
Summary Cache based Co-operative Proxies

Project No: 1
Group No: 21

Vijay Gabale (07305004)
Sagar Bijwe (07305023)

12th November, 2007

1

 Abstract

Summary Cache based proxies cooperate behind a bottleneck link &
serve each others requests. This reduces overhead on the bottleneck
link to the servers & alleviates user latency. Earlier approaches like ICP
caused considerable inter proxy messages & used computing, memory,
network resources extensively.

We evaluate the performance of 'Summary based cooperating
caches' by calculating number of parameters like hit ratio, false
positives, false negative, network overhead & compare these with non
cooperating version. We simulate proxies on different machines & use
trace file to generate user requests. Our experiments & evaluations
show results in favor of 'Summary based cooperating caches'.

2

1. Introduction

The proxies behind a common bottleneck link should cooperate & serve
each other’s misses to exploit caching principle. The major benefits to
be achieved using web cache sharing are reduction in web traffic and
minimal user latency.

The Internet Cache Protocol (ICP) supports discovery & retrieval
of documents from neighboring caches. For ICP as the number of
proxies increase, the total communication & CPU processing overhead
increases quadratically. A new protocol called ‘Summary Cache’
addresses the issue of scalable protocols for wide area web cache
sharing.

Two critical factors that make Summary Cache exploit benefits of
sharing caches are an economical representation of short summary of
each neighboring proxy and the periodicity of summary update
messages.

Every new scheme needs to undergo implementation & testing
phases to analyze the benefits under test beds. Its experimental
evaluation needs to be compared with existing schemes to address the
deployment issues.

The Summary Cache protocol is implemented to study the
performance of the scheme under varying loads & by tuning the various
system & network dependent parameters to analyze the results. Web
traffic & CPU overhead measurements for various experiments speak
of the benefits & effectiveness of the sharing of caches under Summary
Cache protocol. The experiments is also carried for a special case where
proxies do not cooperate & the results of this set up are compared with
Summary Cache evaluation & appropriate conclusions are made.

3

2. System Model

The system is realized be using more than two machines connected in
LAN & each running at least one or more than one proxies. Each proxy
runs two threads. One thread for reading the trace file, processing the
request, (if request needs) querying other proxies, multi casting the
update messages & other thread waiting for update messages. As
updates come in, the second thread updates the summary of the proxy
corresponding to the update message originator.

The second thread is constantly seeking for the update messages
which causes much less latency in summary update. This is also against
sequential flow where thread would be blocked seeking for update
message. One more option is using timed updates but it might increase
the network overhead. So this architecture increases efficiency of
serving local requests & serving global update messages as well.

Each proxy is free to implement its version of bloom filter (in
terms of cache size, number of hash functions, bloom filter size) & we
built appropriate data structures to handle these issues. Each proxy
either reads the same or different trace file but the request are similar
in terms of URL (just the order is kept different, this is to ensure that
proxies are requesting common queries) otherwise the trace may not
entirely be inter linked.

The summaries are updated via sending the differences. We also
added new packet types (besides UPDATE packets) namely Q_FN,
Q_FP, A_FN, A_FP (e.g Q_FN packet sends 'url' of requested object to
pertaining proxy to check for False Negative & A_FN says yes or no
depending on whether it has that object or not) for calculating the false
positives & negatives.

Since UPDATE messages are critical & a loss of UPDATE message
(which is actually the difference), might result in indeterminate
behavior, we preferred TCP over UDP for inter proxy communication.

We programmed summary caches & build the system in C
language. We ran four proxies each on separate machine (to have more
realistic scenario) & measured performance parameters. We also ran a
version implemented with no cooperation.

4

3. Experimental Evaluation

• Experiment 1
Goal: To measure number of local false positives against bloom filter
size
Reason: As the bloom filter size increases the number of false positive
(local) decreases. Thus by this experiment We are able to explore trade
off between memory requirement and false positives.
Setup: The bloom filter size of local proxy is set as per the experimental
requirements.
Parameters measured: False positives
Parameters varied: Bloom filter size

Experimental Results:
We calculated bloom filter size as a function of cache size and

average file size (which gives average number of objects in cache) and
number of hash functions used. For our experiments average file size
was fixed to 8KB and number of hash functions to 4. It was observed
that there is clear trade off between size of bloom filter and number of
false positives. As size of bloom filter was increased the number of false
positives decreased rapidly at earlier stages. As we increased bloom
filter size further, the reduction in false positives was a bit slower. So we
came up with optimal bloom filter size to be 32 bits per entry. This size
is kept fixed for rest of experiments. This is evident from following
graphs.

Graph:

5

• Experiment 2
Goal: To measure hit ratio (local) against cache size
Setup:The cache size is varied from range 8K to 2.56 MB
Reason: The hit ratio is proportional to cache size, this experiment tests
correctness of our cache implementation, blended with summary cache.
Parameters measured: hit ratio for local as well local & remote hits
Parameters varied: cache size

Experimental results:
Our caches are based on FIFO policies. As the size of cache

increases the hit ratio also increases which validates our cache
implementation. Local hits are the requests found in local cache where
as remote cache are the requests found in neighboring proxies. Because
of cooperating caches the total hit ratio, local & remote, increases
considerably as we increase cache size (& in turn bloom filter size) as
compared to only local hits. Following graph shows this improvement in
hit ratio because of co operating summary caches. The threshold was
kept 2 %.

Graph:

6

• Experiment 3
Goal: To measure number of false misses against delay of update
messages
Reason: We investigated delaying the update of summaries until the
certain percentage of cached documents that are new reaches a
threshold. The number of false misses tends to be proportional to the
number of documents that are not reflected in the summary. Hence as
threshold increases number of false misses also increase. Other
approach can be just sending update after specific interval of time,
which we call as timed updates.
Parameters to measure: Number of false misses
Parameters to vary: Periodicity of update messages
Metrics to be used:Threshold(% of cache docs that are new), time(sec)

Experimental results:

Our results follow the logical Reason & as we delayed the update
messages, the number of false positives also increased. This increase
was quite linear which shows direct relationship between update
interval & false negatives. We looked into neighboring proxies if we did
not find object using local or remote bloom filters stored locally to
calculate false negatives. Following graphs show behavior of false
positives against delay in updates. The cache size was kept 1024KB.

7

Graph:

• Experiment 4
Goal: To measure hit ratio against periodicity of update
Reason: Experiment 3 & relationship between false misses and hit ratio
indicate that this experiment is reasonable to do.
Setup: The frequency of update messages would be controlled by
setting threshold for number of entries not reflected in remaining
proxies or time period & hit ratio would be measured.
Parameters to measure: hit ratio
Parameters to vary: periodicity of update
Metrics to be used:Threshold (% of cache docs that are new),time(sec)

Experimental results:
As the threshold or update interval increases, the number of

unreflected entries in the local remote-bloom filters increases. This
slowly undermines the hit ratio as proxy was not conveyed the recent
change & all it got to see was stale state of filters which was of no use
for recent requests. We varied both threshold & update interval &
confirmed this behavior. The cache size was kept 1024KB.

8

Experiment 5
Goal: To measure false positives against periodicity of update
Reason: Beyond a certain limit false positives become intolerable & this
experiment helps us find out the optimal value of threshold & update
interval taking false positive as constraint.
Setup: The frequency of update messages would be controlled by
setting threshold for number of entries not reflected in remaining
proxies or time period & false positives would be measured.
Parameters to measure: false positives
Parameters to vary: periodicity of update
Metrics to be used:Threshold (% of cache docs that are new),time(sec)

Experimental results:
As threshold increases, the number of false positives also increase

as the number of unreflected entries in remote proxies increase.

Graph:

9

• Experiment 6

Goal: To measure network overhead against memory requirement (size
of bloom filter)
Reason: The memory requirement is determined by the size of
individual summaries and the number of cooperating proxies. Since the
memory grows linearly with the number of proxies, it is important to
keep the individual summaries small.
Parameters to measure: network overhead.
Parameters to vary: Bloom Filter Size(bits), cache size
Experimental results:

We observed that, as we increase the bloom filter size, the local
network traffic of course increases. But the traffic to fetch the objects
from server is considerably constrained as most of the time neighboring
proxies used to have the required object. The threshold was kept 2 %.

Graph:

10

Comparison with non-co-operative proxies:
For each cache miss, non-co-operative proxy has to fetch the

object from server which increases the network overhead of bottleneck
link & also increase user latency. Also since proxies are not co-
operating, they can not exploit the benefits due to sharing. This causes
sharp decrease in hit ratio as compared to co-operating proxies as we
increase the cache size.

Experiment 7
Calculation of CPU overhead (top tool in UNIX could be used) : The CPU
utilization used to vary between 60 to 70 % which is not causing any
considerable overhead.

Recommended Configurations:

Combining the above results, we recommend the following
configuration for summary cache approach

Update Threshold should be between 0.5 to 2 % of Local summary
If time based update is used, then interval should be set to 1 to 2
seconds.
For bloom filter a factor between 16 to 32 works well. (Number
of bits per entry)

Scalability:

The system is inherently built to be scalable. We tested the system by
running 8 proxies each on different machine.

11

4. Usage:

The program takes switches (e.g. if user types <executable> -h, he is
rendered all of the experiment switches & the parameters the program
would take as HELP).

For each of the above mentioned experiments we have given a separate
switch & the parameters. After the experiment is done, output is
dumped in a file.

12

5. Conclusion

Thus, we demonstrated the benefits of web proxy cache
sharing using trace driven simulations & measurements. The
bloom filter based summaries with update delay thresholds,
has low demand on memory and bandwidth, yet it achieves
high hit ratio. As compared to non co-operation based proxies,
the hit ratio is almost tripled while at the same time network
overhead is reduced marginally. We also investigated the trade
off between load factor of bloom filter and false positives &
also between threshold of updates and hit ratio, false positives-
negatives & came with optimal values for both.

13

6. Bibliography

Li Fan, Pei Cao, Jussara Almeida and Andrei Z. Broder (2000)
Summary Cache: A scalable wide-area web cache sharing
protocol. IEEE Transactions on Networking, Vol 8, No 3, June
2000

14

