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Abstract

Web servers must be protected from overload since
server overload leads to low server throughput and in-
creased response times experienced by the clients. Server
overload occurs when one or more server resources are
overutilized. In this paper we present an adaptive archi-
tecture that performs admission control based on the ex-
pected resource consumption of requests. By dynamically
setting the maximum rate of accepted requests, we avoid
overutilization of the critical resources. We also provide
mechanisms for service differentiation. We present our ad-
mission control architecture and experiments that show that
it can sustain low response times and high throughput for
premium clients even during high load.

1 Introduction

Many web server architectures deploy admission control
to maintain high throughput and low response times dur-
ing periods of peak server load. Servers become overloaded
when one or more critical resources – CPU, disk and net-
work interface – are overutilized. Depending on the current
workload, some server resources can be overutilized, while
the demand on other resources is not very high because cer-
tain types of requests utilize one resource more than others.
This paper presents an architecture that avoids overutiliza-
tion of individual server resources by taking into account
the resource consumption of requests when performing ad-
mission control. Most web server architectures reject excess
requests without discriminating between different resource
bottlenecks [3, 4] or use only one indicator for overload,
often CPU utilization [5]. Qguard [8] bases the admission
decision on network-level information such as IP addresses
and port numbers. Hence, they cannot take the potential
resource consumption of requests into account, but have to
reduce the acceptance rate of all requests when one resource
is overutilized.

In our architecture individual server resources are pro-

tected from overutilization by dynamically setting the ac-
ceptance rate of resource-intensive requests. Resource-
intensive requests and the resource they demand are iden-
tified by the URL in the HTTP header. We supervise the
resources CPU and network interface and adapt the rate of
CPU and bandwidth intensive requests according to the uti-
lization of the corresponding resource. The adaptation of
the acceptance rates is done using feedback control loops.
Techniques from control theory have been used successfully
in server systems before [9, 6, 4].

The main focus of this paper is the provision of service
differentiation in our architecture. In our adaptive architec-
ture accepted requests can be processed quickly since server
resources are not overutilized. This leads to low response
times. Therefore, the major goal of service differentiation
in our architecture is to provide high throughput to premium
clients. This is done by splitting the token buckets used for
admission control into logical partitions [10]. Each logical
partition corresponds to one service class with larger parti-
tions for more important service classes.

We have implemented this admission control architec-
ture in the Linux OS. Our results show higher throughput
and much lower response times during overload compared
to a standard Apache on Linux configuration. Also, service
differentiation works as expected.

The rest of the paper is structured as follows: The next
section presents the system architecture and Section 3 illus-
trates how the architecture provides service differentiation.
Section 4 presents experiments that evaluate various aspects
of our system. We conclude after a brief discussion.

2 Architecture

Our admission control architecture deploys two mecha-
nisms that have been described earlier [12].

� TCP SYN policing limits acceptance of new SYN
packets based on compliance with a token bucket po-
licer. Token buckets have a token rate, which denotes
the average number of requests accepted per second
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and a bucket size which denotes the maximum number
of requests accepted at one time. TCP SYN policing
enables service differentiation based on information in
the TCP and IP headers of the connection request (i.e,
the IP source and destination addresses and port num-
bers).

� HTTP header-based connection control is activated
when the HTTP header is received. Using this mech-
anism a more informed control is possible which pro-
vides the ability to, for example, specify lower access
rates for resource-intensive requests. This is done us-
ing filter rules, e.g., checking URL, name and type.
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Figure 1. Kernel-based architecture

The admission control architecture is depicted in Fig-
ure 1. It contains the following entities:

� A TCP SYN policer.

� An HTTP header-based connection control entity to
identify and rate control resource-intensive requests.

� A resource monitor and control module.

� An unmodified Apache web server.

Our architecture assumes that resource-intensive web
objects such as CGI-scripts are grouped according to their
resource demand in the web server’s directory tree. For
example, all CPU-intensive scripts should reside in the
/cgi-bin directory. This way, HTTP header-based con-
nection control using a filter rule /cgi-bin and the asso-
ciated token bucket policer is able to restrict the acceptance
of CPU-intensive requests.

On receipt of a request, HTTP header-based connection
control parses the URL and matches it against the filter
rules. If there is a match, the corresponding token bucket
is checked for compliance. Compliant requests are inserted
into the listen queue, non-compliant requests are discarded
by resetting the connection1. We call this part of our ad-
mission control architecture resource-based admission con-
trol. Resource-based admission control makes sure that
resource-intensive requests do not cause overutilization of
the corresponding critical resources. We supervise the re-
sources CPU and network interface. Both high CPU uti-
lization and dropped packets on the networking interface
can lead to long delays and low throughput. Other resources
that could be controlled are disk I/O bandwidth and mem-
ory.

As Figure 1 shows, we do not perform resource-based
admission control on all requests. Requests such as those
for small static files do not put significant load on one re-
source. However, if requested at a sufficiently high rate,
these requests can still cause server overload. Hence, ad-
mission control for these requests is needed. It would have
been possible to insert a default rule and use another token
bucket for these requests. Instead, we have decided to use
TCP SYN policing and police all incoming requests.

The main reason for deploying TCP SYN policing is its
early discard capability. Using SYN policing, less resources
are wasted for requests that are eventually discarded. One
of our design goals is to keep TCP SYN policing inac-
tive while resource-based admission control can protect re-
sources from being overutilized. Resource-based admission
control can access other application-level information, such
as cookies. This enables the identification of ongoing ses-
sions or premium clients while SYN policing cannot access
such information.

For each of the critical resources, we use a feedback
control loop to adapt the token rate at which we accept re-
quests demanding that particular resource. The adaptation
of the rates is done using proportional and derivative con-
trollers [7]. We do not adapt the bucket size but assume it
to be fixed.

We deploy one controller, the CPU controller, to adapt
the acceptance rate of CPU-intensive requests based on the
current CPU utilization. The bandwidth controller adapts
the acceptance rate of large, static requests based on the
length of the queue to the network interface. In addition, we
use a third controller that is not responsible for a specific
resource but performs admission control on all requests,
including those that are not associated with a specific re-
source. The latter controller, the SYN controller, is respon-
sible for the rate of the TCP SYN policer. The rate of the
SYN controller is adapted based on the length of the listen

1A nicer solution is to send a “server temporarily unavailable” (503
response code) back to the client and close the connection.
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queue.
Both HTTP header-based connection control and TCP

SYN policing are located in the kernel to avoid a context
switch to user space for rejected requests. The deployment
of mechanisms in the kernel has proven to be much more
efficient and scalable than in the web server [12]. Note that
usually connections are enqueued into the server’s listen
queue before the HTTP header is received. In our archi-
tecture we delay this enqueuing until the HTTP header is
received, parsed and HTTP header-based connection con-
trol has been performed.

3 Service Differentiation

One of the design goals of our architecture is to provide
better service to premium clients, for example, clients hav-
ing a service contract with the service provider. In an adap-
tive architecture the length of the listen queue is almost al-
ways zero. This means that traditional mechanisms to pro-
vide service differentiation in web servers, such as having
different queues for each service class [3] or reordering of
the listen queue [12], will have little effect, at least when
not used in combination with other schemes. As the exper-
iments in the next section show, using our adaptive archi-
tecture the average response time is low. In the experiments
without service differentiation, the average response time of
the accepted requests is almost always below 150 millisec-
onds, even when the offered load is very high. Even the
90-percentile of the response time is not high, mostly be-
low 200 milliseconds. This means, that the important task
of service differentiation is to make sure that the acceptance
rate of premium requests is higher than the acceptance rate
of standard requests.

To achieve higher throughput for more important service
classes, we divide token buckets into logical partitions or
logical buckets [10], one for each service class. Generated
tokens are divided between the logical bucket with a spec-
ified proportion. When a logical bucket is full, the newly
generated tokens for this partition are put into the overflow
buffer. Requests can consume these extra tokens when there
is no token in their logical partition. This enables requests
belonging to one service class to use unused tokens from
the other service class.

Figure 2 shows an example with two service classes
which are distinguished based on network-level informa-
tion. TCP SYN policing would use such a scheme. For
example, we could choose to reserve two thirds of the to-
kens for the “premium partition”, i.e., for premium clients,
and one third for the “standard partition”. This should lead
to twice the acceptance rate for premium requests compared
to standard requests when the offered load is sufficiently
high. Requests are matched against filter rules to determine
the logical bucket corresponding to their service class. For
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rate rate
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dIP 1, sIP 1, dPort 1, sPort 1
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Token rate
Token Bucket
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Figure 2. Token bucket with logical partitions

example, the first two filter rules in Figure 2 could contain
the IP addresses of premium clients while the last filter rule
could be a default rule matching all other requests.

The same scheme can also be used to provide service
differentiation for resource-based admission control. For
example, the token bucket associated with CPU-intensive
requests could be partitioned in the same way as described
above.

Note that also the size of the logical buckets plays an im-
portant role. Larger bucket sizes lead to higher throughput
when the request arrival distribution is bursty. When the
bucket size is small, requests need to arrive at the server at
regular intervals in order to make full use of the bucket’s
rate. Therefore, it is meaningful to use a larger bucket size
for the premium partition than for the standard partition.

4 Experiments

Our testbed consists of a server and two traffic generators
connected via a 100 Mb/sec Ethernet switch. The server
machine is a 600 MHz Athlon with 128 MBytes of mem-
ory running Linux 2.4. The traffic generators run on a 450
MHz Athlon and a 200 MHz Pentium Pro. The server is an
unmodified Apache web server, v.1.3.9.

For client load generation we use the sclient traffic gen-
erator [1]. Sclient is able to generate client request rates that
exceed the capacity of the web server. This is done by abort-
ing requests that do not establish a connection to the server
in a specified amount of time. Sclient in its unmodified ver-
sion requests a single file. For most of our experiments we
have modified sclient to request files according to a work-
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load that is derived from the surge traffic generator [2]. The
workload has three important properties: The size of the
files stored on the server follows a heavy tailed distribution.
The request size distribution is heavy tailed and the distri-
bution of popularity of files follows Zipf’s Law. Zipf’s Law
states that if the files are ordered from most popular to least
popular, then the number of references to a file tends to be
inversely proportional to its rank.

We separate the files in two directories on the server. The
files >50 KBytes are put into one directory (/islarge),
the smaller files into another directory. We make 20% of the
requests for small files dynamic. The dynamic files used in
our experiments are minor modifications of standard Web-
stone [11] CGI files and return a file containing randomly
generated characters of the specified size.

For the acceptance rate of both CGI-scripts and large
files, minimum rates can be specified. The reason for this
is that the processing of CGI-scripts or large files should
not be completely prevented even under heavy load. This
minimum rate is set to 10 reqs/sec in our experiments.

4.1 CPU Utilization and Listen Queue Length

We use two controllers in this experiment: the CPU con-
troller that adapts the acceptance rate of CGI-scripts and
the SYN controller. In the experiment, about 20% of the
requests are for CGI scripts. We vary the request rate
across runs. The goals of the experiment are the follow-
ing: First, showing that the control algorithms and in par-
ticular resource-based admission control prevent overload.
Second, showing that TCP SYN policing becomes active
when resource-based admission control alone cannot pre-
vent server overload. Third, demonstrating that the sys-
tem achieves high throughput and low response times over
a broad range of request rates.

When the request rates are low, we expect that no re-
quests should be discarded. When the request rate in-
creases, we expect that the CPU becomes overutilized
mostly due to the CPU-intensive CGI-scripts. Hence, for
some medium request rates, policing of CGI-scripts is suf-
ficient and TCP SYN policing should not be active. How-
ever, when the offered load increases beyond a certain level,
the processing capacity of the server will not be able keep
up with the request rate, even when discarding most of the
CPU-intensive requests. At that point, the listen queue will
build up and, therefore, TCP SYN policing will become ac-
tive.

Figure 3 illustrates the throughput and response times
for different request rates. When the request rate is about
375 reqs/sec, the average response time increases and the
throughput decreases when no controls are applied. At that
point, the CPU becomes overutilized and cannot process
requests at the same rate as they arrive. Hence, the listen

queue builds up which contributes additionally to the in-
crease of the response time.

Using resource-based admission control, the acceptance
rate of CGI-scripts is decreased which prevents the CPU
from becoming a bottleneck and hence keeps the response
time low. Decreasing the acceptance rate of CGI-scripts is
sufficient until the request rate is about 675 reqs/sec. At this
point the CGI acceptance rate reaches the predefined min-
imum and cannot be decreased anymore despite the CPU
utilization being greater than the reference value. The refer-
ence value is the desired CPU utilization which is set to 90%
in our experiments. As the server’s processing rate is lower
than the request rate, the listen queue starts building up. Due
to the increase of the listen queue, the controller computes
a lower TCP SYN policing rate which limits the number
of accepted requests. This is shown in the left-hand graph
where the throughput does not increase anymore for request
rates higher than 800 reqs/sec. The right-hand graph shows
that the average response time increases slightly when TCP
SYN policing is active. This increase is partly caused by
the additional waiting time in the listen queue.

We have repeated this experiment with workloads con-
taining only static requests. If requests are discarded using
HTTP header-based control, the onset of TCP SYN polic-
ing should happen at higher request rates. Our experiments
have shown that this is indeed the case: When the fraction
of dynamic requests is 20%, TCP SYN policing sets in at
about 675 reqs/sec while the onset for SYN policing is at
about 610 reqs/sec when all requests are for static files.

To summarize this experiment, for low request rates,
we prevent server overload using resource-based admis-
sion control that avoids over-utilization of the resource bot-
tleneck, in this case CPU. For high request rates, when
resource-based admission control alone is not sufficient,
TCP SYN policing reduces the overall acceptance rate
which keeps the response times low and the throughput
high.

4.2 Queue Length to the Network Interface

Although the workload used in the previous section con-
tains some very large files, we noticed few packet drops on
the network interface. In the experiments in this section we
make the bandwidth of the outgoing interface a bottleneck
by requesting a large static file of size 142 KBytes from
another host. The original host still requests the surge-like
workload at a rate of 300 reqs/sec. From Figure 3 we know
that the server can cope with the workload from this par-
ticular host requested at this rate. The request of the large
static file will cause overutilization of the interface and a
proportional drop of packets to the original host.

Without admission control, we expect that packet drops
on the outgoing interface will cause lower throughput and
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Figure 3. Comparison standard system and system with adaptive overload control

in particular higher average response times by causing TCP
to back off due to the dropped packets. Therefore, we insert
a rule that controls the rate at which large files are accepted.
Large files are identified by a common prefix (/islarge).
The aim of the experiment is to show that by adapting the
rate with that requests for large files are accepted, we can
avoid packets drops on the outgoing interface.

Requests to the large file are generated with a rate of 50
and 80 reqs/sec. The results are depicted in Table 1 (page 6).
As expected the response times for both workloads become
very high when no controls are applied. In our experiments,
we observed that the length of the queue to the interface
was always around the maximum value which indicates a
lot of packet drops. By discarding a fraction of the requests
for large files, our controls keep the response time low by
avoiding drops in the queue to the network interface. Al-
though the throughput for the large workload is higher when
no controls are applied, the sum of the throughput of both
workloads is higher using the controls.

4.3 Service Differentiation

The aim of this experiment is to show that our architec-
ture can provide higher throughput to premium clients, us-
ing the scheme discussed in Section 3. We have two service
classes, premium and standard. We reserve 3=5 of the to-
kens generated for the token bucket associated with TCP
SYN policing for premium requests, while reserving the re-
maining tokens for standard requests. The size of the logical
bucket for premium requests is 20, while the other logical
bucket has a size of five. The size of the overflow buffer is
also five. For simplicity, we have fixed the acceptance rate
of CGI-scripts to 10 reqs/sec. Sclient requests the surge-
workload from two machines. We have two filter rules. One
rule matches the IP address of the host emulating premium
clients, the other one is a default rule matching the requests
from the standard host.

service class throughput (reqs/sec)

premium 331.1
standard 222.1

sum 553.2

Table 2. Throughput for each service class
(equal request rates)

service class throughput (reqs/sec)

premium 429.5
standard 120.9

sum 550.4

Table 3. Premium class using unused tokens
from standard class

In the first experiment we request the same workload
from both hosts at a rate of 450 reqs/sec each. We expect
that TCP SYN policing is active at this request rate. Of
the accepted requests about 60% should be premium and
40% should be standard requests. The results are shown
in Table 2. The overall throughput is 553.2 reqs/sec. The
throughput of the premium requests is 331.1 reqs/sec which
is about 60% of the total throughput.

In the next experiment we want to show that the unused
tokens of one service class can be utilized by the other ser-
vice class using the overflow buffer. The request rate for
premium requests is 760 reqs/sec while the request rate for
standard requests is about 150 reqs/sec. Again, the accep-
tance rate of CGI-scripts is fixed to 10 reqs/sec. The to-
ken rate for the standard partition of the token bucket will
be higher than 150 tokens per second. Thus, this logi-
cal bucket will become full and the exceeding tokens are
put into the overflow buffer where they can be consumed
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large workload surge workload
req rate large workload metric no controls controls no controls controls

50 reqs/s tput (reqs/sec) 46.8 41.5 270.7 289.2
50 reqs/s response time (ms) 2144 80.5 1394.8 26.9
80 reqs/s tput (reqs/sec) 55.5 45.8 205.2 285.1
80 reqs/s response time (ms) 5400 94 3454.5 29.3

Table 1. Outgoing bandwidth

by premium requests. The results are shown in Table 3.
The throughput for standard requests is about 121 reqs/sec,
i.e. the requested rate minus most of the dynamic requests.
The throughput for premium requests is 429.5 requests/sec,
i.e. more than 60% of the overall acceptance rate. TCP
SYN policing accepts slightly below 700 reqs/sec. How-
ever, most of the dynamic requests are then discarded by
the resource-based admission control. These results demon-
strate that the service differentiation mechanism works as
expected.

5 Discussion

The proposed solution of grouping the objects according
to resource demand in the web server’s directory tree, is
not intuitive and awkward for the system administrator. We
assume that this process can be automated using scripts.

Since our basic architecture is implemented as a kernel
module, we have decided to put the control loops in the ker-
nel module as well. An advantage of having the control
mechanisms in the kernel is that they are actually executed
at the correct sampling rate. The same mechanisms could
be deployed in user space.

Our kernel module is not part of the TCP/IP stack which
makes it easy to port the mechanisms. The only require-
ments are availability of timing facilities to ensure correct
sampling rates and facilities to monitor resource utilization.

6 Conclusions

We have presented an adaptive server overload protec-
tion architecture for web servers. The architecture uses
resource-based admission control to avoid overutilization of
critical web server resources. The architecture also provides
service differentiation using token buckets with logical par-
titions. Our experiments have shown that the acceptance
rates are adapted as expected. Our system sustains high
throughput, in particular for premium requests, and low re-
sponse times even under high load.
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