A Combined LIFO-Priority Scheme for Overload Control of E-commerce Web Servers

Naresh Singhmar Vipul Mathur Varsha Apte
D. Manjunath

Indian Institute of Technology - Bombay Powai, Mumbai, 400 076, India

International Infrastructure Survivability Workshop, 2004

UK E-tailers 'lose £300m' in Xmas sales

"Top UK E-tailers are estimated to have lost more than £300 million over the busy Christmas shopping period because of flaky website performance."

-The Register, January 15, 2004

E-tail sites failing the Xmas tes

"Empirix monitored the websites of 10 of the UKs biggest and best retailers and found many were failing to take all the hassle out of Christmas shopping."

-Silicon.com, December 19 2003

Online retail sites strain under Black Friday'

"Online retailers failed to complete 1 in 5 transactions during peak hours of the biggest shopping day of Xmas season"

—InternetWeek com_perember 4, 2003

Iraq conflict hits Web sites hard

"... traffic to the site has already almos tripled and is expected to grow further. ... the top 15 news sites have seen traffic jump by more than 40%."—BBC News Online, March 20, 2003

UK E-tailers 'lose £300m' in Xmas sales

"Top UK E-tailers are estimated to have lost more than £300 million over the busy Christmas shopping period because of flaky website performance."

—The Register, January 15, 2004

E-tail sites failing the Xmas test

"Empirix monitored the websites of 10 of the UKs biggest and best retailers and found many were failing to take all the hassle out of Christmas shopping."

Online retail sites strain under 'Black Friday'

"Online retailers failed to complete 1 in 5 transactions during peak hours of the biggest shopping day of Xmas season" —InternetWeek.com, December 4, 2003

Iraq conflict hits Web sites hard

"... traffic to the site has already almos tripled and is expected to grow further. ... the top 15 news sites have seen traffic jump by more than 40%."— BBC News Online, March 20, 2003

UK E-tailers 'lose £300m' in Xmas sales

"Top UK E-tailers are estimated to have lost more than £300 million over the busy Christmas shopping period because of flaky website performance."

—The Register, January 15, 2004

-silicon.com, December 19 2003

E-tail sites failing the Xmas test

"Empirix monitored the websites of 10 of the UKs biggest and best retailers and found many were failing to take all the hassle out of Christmas shopping."

Online retail sites strain under Black Friday'

"Online retailers failed to complete 1 in 5 transactions during peak hours of the biggest shopping day of Xmas season"

—InternetWeek.com. December 4 2003

Iraq conflict hits Web sites hard

"... traffic to the site has already almos tripled and is expected to grow further. ... the top 15 news sites have seen traffic jump by more than 40%."—BBC News Online, March 20, 2003

UK E-tailers 'lose £300m' in Xmas sales

"Top UK E-tailers are estimated to have lost more than £300 million over the busy Christmas shopping period because of flaky website performance."

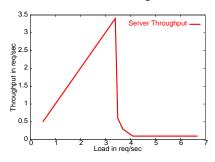
—The Register, January 15, 2004

E-tail sites failing the Xmas test

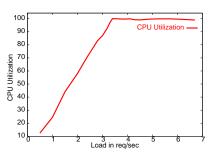
"Empirix monitored the websites of 10 of the UKs biggest and best retailers and found many were failing to take all the hassle out of Christmas shopping."

Online retail sites strain under Black Friday'

"Online retailers failed to complete 1 in 5 transactions during peak hours of the biggest shopping day of Xmas season"


—InternetWeek.com. December 4 2003

Iraq conflict hits Web sites hard


"... traffic to the site has already almost tripled and is expected to grow further. ... the top 15 news sites have seen traffic jump by more than 40%." – BBC News Online, March 20, 2003

- Overload: Offered load > system capacity
- Cause of Overload: sales, big shopping days, server failures, breaking news

Throughput vs. Load

CPU Utilization vs. Load

Effects of Overload

- Increased response time
- Abandonment due to timeouts
- Retries ⇒ increase in load
- Dramatically deteriorated throughput
- E-commerce Web sites lose revenue
- Customer experience deteriorates at times of peak usage

Objective of Overload Control

Reduce the amount of lost requests and increase throughput

Effects of Overload

- Increased response time
- Abandonment due to timeouts
- Retries ⇒ increase in load
- Dramatically deteriorated throughput
- E-commerce Web sites lose revenue
- Customer experience deteriorates at times of peak usage

Objective of Overload Control

Reduce the amount of lost requests and increase throughput

Effects of Overload

- Increased response time
- Abandonment due to timeouts
- Retries ⇒ increase in load
- Dramatically deteriorated throughput
- E-commerce Web sites lose revenue
- Customer experience deteriorates at times of peak usage

Objective of Overload Control

Reduce the amount of lost requests and increase throughput

Overload Control

Previous Work

Focusses mainly on sophesticated techniques which may be diffi cult to implement, or are too generic to be effective for E-commerce Web-servers with dynamic content

Our Work

Focus on simplicity, ease of implementation, and on E-commerce Web-servers

Overload Control

Previous Work

Focusses mainly on sophesticated techniques which may be diffi cult to implement, or are too generic to be effective for E-commerce Web-servers with dynamic content

Our Work

Focus on simplicity, ease of implementation, and on E-commerce Web-servers

Possible Activities on an On-line Store (Screen shots courtesy Amazon.com)

Possible Activities on an On-line Store (Screen shots courtesy Amazon.com)

Possible Activities on an On-line Store (Screen shots courtesy Amazon.com)

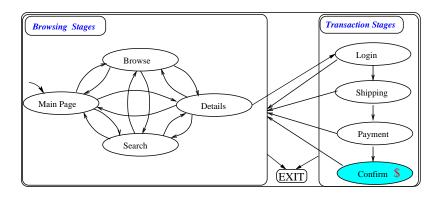
Possible Activities on an On-line Store (Screen shots courtesy Amazon.com)

Possible Activities on an On-line Store (Screen shots courtesy Amazon.com)

Possible Activities on an On-line Store (Screen shots courtesy Amazon.com)

Amai	on.com Checkout: Select Address - Mozilla Firef	ox .	- 0
ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmark	s <u>T</u> ools <u>H</u> elp <mark>J https://www.amazon.com/gp/flex/c</mark>	heckout/sign-in/sel 🗂 💌 🔘 G	o 😛 🤄
0 6 X 6 0 8 · ·		P.	
amazon.			-
	SIGN IN SHIPPING & PAYMENT GIFT-WRAP	PLACE ORDER	
Enter the shipping add Please enter a shipping add	ress for this order. When finished, click the		
"Continue" button. Or, if you	're sending items to more than one address, click utton to enter additional addresses.		
Full Name:		-	
Full Name:	l .	_	
Address Line1:	Street address (PO Boxes not acceptable)		
Address Line2:			
City:	Apartment, suite, unit, building, floor, etc.		
State/Province/Region:			
ZIP/Postal Code:			
Country:	United States		
Phone Number:			
Continue ()	1		
		-	_ [
one		www.amazon.o	om (

Possible Activities on an On-line Store (Screen shots courtesy Amazon.com)


Possible Activities on an On-line Store (Screen shots courtesy Amazon.com)

E-commerce Workload Model

- Most users go only through Browsing stages
- Very few proceed to revenue generating *Transaction stages*

Proposed Scheme and Architecture

Key Ideas of Proposed Solution

Increase completion rate of revenue generating requests

- Separate queues for each type of request
- Transaction queues have strictly higher priority than browsing queues
- Relative priority within transaction and browsing based on "utility" of the queue

Increase the overall throughput of Web-server during overload

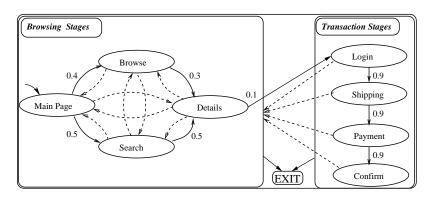
- Using LIFO for browsing queues during overload
- Switch between LIFO and FIFO based on thresholds
- Always FIFO for transaction queues

Key Ideas of Proposed Solution

Increase completion rate of revenue generating requests

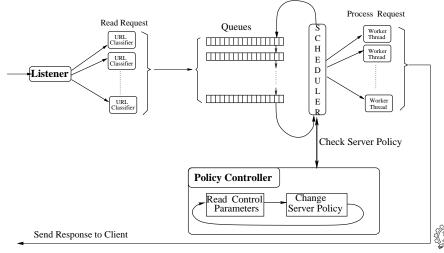
- Separate queues for each type of request
- Transaction queues have strictly higher priority than browsing queues
- Relative priority within transaction and browsing based on "utility" of the queue

Increase the overall throughput of Web-server during overload


- Using LIFO for browsing queues during overload
- Switch between LIFO and FIFO based on thresholds
- Always FIFO for transaction queues

E-commerce Workload Model

Represented as a Markov Chain


Probability of generating revenue can be used as 'utility' value

Proposed Web-server Architecture

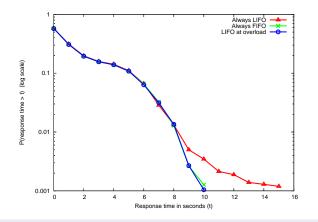
A prototype Web-server with this architecture has been implemented

LIFO-Pri Scheme

Set Service Discipline of Browsing Queues

- Measure CPU Utilization over an interval
- If utilization is more than upper threshold, then set browsing queue discipline to LIFO
- If utilization is less than lower threshold, then set browsing queue discipline to FIFO

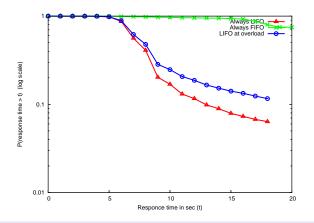
LIFO-Pri Scheme


Dynamic Priority

- When a worker thread is available and at least one queue has a pending request,
- Calculate dynamic priority of each queue
 queue length × utility
- Select the queue with highest dynamic priority
- Read a request from this queue according to current service discipline
- Assign worker thread to request.

LIFO vs. FIFO: Response Time

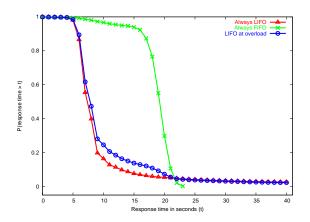
Response time distribution at $\rho = 0.941$ with a timeout of 20 seconds.



LIFO always has longer tail in non-overload conditions

LIFO vs. FIFO: Response Time

Response time distribution at $\rho = 1.47$ with a timeout of 20 seconds.



 $P[R_{LIFO} > 15] = 0.1$ whereas $P[R_{FIFO} > 15] = 0.95$



LIFO vs. FIFO: Response Time

Response time distribution at $\rho = 1.47$ with a timeout of 40 seconds.

For longer timeout, long tail of LIFO is seen again

LIFO vs. FIFO: Throughput

Timeout of 40 seconds ($ ho=$ 1.47)				
Percentage	Always-FIFO	Always-LIFO	LIFO-at-overload	
Completed	86.7	84.4	84.6	
Timed-out	00.0	02.3	02.0	
Dropped	13.3	13.4	13.4	
Timeout of 20 seconds ($ ho=1.47$)				
Completed	21.9	81.0	76.8	
Timed-out	64.9	05.4	09.7	
Dropped	13.3	13.6	13.4	

Large rate of abandonment in FIFO with a shorter timeout

Observations

Summary of Observations for LIFO vs. FIFO

- Longer tail for LIFO ⇒ using LIFO not appropriate when offered load < capacity
- Larger timeout value favors FIFO (no long tail)
- Success rate is higher for LIFO policies in overload (with small timeouts)
- LIFO-at-overload gives higher throughput and better response time distribution in overload

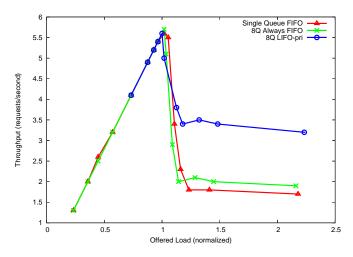
Experiments and Results

19

Experimental Setup

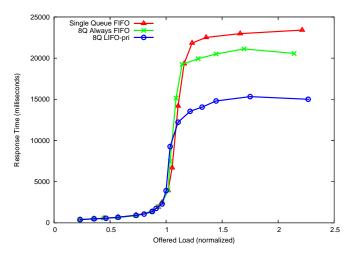
- Emulate an E-commerce Web site
- Eight stages represented by Perl CGI scripts
- Modifi ed version of httperf for workload generation
- Exponentially distributed timeouts
- Retries for requests abandoned due to timeouts
- Session abandonments
- Separate priority queues for each type of request: 4 browsing, 4 transaction

Experiments Performed


Three sets of experiments were done.

- Single Queue: FIFO order. Capacity: 100.
- 8Q Always FIFO: All 8 queues always in FIFO order.
 Capacity: 50 for browsing queues, 25 for transaction queues.
- 8Q LIFO-Pri: LIFO at overload for browsing queues.
 Always FIFO for transaction queues.

Dynamic priority is used for multi-queue setups. Utility of a queue is assigned in proportion to probability of a request in that queue resulting in a final 'confi rm' transaction.


Overall Throughput vs. Offered Load

Average Response Time vs. Offered Load

Looking at Request Types

Throughput data for different types of requests at $\rho = 1.4$

Case	Requests	Browsing	Tr-1	Tr-2	Tr-3	Tr-4
	Generated	42029				
	Completed	16170	20	15	9	8
SQ	Timed out	20029	18	5	1	1
	Dropped	ropped 5753				
	Generated	43324	24	20	19	15
	Completed	19852	23	19	19	15
8Q-AF	Timed out	16305	1	1	0	0
	Dropped	7167	0	0	0	0
	Generated	44826	195	137	99	53
	Completed	30851	187	127	87	50
8Q-LIFO-Pri	Timed out	4075	8	10	12	3
	Dropped	9900	0	0	0	0

Looking at Request Types

Requests Completed at $\rho = 1.4$

Case	Browsing	Tr-1	Tr-2	Tr-3	Tr-4
SQ	16170	20	15	9	8
8Q-AF	19852	23	19	19	15
8Q-LIFO-Pri	30851	187	127	87	50

6-7 fold increase in 'confi rm' requests from SQ to 8Q-LIFO-Pri

Overall Throughput Data

At $\rho = 1.4$ (percentages)

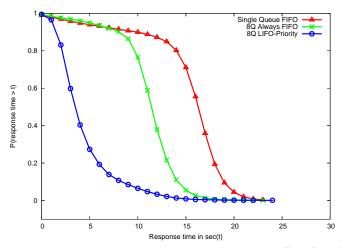
Case	SQ	8Q-AF	8Q-LIFO-Pri
Completed	29.9	36.6	57.5
Timed out	36.8	29.9	07.5
Dropped	10.6	13.1	18.2
Not Generated	22.8	20.4	16.8

Summary

- Presented a reasonably realistic model of E-commerce workload
- LIFO-Pri scheme for overload control: experimentally verifi ed
 - Server could do productive work at 60% of its capacity
 - Upto a 7-fold increase in number of successful 'confi rm' requests when compared to single queue model
 - Minimal overheads
- Outlook
 - Need to look at better indicators of overload
 - More appropriate user behavior models
 - Analytical models for further insight

Thank You!

http://www.cse.iitb.ac.in/perfnet



28

Response Time Distribution

29

Response time distribution for 'main' page requests for $\rho = 1.4$

Previous Work

Previous Work

- Session-based admission control. (Cherkasova and Phaal)
- Dynamic Weighted Fair Sharing. (Chen and Mohapatra)
- Admission control with request scheduling. (Elnikety et al)
- Control theory based approach. (Abdelzaher et al.)
- Improving user-perceived performance at a Web server. (Dalal and Jordan)

Sample 'Utility' Values for Queues

Request Queue	Utility
Main Page (Br-1)	27
Browsing (Br-2)	22
Searching (Br-3)	36
Details (Br-4)	73
Login (Tr-1)	3650
Shipping (Tr-2)	4050
Payment (Tr-3)	4500
Confi rm (Tr-4)	5000

31