components are defined through bindings
between provided and required interfaces. In our CBML
performance components, the wiring is done through slots and
bindings which are defined within the slot. The details of the slot
will be introduced later.

The example also shows (in the last sentence) that a component
may have to specify some constraints as to how it can be bound.
Other constraints have to do with correct use of a component, by
matching the type of a request with the type of an offered
interface. For that purpose it is necessary to type the interfaces in
slots and component submodels, and to require some form of
matching. In general there is an issue of compatibility of a
component with a slot, which is addressed by the proposed
scheme but which will not be described in detail here.
Compatibility is addressed partly by typed interfaces; other
aspects include compatibility of components with the processor
platform, and the network protocols that some components use.

A task now has a service point associated with it. This service
point acts as a required interface of the task. Therefore, a software
component can be modeled by a task in a reduced form in which,
its provided interfaces are represented by the task’s entries while
the required interfaces are represented by the task’s services.

viewCtrl controllerreportCtrl

viewServer view

cacheServer cache

<<component>>
AppServer

<<in-port>>

viewService

<<in-port>>

reportService

<<out-port>>

smReptDBop

<<out-port>>

bigReptDBop

CtrlP

AsP <<out-port>>

cacheDBop

bigReport2 bigService2

smallReport1 smlService1

<<re-bindable-processor>>

smallReport2 smlService2

bigService1bigReport1

 Figure 9 An Internal View of AppServer with two replicated ReportServers components expanded inside it. Processor AsP is

bound to all the tasks within the dashed line.

Figure 10 Elements defined in LQN Core

However, the details of a software component can be modeled by
the performance sub-model which has explicit interfaces which
correspond to the software component design specifications as
described by UML 2. This sub-model will be introduced in the
next section.
In the diagrams that were generated by XMLSpy Schema editor,
the plus sign means that the details of the element have not been
expanded. The symbols such as 0..∞ and 1.. ∞ represent the
cardinality of the element that will appear in the model. The
dashed lines mean optional elements while solid lines represent
required elements in the model definition. The switch signs
represent alternatives. The attributes of the elements have not
been shown in these diagrams.

5.2 The CBML Sub-model Definition
The elements that are defined in CBML Sub-model are illustrated
in the following Figure 11. Again, the attributes of the elements
have not been shown.
A CBML sub-model has defined a section of Interface which
includes in-port, out-port and Replaceable-Processors that have
been introduced in the previous section. The attributes of the in-
port and out-port record the information associated with them,
such as the name of the port, any description of the port and the
source or target that they are connected from or connected to
inside the component.

The element Parameter defined in the sub-model is used for
specifying component variable parameters. The variable name
starts with a ‘$’ sign. This element has also defined a default
value for the parameters. When the component is instantiated in a
system model, if no instantiation value specified for a variable
that appears in the component model, then the default one will be
used.
A sub-model may or may not have any slots that will bind nested
components into this component. The definition of slot will be
detailed in the next section.

Figure 11 Elements Defined in CBML Sub-model

5.3 The Slot in CBML
The schema definition of a slot in CBML is illustrated in Figure
12 below.

vided

Figure 12 Elements Defined in a Slot
A slot has two main parts: Interface and binding. Interface
specifies the in-ports and out-ports that it has. Interface may be
associated with a type. The ports have specified the pro
services (by in-ports) and required services (by out-ports).

The element binding specifies how a compatible component can
be instantiated and plugged into the system model and connected
to the rest of the model through this slot. The element parameter

is used to customize the component model with appropriate
instantiation parameters passed in. The element processor-binding
specifies how a replaceable processor in the component model
can be replaced by a system processor. This reflects the aspect of
component configuration and deployment. The element port-
binding specifies how the slot is wired to the component by their

ed below. An

inding" maxOccurs="unbounded"/>

 <xsd:elemen rs="0"
ounded">

 <xsd:attribute e="name" type="xsd:string"
u

 e="value" type="xsd:string"

ype>

 <xsd:element inOccurs="0"
nded">

 <xsd:a rce" type="xsd:string"

 <xsd:a get" type="xsd:string"

Type>

 <xsd:element name="port-binding" minOccurs="0"
s="unbounded">

 <xs source" type="xsd:string"

 <x "target" type="xsd:string"

xType>
 </xsd:element>

duct where nested components and
repl

 the prefix of the

s

in Figure 3. For the study, the slots other than

have different

e CBML

The f

 a desired

ecific value for the “replic_num”

und to ReportServer in

ports (interfaces).

The XML schema for the element binding is list
introduction to XML schema can be found in [20].

<xsd:element name="b
 <xsd:complexType>
 <xsd:sequence>

t name="parameter" minOccu
maxOccurs="unb

 <xsd:complexType>
nam

se="required"/>
<xsd:attribute nam
use="required"/>

 </xsd:complexT
 </xsd:element>

 name="processor-binding" m
maxOccurs="unbou

 <xsd:complexType>
ttribute name="sou
use="required"/>
ttribute name="tar
use="required"/>

 </xsd:complex
 </xsd:element>

maxOccur
 <xsd:complexType>

d:attribute name="
use="required"/>
sd:attribute name=
use="required"/>

 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:comple

Using a slot, a single class of component model can be
instantiated as several identically replicated component models in
the system model if necessary. There is an attribute “replic_num”
associated with the definition of slot which can be used to specify
how many replicas of the component model are needed. Based on
this, the calls coming into this slot will be split equally to the
replicated components. This is very useful in the case of modeling
several identical software components or sub-systems. An
example has been described in section 3.5 where the inner
component has two replicas. The next section will provide a
practical example of applying this language to model a large
commercial software pro

ications are involved.

On the other hand, using slots facilitates the naming issues
for the instances of the performance component. Each slot must

have an id associated with it which is used as
elements in the component model.

5.4 Special Types of Components
A performance study may also require component sub-models
that are not part of the product, but represent parts of its
environment, such as middleware, file systems, databases or web
services used by the product. This class of components was
discussed in [17] under the name of “completions”, because they
are needed to complete the performance model. In that work it
was envisaged that they might be added automatically, based on
special annotations and rules. The slot feature described here is
suitable for representing explicit services such as databases or file
systems. However middleware or network sub-models might be
introduced wherever their use is implied by the configuration (e.g.,
by knowledge of the network used between two specified
processors). This would require suitable rules for introducing slot
where needed.

6. AN APPLICATION OF COMPONENTS
The component model and language were applied to a software
product line in management information systems, described by
the overall model
ApplicationServer were represented by LQN tasks, as shown in
Figure 13.
Some of the possible variations in ApplicationServer have
components with different structure and some
parameters. Here we will consider parameter changes on the one
component AppServer defined in Figures 7 and 8.
There are many possible variations in ApplicationServer. For
instance, there may be no caching involved. Or it may need to
access some additional databases. Other possible options may be
that it needs to access additional servers for specific analysis (e.g.
for data mining or optimization). By taking different parameters,
the performance component of AppServer can also model the
application node whose internals may have different software but
still accomplish the similar functionalities with different
performance attributes. A typical case of this is that there may be
several replicated application nodes deployed on several single
processors. There may be only one application node deployed on
one more powerful machine (e.g. multiple processors) too. The
size of the thread pool for the report server and cache server can
also be varied. All these variations can be expressed in th
language.

ollowing types of variations were considered here:
The variable threading levels can be described by defining
the multiplicity of the tasks in LQN model as a variable.
When the component AppServer is instantiated,
number of threads can then be passed into through the slot
which binds the AppServer to the system model.
The variable number of replications of AppServer can be
achieved by giving a sp
which is the attribute of slot that is bound to AppServer as
described in section 4.3.
The number of report servers that are running inside the
AppServer can also be varied and their replications can also
be achieved by specifying the value of the attribute
“replic_num” for the slot that is bo

the component AppServer. This value can be passed from
the outside component AppServer.

The rebindable processor in AppServer can be used without
rebinding (to give a separate platform) or bound to a system
processor shared with other functions in the system.

viewCtrl controllerreportCtrl

viewServerview

cacheServercache

CtrlP

AsP

bigReport2 bigService2

smallReport1 smlService1

smallReport2 smlService2

bigService1bigReport1

Request Client

RSRequest RSClient VSRequest VSClient

AcceptVS WebServerAcceptRS

bigReptDBop DBServercheDBopsmDBReptop ca

CliP

WebP

Figure 13 The Final System Model

Response time for RS &VS

0

50

100

150

200

250

300

350

0 50 100 150 200

No. of users

R
es

po
ns

e
tim

e
(s

ec
)

Response time of RS Response time of VS

Figure 14 Response Time for the Base Case

the base case

rver and 2
threads for the smallReport server. The results are shown in
Figure 15. The response times are both much smaller.

6.1 Results for some cases
Some cases were considered that embody these variations, with
the results shown below. Performance calculations were done by
the LQN solver [5] [6]. Results are given for response times of the
Reporting Service (labeled RS) and Viewing Service (labeled VS).
As the results are only shown to illustrate the type of the
experiments that are possible, the parameters of the model are not
given here. The base case has two report servers (each has one
thread for the smallReport server and five threads for the
bigReport server) and the cache server is single threaded. The
application node has two processors. The results of
are shown in Figure 14. We can see that the response time for 100
users are about (150, 60) for (RS,VS), respectively.
The next case introduced 10 threads for the cache se

System response time for RS & VS

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

No. of users

R
es

po
ns

e
tim

e(
se

c)

Response time for RS Response time for VS

Figure 15 Response Time for Multithreaded Cache Server

and SmallReport Server

The following two cases have introduced two replicated
AppServers running on two nodes, each with its own single
processor.
Figure 16 shows the results for a single threaded Cache Server.
The response times are better than the base case with no
replication, but worse than Figure 15, which includes Cache
Server threads.

System response time of RS for
Case II-1 and the Base Case

0

50

100

150

200

250

300

350

0 50 100 150 200

No. of users

re
sp

on
se

 ti
m

e(
se

c)

response time of RS in Case II-1
response time of RS in the Base Case

Figure 16 Response Time for Two Replicated AppServers and

Single-Threaded Cache Server
Figure 17 shows results with two replicated AppServers and a
Cache Server with 10 threads. The response times for 100 users
are now (RS, VS) (10, 8) roughly, which is the best so far.

System response time of RS & VS

0

5

10

15

20

25

0 50 100 150 200

No. of users

re
sp

on
se

 ti
m

e(
se

c)

response time of RS response time of VS

Figure 17 Response Time for two Replicated AppServers and 10 threads of

The example results show how certain variations, which were of
interest in an industrial context, could be addressed using
components and parameters. The results indicate that the cache
server really must be multi-threaded, and that this is more
effective than additional report servers.
The cases described here only don’t exploit all the features of the
model and the language. Other examples have exploited the
ability to bind different submodels, for instance.

7. RELATED WORK
Hissam et.al. have argued in favour of a "prediction-enabled
component technology" (PECT) [9] which includes analysis for
prediction of the assembly-level properties of a composed system.
Their concept of analysis is very general, but this work would fit
well into PECT. They provide an example of performance
analysis, which is much simpler than the systems described here
(for example, it does not include concurrency or contention).
Bertolino and Mirandola [1] describe a CBSE performance
framework, in which composition is defined by UML sequence
diagrams for the interactions between components. They do not
create submodels of components, and they cannot replace one
component by another, without going through all the modeling
steps again. Components are modeled only at the object level,
with no mention of concurrency within a component.
Languages for software composition are also related to CBML.
One such language, also based on XML, is XCompose [15]. As
with CBML, XCompose specifies the services offered by the
component (its methods) and the services it requires from its
environment. Unlike CBML however, it specifies composition in
terms of a usage scenario or program, in which the methods of the
component are called. CBML describes the number of service
calls to a component, rather than the sequence; this is a more
aggregated description suitable for many performance
calculations. In fact it is also possible to describe sequences of
calls to component interfaces in CBML. Thus the similarity in
language facilities is quite strong.

8. CONCLUSIONS
The language CBML (based on XML and UML2) describes
performance models of software components and component-
based systems. It has the capability to capture the performance-
related features of software components, their integration and
deployment in the system, and variations between alternative
components in a product line. It has been applied to an industrial
software product, and met (or exceeded) all the needs of the study;
some of the results have been briefly described.
A model assembler tool, not described here, generates
performance models automatically using a library of component
sub-models. The performance components are reusable, just like
the software component themselves. The language and the tool
have been applied to model a commercial software product in a
software product line.
The combination of layered performance modeling and
components described at an architectural level, as in CBML,
appears to be well suited to the analysis of software product lines
and other kinds of component-based systems. Some language
features that will be required to specify constraints on components
have been indicated but are not described in this paper.

9. ACKNOWLEDGMENTS
We gratefully acknowledge financial support provided by Nortel
Networks through a postgraduate scholarship, and by NSERC (the
Natural Sciences and Engineering Research Council of Canada).
Discussions with Godfrey Lee, Jim Miller-Cushon and Bob
Minns helped us to understand the case study application.

10. REFERENCES
[1] A. Bertolino and R. Mirandola, "Towards Component-based

Software Performance Engineering," in Sixth ICSE
Workshop on Component-based Software Engineering,
Portland, Oregon, May 2003, pp. 1 – 6

[2] .J. Bosch, “Design and use of software architectures;
Adopting and evolving a product-line approach”, Addison-
Wesley, 2000

[3] P. Clements and L. Northrop. “Software Product Lines;
Practices and Patterns”, Addison-Wesley, 2000

[4] Czarnecki, K. and U. Eisenecker, “Generative Programming”,
Addison Wesley, 2000.

[5] G. Franks, A. Hubbard, S. Majumdar, J. Neilson, D.C. Petriu,
J.A. Rolia and C.M. Woodside, "A Toolset for Performance
Engineering and Software Design of Client-Server Systems",
Performance Evaluation, vol. 24, pp117-136, 1995

[6] R.G. Franks, S. Majumdar, J.E. Neilson, D.C. Petriu, J.A.
Rolia and C.M. Woodside, "Performance Analysis of
Distributed Server Systems", Proc. Sixth Int. Conf. on
Software Quality, Ottawa, Oct. 28-30, 1996, pp. 15-26.

[7] Greg Franks, Murray Woodside, "Performance of Multi-level
Client-Server Systems with Parallel Service Operations",
Proc. First Int. Workshop on Software and Performance
(WOSP98), pp. 120-130, Santa Fe, October 1998

[8] G. T. Heineman and W. T. Councill, “Component-Based
Software Engineering; Putting the Pieces Together ”,
Addison-Wesley, 2001

[9] S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C.
Wallnau, "Packaging Predictable Assembly," in Component
Deployment 2002 (CD2002), Berlin, June 2002.

[10] M. Kempa and V. Linnemann, “XML-Based Applications
Using XML Schema”, XML-Based Data Management and
Multimedia Engineering-EDBT 2002 Workshops, Springer,
Lecture Notes in Computer Science.P67-P90

[11] Object Management Group, “UML 2”, ptc/03-08-02, August
2, 2003 (Accessible from http://www.omg.org/docs/ptc/03-
08-02.pdf)

[12] D. Petriu, M. Woodside, "Analysing Software Requirements
Specifications for Performance", Proc. Third Int. Workshop
on Software and Performance, Rome, July 2002

[13] K. H. Siddiqui and C.M. Woodside “Performance aware
software development (PASD) using resource demand
budgets” In the Proc. of the Third Int. workshop on Software
and Performance, pp.275 – 285, July 2003

[14] C. Szyperski, “Component Software; Beyond Object-
Oriented Programming”, Addison-Wesley, 1998

[15] N. Tansalarak, K.T. Claypool, "XCompose: An XML-based
Component Composition Framework", Third Int. Workshop
on Composition Languages, 17th European Conference on
Object-Oriented Programming (ECOOP 2003), Darmstadt,
Germany July 22, 2003.

[16] C.M. Woodside, J.E. Neilson, D.C. Petriu and S. Majumdar,
"The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-Like Distributed
Software", IEEE Transactions on Computers, Vol. 44, No. 1,
January 1995, pp. 20-34

[17] M. Woodside, D.B. Petriu, K. H. Siddiqui, "Performance-
related Completions for Software Specifications", Proc 24th
Int. Conf. on Software Engineering (ICSE 2002), Orlando.
May 2002.

[18] M. Woodside, “Tutorial Introduction to Layered Modeling of
Software Performance”, Edition 3.0, May 2002 (Accessible
from http://www.sce.carleton.ca/rads/lqn/lqn-
documentation/tutorialg.pdf)

[19] Xiuping Wu, David McMullan, Murray Woodside,
“Component Based Performance Prediction”, 6th Int.
Workshop on Component-based Software Engineering, part
of ICSE 2003, Portland Oregon, May 2003.

[20] R. A. Wyke and A. Watt. “XML Schema Essentials”, Wiley
Computer Publishing, 2002

[21] S. Yacoub. “Performance Analysis of Component-Based
Applications”, Proceedings of the Second Software Product
Line Conference, pp.299-315, San Diego, CA, USA, August
2002

http://www.omg.org/docs/ptc/03-08-02.pdf
http://www.omg.org/docs/ptc/03-08-02.pdf
http://www.sce.carleton.ca/rads/lqn/lqn-documentation/tutorialg.pdf
http://www.sce.carleton.ca/rads/lqn/lqn-documentation/tutorialg.pdf

	COMPONENT-BASED SYSTEM SPECIFICATION
	Specifications for Software Components
	A Management Information System

	LAYERED MODELING OF COMPONENTS
	Layered Queueing Network Models
	Components in Layered Models
	External View of CBML Component
	Internal View of CBML Component
	A Nested Component

	THE CHALLENGE OF PERFORMANCE CHARACTERIZATION OF SOFTWARE CO
	THE CBML LANGUAGE
	The Core of CBML
	The CBML Sub-model Definition
	The Slot in CBML
	Special Types of Components
	Results for some cases

	RELATED WORK
	ACKNOWLEDGMENTS
	REFERENCES

