
Emulation of Differentiated Services using VNUML

CS 680 Course Project

Vijay Gabale (07305004), Sagar Bijwe (07305023), Manish Kumar (07405701)
Computer Science And Engineering Department,

Indian Institute of Technology, Bombay,India
Course Instructor : Prof. Anirudha Sahoo

May 1, 2008

Abstract

Differentiated Services (DiffServ) has been proposed by
IETF as a scalable QoS solution for the next generation
Internet as an alternative to Integrated Services (IntServ).
It has been developed for relatively simple, coarse meth-
ods of providing different levels of service for Internet
traffic. The main idea is to divide traffic into a small
number of classes and allocate resources on a per class
basis. The Core of a diffserv network then distinguishes
between small number of forwarding classes rather than
individual flows as in Integrated Services. Through
this project, we have implemented various components
of DiffServ like classification, marking, dropping and
scheduling. We have further analysed how a DiffServ
enabled network behaves under varying load conditions
and in terms of real time flows. For the emulation and
analysis purpose, we have used VNUML (Virtual Net-
work User Mode Linux) tool.

For classification purpose, we use multi-trie ap-
proach to match IP address according to SLAs (Service
Level Agreements) between service provider and cus-
tomers. To do marking, we use two rate three colour
marker token bucke approach and for scheduling, we em-
ploy priority scheduling with flows constrained by token
buckets. Through the experiments performed, we come
up with following key conclusions : (a)(b)(c)(d)

1 Introduction

To mitigate the disadvantages of having per flow reserva-
tions at every intermediate node, which requires tremen-
dous state maintenance in the core, and having complex

scheduling in IntServ, DiffServ [1] was proposed.
The basic approach of DiffServ is as follow : Traf-

fic is divided into a small number of groups called for-
warding classes. The forwarding class that a packet be-
longs to is encoded into a field in the IP packet header.
Each forwarding class represents a predefined forward-
ing treatment in terms of drop priority and bandwidth
allocation. This scheme achieves scalability by im-
plementing traffic classification and conditioning func-
tions at network boundary nodes. Classification involves
mapping packets to different forwarding classes whereas
conditioning consists of checking whether traffic flows
meet the service agreement and dropping nonconformant
packets. Interior nodes forward packets based solely on
the forwarding class. Thus, the resource allocation is
made for aggregated traffic rather than individual flows.
Still, the performance assurance to individual flows in
a forwarding class is provided through prioritization and
provisioning rather than per-flow reservation. Also, Diff-
Serv defines forwarding behaviors and not end-to-end
services. Further the service assurance is based on SLAs
and not dynamic signaling as in IntServ using RSVP (Re-
source Reservation Protocol). Also, the focus has been
made on a single domain rather than end to end resource
reservation.

This motivates us to implemente these theoreti-
cal concepts into practice and to get hands dirty with
scheduling, token bucket, IP address prefix matching
schemes. Some of the interesting questions that we ask
are

• What is order of improvement achieved by DS en-
abled service in terms of delay, jitter and through-
put?

1



Figure 1: Architecture of DiffServ enabled network

• How do real time flows behave in DS enabled net-
work?

The main observations that we come up with are as fol-
lows

The rest of the report is organized as follows : in
section 2, we further delve into the DiffServ and exem-
plify our architecture. In section 3, we explain the multi-
trie scheme for classification, the two rate three colour
marking scheme for assigning drop priorities to packets
and priority scheduling with token buckets. In section
4, we briefly explain the usage of VNUML. In section 5,
we present the various experiments performed and the re-
spective results. Here we particularly compare DiffServ
enabled and DiffServ non enabled statistics for the same
traffic pattern and same network topology. In section 6,
we make some quick comments regarding our observa-
tions. Finally we give future scope and conclusion in
section 7 and 8 respectively.

2 DiffServ Architecture

The figure 1 exemplifies one particular flow in the Diff-
Serv network. The flow emanates from the client net-
work and passes through the boundary router. Then it
enters the DiffServ enabled network through boundary
router. The boundary router does the work of classifica-
tion and marking the packets. The classifier divides an
incoming packet stream into multiple groups based on
predefined rules. The two basic types of classifiers : Be-
havior aggregate (BA) and Multifield (MF). BA classifier
selects packets based solely on DSCP value in the packet
header and it is used when DSCP has been set (marked)

Figure 2: Multi-trie approach of flow classification

before the packet reaches the classifier. Whereas MF
classifier uses a combination of one or more fields of the
five-tuple (src addr, src port, dest addr, dest port, proto
ID) in the packet header for classification. We have used
MF classifier and the classification is based on multi-
trie approach with the help of SLA. Then the packet
is forwarded through core routers who employ priority
scheduling with token buckets for each flows. The DSCP
values can be used to make this service differentiation.
The corerounter only does the work of forwarding the
packets based on this forwarding class. Finally the traffic
reaches to destination client B.

3 Implementation Details

This section explains the multi-trie approach of address
classification, two rate three colour approach to mark
dropping priorities and priority scheduling with token
bucket constrained flows.

We have defined our own custom packet header
format at the application layer and use this header to do
the work mentioned in the above paragraph. This header
consists of Source address, Destination address, Source
port, Destination port, Type of Service (forwarding class)
and Drop Priority.

The multi-trie approach is shown in the figure 2
where the table entries indicate the subnet addresses of
the customer networks.

Here, first the destination subnet address is extracted
from the packet destination field. This is then matched
with the first level of the tree after which the source sub-
net address is used to arrive at the forwarding class for
this particular flow. The Type of Service field is set in
this way.

2



Figure 3: Two rate three colour marker

Next, the packet dropping priority is marked ac-
cording to two rate three colour marker. The metering
is based on the token bucket bucket size and rate and
the non conforming flows are as red, yello and green
as shown in following figure 3. This two rate three
colour marker has four configurable params: peak rate,
peak burst size, committed rate and committed burst size.
Each packet passes through two token buckets as shown
in figure. Color is assigned to the packet depending on
the results of test by the two token buckets: packet is
marked green if it passes the tests of both token buck-
ets P and C, packet is marked yellow if it passes the P
bucket but not C bucket and packet marked red if it fails
both tests. The red packets are dropped first in case con-
gestion, then yellow and then green packets in the worst
case if the congestion persists.

For forwarding at the core routers the priority
scheduling policy is used. The queues are constrained
by the token buckets to rate limit the traffic. The EF (for-
warding class 71 in our emulation) queue is given the
highest priority to allow low loss, low delay and high
bandwidth traffic. Then there are flows with class 72 to
77 in the order of their priority from highest to lowest.

4 VNUML usage

VNUML (Virtual Network User Mode Linux) [2] is an
open-source general purpose virtualization tool designed
to quickly define and test complex network simulation
scenarios based on the User Mode Linux (UML) virtu-
alization software. VNUML is a useful tool that can be
used to simulate general Linux based network scenarios.
It is aimed to help in testing network applications and ser-
vices over complex testbeds made of several nodes (even
tenths) and networks inside one Linux machine, with-
out involving the investment and management complex-
ity needed to create them using real equipment. VNUML
tool is made of two main components: the VNUML lan-
guage used for describing simulations in XML; and the

Figure 4: Network topology for the experiments

interpreter of the language (vnumlparser.pl), that builds
and manages the simulation, hiding all UML complex
details to the user.

For the network shown in figure 4, we wrote xml
file for VNUML to boot up the network with requisite
programs that perform tasks for core boundary router,
core router etc. The command sequence to follow to run
the emulation is as follows:

1. vnumlparser.pl -t project.xml -v : This command
builds the virtual network topology described in
project.xml file and boots all the virtual machines
defined inside it.

2. vnumlparser.pl -d project.xml -v : This command is
used for releasing virtual machine scenario. It sends
the Ctrl-Alt-Del sequence to every virtual machine.

There is also provision to start programs to run in each
virtual machine as we start the emulation. We make use
of this utility to start the emulation as we start the vnuml
virtual machines.

5 Experimental Details

With this arrangment in place, we performed two exper-
iments. One where there are two real time flows with
DiffServ enabled and disabled network and compare the
performace in terms of delay, jitter and throughput. In
second experiment we vary the token generation rate for
the two flows and observe their behaviour.

5.1 Comparison DiffServ enabled and disabled
network

Here, we have two flows each generating packets after
20ms (thus we simulate two real time flows). The SLA is

3



Figure 5: Comparison of delay

Figure 6: Comparison of jitter

in place and one flow has been assigned to Expedited For-
warding class (EF). The other is assigned slightly lower
priority. First we disable DiffServ in the network and
run the two flows. Next we enable DiffServ in the net-
work. We measure and compare the delay, jitter and
througthput of two flows. These experiments were per-
formed with the intention of quantifying the performace
improved of DiffServ enabled network.

Figure 5, 6 and 7 show the results. For all graphs,
we observe that, the EF flow performs far better than the
other normal priority flow. We surmise that the slight
variations in delay in between are due to processing over-
heads in VNUML. For delay graph, the two lines are
for one flow only. In DiffServ disabled network, it gets
normal priority as other flows whereas in DiffServ en-
abled network, it gets higher priority and thus lower de-
lay. Same way, the jitter is very much unstable and varies
between highs and lows in case of DiffServ disabled net-
work but due to slightly predictable nature of EF service,
the jitter is very much controllable in case DiffServ en-

Figure 7: Comparison of throughput

Figure 8: Number of packets received

abled network. We also measured the throughput and
found that throughput for the same flow in case of Diff-
Serv enabled network was greater than disabled.

For 100 packets sent, we also measured the number
of packets received and lost for the two flows in DiffServ
enabled and disabled network. Figure 8 and 9 show the
results. We can see that for DiffServ enabled network,
for the EF flow (flow 1 in graphs), the number of packets
received far exceed that of other flow and in similar ways
the number of packets dropped are far lower. This proves
the adequacy of DiffServ network to real time flow.

5.2 Behaviour of flows with respect token
bucket parameters

Next, we kept the token generation parameters for the
two flows as follows: for one experiment same (2:2 ratio)
and for second experiment in the 3:1 ratio. The network
set up and forwarding class assignment was kept same.
So we expect that flow 1 to get better service than flow

4



Figure 9: Number of packets dropped

Figure 10: Comparsion of delay

2. These experiments were performed with the intention
that, since flows are constrained by token bucket parame-
ters, how do flows behave when we change these param-
eters. Figure 10 and 11 show the results of the experi-
ments in terms of delay and throughput. The comparison
uncovers that the flow with more token generation rate
performs better in terms of delay and throughput. Thus
it is crucial to set the token bucket parameters appropri-
ately to give proper intended service to flows.

6 Observations

Through the above experiments we make following ob-
servations

• The DiffServ enabled network improves perfor-
mance of higher priority flows. The service given
to one of the two real time flows in the experiment
was quite predictable. This is also in accordance
with that DiffServ doen not guarantee any end to

Figure 11: Comparsion of throughput

end delay but provides sufficient resources to have
improvement as compared to other flows.

• The performance improvement was about 25 per-
cent and in terms of packets dropped it was around
27 percent.

• As we increased the token generation rate of one
of the flows, more number of packets of the flow
got admitted which in turn resulted lower number
of packets getting dropped, lesser delay and higher
throughput.

We would further like to note some points regarding
VNUML usage.

• We had two laptops, one with 2GB RAM and the
other with 256MB RAM. The processor was same
with specification of 1.46GHz. We observed that
VNUML far outperforms in terms of speed of pop-
ping windows and processing. The readings taken
are on 2GB RAM laptop since VNUML crumbled
when we increased network size and number of
flows on 256MB RAM.

• The other reason why we stuck to only two flows
that, the performance used to severely get degraded
when we increased number of flows beyond two
flows.

• On 256MB laptop, we sometimes used to get Op-
erating System memory bound exceeded message
by VNUML. We suspect there is bug in VNUML
implementation which we uncovered when we in-
creased the size of network and number of flows.

5



7 Future Scope

We performed the experiments with two flows. We
would like to extend this scenario to more number of
flows and are keen to see how the flows behave. Our gut
feeling is that the observations that we have made will
remain same though.

Though we considered fairly large network, but we
would certainly like to expand this scenario with much
larger network and more number of flows to effectively
quantify the behaviour of flows under DiffServ enabled
network.

8 Conclusion

We implemented various mechanisms for classifcation,
marking and forwarding for DiffServ. We emulated a
fairly intricate network in VNUML. We performed ex-
periments with two flows by varying the forwarding class
assignment. We observe that the DiffServ enabled net-
work improves performance of higher priority flows. The
service given to one of the two real time flows in the ex-
periment was quite predictable. This is also in accor-
dance with that DiffServ doen not guarantee any end to
end delay but provides sufficient resources to have im-
provement as compared to other flows. The performance
improvement was about 25 percent and in terms of pack-
ets dropped it was around 27 percent. The experiments
have proved that DiffServ is capable of protecting EF
flow in entire network with out setting any complex pro-
tocol or mechanism to co-ordinate routers. As we in-
creased the token generation rate of one of the flows,
more number of packets of the flow got admitted which
in turn resulted lower number of packets getting dropped,
lesser delay and higher throughput. We also documented
our experiences with using VNUML for using emulation.

References
[1] An Architecture for Differentiated Services.

http://www.ietf.org/rfc/rfc2475.txt.

[2] Virtual Network User Mode Linux.
http://www.dit.upm.es/vnumlwiki/.

6


