
RODMAC : A RObust and Distributed MAC
Protocol for Efficient Use of White Spaces

Eshan Nanda∗, Udit Joshi†, Vinay Ribeiro† and Huzur Saran†
∗EMC Software India Pvt. Ltd; Email: eshan.nanda@emc.com

†Department of Computer Science & Engineering, Indian Institute of Technology Delhi, India
Email: {joshudit@gmail.com, vinay@cse.iitd.ernet.in, saran@cse.iitd.ernet.in}

Abstract—We describe the design, implementation and evalu-
ation of a RObust and Distributed MAC (RODMAC) protocol
for cognitive radio networks which exploit spectrum white spaces
for communication. RODMAC incorporates two novel features.
These are a robust design resilient to node failure and a scheme
for on-demand channel hopping. Other features include a fully
distributed architecture and incorporation of Forward Error
Correction (FEC) for better performance. RODMAC allows any
pair of nodes requiring dedicated bandwidth for communication
between them to request exclusive use of a free channel. Besides
improving the QoS for communication between this pair of nodes,
this mechanism also improves the overall efficiency of bandwidth
resource usage. RODMAC can serve as the basis for building
MAC protocols for applications which include device-to-device
(D2D) communication, tele-medicine or military communication
in a jamming environment. Our design has been implemented
on the Wireless Open Access Research Platform (WARP) of Rice
University. For this purpose, we have established a test bed
of 4 WARP nodes. This design has been validated by careful
analysis and repeated experiments over a 6 month period. We
have analyzed our results for jitter, throughput and loss for
different bandwidths. Our results for these parameters show an
improvement in loss percentage of about 70% for a 5 Mbps link
with video streaming on different channels using our novel on-
demand channel hopping scheme as compared to simultaneous
video streaming on the same channel.

I. INTRODUCTION

Over a period of time, spectrum has become increasingly
scarce due to the advent of a large number of new generation
wireless technologies. With this, the spectrum cost has also
increased to such an extent that spectrum has become an
extremely precious and scarce natural resource. Solutions
which make more efficient use of spectrum resources are
greatly needed.

Cognitive radio (CR) technology offers a promising solution
as it seeks to exploit the unused spectrum white spaces within
licensed spectrum bands, thereby obviating high licensing
costs. Recent spectrum regulations in several countries around
the globe allow unlicensed use of licensed spectrum, at a
particular point in time, provided the licensed (or primary)
user is not transmitting in that spectrum. These regulations
are enablers for bandwidth hungry applications, since often a
large fraction of licensed bands remain unused [1].

MAC protocols for such CR networks must overcome
several challenges. First, they must be sensitive to the presence
or absence of primary users in particular bands because the

CR network must vacate any band soon after a primary user
begins transmission in it. A large research effort has focussed
on developing efficient spectrum sensing methods for detecting
the presence of primary users. However, government regula-
tions have simplified matters by mandating databases which
list which channels are free for secondary usage. Research
work in the domain of unlicensed use of TV white spaces
received a significant boost since November 2008 when the
United States FCC issued a Report & Order on this subject
[2].

A second challenge is that CR networks must decide which
channel or set of channels to use among the potentially large
pool of spectrum available for opportunistic use. The use of
only a single channel by all nodes in the network simplifies
communication in the network but at the same time does not
exploit the potentially large number of white spaces available.
Allowing nodes in the CR network to transmit on various
channels can in theory improve throughput of the network, but
is besought with the problem that nodes on different channels
cannot communicate with each other, especially if each node is
equipped with only a single transceiver. This creates the need
for a common channel on which control information can be
transmitted throughout the network. The MAC protocol must
ensure that nodes periodically return to the control channel to
sync with the rest of the network.

We develop our protocol keeping the following assumptions
and requirements in mind.

• Both primary users (license holders) and secondary users
(unlicensed CR users) need to coexist. Spectrum licensed
to primary users is accessible to secondary users provided
they do not interfere with primary users. The onus rests
on the secondary users to ensure that the primary users
are not adversely affected.

• The spectrum is divided into non-overlapping orthogonal
channels of equal bandwidth. One channel is the funda-
mental unit of spectrum usage.

• We assume each user transmits from a single-interface
half-duplex transceiver, using a single channel at any
given time. So each node in our network consists of a
single half duplex radio.

• Each radio transceiver is frequency agile, that is, it can
quickly switch across channels with low delay. Such a
high performance, hardware platform is critical for our
network.978-1-4673-5494-3/13/$31.00 c© 2013 IEEE

• Secondary users are aware of the presence of primary
users in various channels either by looking up a publicly
available database or by performing spectrum sensing.

• Power outages are factored into our setting. Nodes can
frequently come in and drop out of the network and the
network needs to be inherently robust to handle such
situations.

• The network size would be small, around only 10-20
nodes.

• Quality of Service(QoS) guarantees are needed by band-
width hungry or latency sensitive applications.

• All nodes are within hearing range of each other.

Two key features of our protocol are:

1) Any two users are allowed to on-demand jump to a new
channel, transfer data to one another, and then hop back
to the original common channel after finishing their data
transfer.

2) There is no fixed leader or point of failure.

We believe that such an on demand channel hopping scheme
can support several powerful applications some of which are
described below.

One application is Device-to-Device (D2D) communication.
Here several devices which are close to each other intend to
communicate with each other, and exploit each others compu-
tational information or peripheral resources. In this scenario,
even if one device fails or leaves the network, then the rest
of the network should not be affected by it. Initially, assume
that all nodes in the D2D network are on a single channel and
running RODMAC. In case the channel is reoccupied by a
primary user, the whole network will jump to another channel.
The new channel and the exact time to jump is controlled by
the current “leader” of the network. The channel hopping helps
in dynamic reuse of spectrum without having any effect on the
primary user. Thus, our protocol can make use of white spaces
available.

An important feature provided by the protocol is an on-
demand jump to a new channel. Two nodes which want to
transfer data between each other can request the leader for
a dedicated channel. On being granted an unused channel
in some white space, they both jump to this new channel,
exchange data, and then jump back to the common channel.
The reason for nodes to request a dedicated channel are
manifold. For example, the two nodes may have some urgent
and critical data to transfer, or may be running an application
requiring high QoS in terms of bandwidth and/or latency. By
using a dedicated channel, the pair of nodes avoid interference
from other nodes of the network. We note that while it is
possible to guarantee good QoS over a common channel
through the use of TDMA, such solutions typically require
strict time synchronization, careful scheduling, and have a
single point of failure. Another reason why a pair of nodes
may request a new channel is that the nodes have a large
file to transfer from one to the other and would rather not
clog the common control channel with this file transfer, where
therest of the nodes are present. In case a node is running

an application which simultaneously transfers data between
multiple other nodes, then it can refuse the request from
another node to jump to a dedicated channel. The node instead
chooses to communicate on the common channel.

RODMAC can also serve as the basis for building MAC
protocols for applications in medical and military communi-
cations. Patient telemetry has been performed over dedicated
wireless channels since the early 1970s. The life-critical nature
of the application is a key constraint. In such the scenario
the presence of a guaranteed dedicated wireless channel for
a desired duration would be the ideal solution keeping in
view the life-critical nature of the application. The nodes can
perform a channel hop to a free channel and communicate
without getting disturbed by the rest of the network. Certain
military applications which need to be robust to a single
point of failure and yet give users the ability to establish
and maintain dedicated control channels, can also benefit from
RODMAC.

In the next section, we discuss the design features of
RODMAC. Section III describes the platform and test bed
used for our experiments. In Section IV, we describe the
implementation of RODMAC and present results from our four
node testbed in Section V. Section VI describes the related
work and finally we conclude along with the future work in
Section VII.

II. PROTOCOL DESIGN

When we look at utilizing the available white spaces, it
is possible that a large number of channels are immediately
available. A channel vector can thus be maintained to keep
track of the available non-overlaping channels. This vector
can be sorted based on the quality of the channel using the
interference level as a metric. Assuming the availability of
such a channel vector, it would be ideal if different nodes could
reserve bandwidths suitable for their specific applications. We
believe that such an on demand channel hopping scheme can
support several powerful applications.

In our protocol, at any time, a node is either in client
mode or server mode. The node in server mode, or server, is
responsible for performing spectrum sensing and thus sending
beacons for channel switching. The next channel to switch to
is calculated using this channel vector. The client waits for
a channel switching packet (CH HOP packet) and switches
to the corresponding channel specified in the beacon. Within
a particular channel, nodes use a CSMA protocol to decide
which node transfers the data and which others wait.

In this section, we describe the fully distributed architec-
ture, robust design, on-demand channel hoping and spectrum
sensing of RODMAC.

A. Fully distributed architecture

There is no fixed centralized entity in our design. On booting
each node assumes the role of a client. Each node then waits
for some amount of time. The amount of time is determined
by the ID of the node. Thus ID of the node also determines
the priority among the nodes to become the server. We have

implemented a simple scheme using a function of the node ID
to determine the server.

The node with the lowest ID gets the highest priority. A
timer is set in clients which is a function of the node ID.
For our experiments this timer value was set to twice the
ID. That is, for the node with ID = 3, its timer expires after
6 seconds. So if within 6 seconds it does not receive any
CH HOP packet it will switch to the server mode. Thus, as
soon as the timer expires, the node takes the role of server
and starts transmitting CH HOP packets. These packets have
a center frequency and a timer, which indicates to other nodes
to switch to the specified channel indicated by the center
frequency. Details of the booting procedure are presented in
Section IV A. .

B. Robust Design

Due to the RODMAC’s distributed protocol design, it does
not matter if there is a power outage and a node goes out.
Even if the node which fails is a server, over a period of time
another node will assume the role of a server when it fails to
receive CH HOP packets from the previous server. In general
the node with the lowest ID will act as the server and other
nodes would assume the role of clients on receipt of these
CH HOP packets. The server will periodically transmit these
channel control packets.

C. Channel Selection

Out of the free non-overlapping channels available, one of
the channels is selected to be the next hop channel. Every
node builds and maintains a channel vector which is the list
of channels available at any point of time. This channel vector
is shared by all client nodes with the server, thus the server
has an overall picture of the entire network. Out of the group
of common available channels, one of the channels is selected
on the basis of the least recent usage, i.e., the next channel is
that channel which is not used for the longest amount of time.
The server maintains a timestamp for every channel which is
used for next channel determination. A legal channel vector is
generated during spectrum sensing. If a channel is free, then
the channel is assigned as 1 else it becomes illegal and is
assigned a 0. We have used energy sensing for determining
channel availability. More sophisticated techniques involving
feature sensing should give better results.

D. On-demand channel hopping

In our protocol we have implemented an on-demand channel
hopping scheme. This is a key feature of our design. In this, a
node can request for a dedicated channel to communicate with
another node. One of the nodes informs the other node that
it wishes to initiate a communication with it on a dedicated
channel. The other node responds affirmatively provided it has
a spare channel available. The channel vectors of both nodes
are already available and the node makes a decision based on
the status of the channel availability vector. The node responds
with the channel ID of the available channel. This channel
is now removed from the pool of available channels in the

network, by broadcasting this information. Both the nodes now
switch to the new channel. Any application can now be run
on this dedicated channel. In our current implementation, a
CSMA protocol is used for communicating on the dedicated
channel.

When the particular application is complete, any of the
nodes can now initiate a request to release the channel and
also the nodes can then become a part of the overall wire-
less network, to which both the nodes are affiliated. While
releasing the channel, it is ensured that the released channel is
added to the pool of available channels, by broadcasting this
information.

The key challenge is to communicate this information to all
the nodes which could be on potentially different channels.
Our protocol ensures that this convergence time, wherein all
nodes in the network become aware that a channel which was
in use has now become free, is kept as low as possible. This
was less than 2 seconds for our experiments.

E. Spectrum Sensing

While we have mainly focussed on the MAC layer we
have also incorporated a rudimentary spectrum sensing scheme
based on energy sensing. Energy based spectrum sensing is
the most simple scheme for spectrum sensing. Such a scheme
has minimal computational or implementation complexity.
Therefore such schemes are also extremely popular and have
been implemented in several instances [3], [4], [5], [6], [7],
[8]. We utilise the CSMA carier sense period to carry out
this spectrum sensing function. However, in order to be fully
effective, we would have to incorporate feature based sensing
as in [9], [10], [11].

In our present scheme we detect the presence of an incum-
bent based on a specified threshold, just above the ambient
noise level, which we have determined experimentally for the
Wi-Fi band where we are working at the moment. Potentially
our protocol is designed for the TV white spaces and a simple
change in the frequency used is all that is needed to switch
to any band of our choice, keeping the application in mind.
As our WARP hardware does not support transmission in the
sub-GHz TV white spaces, we are at present confined to the
Wi-Fi band for our experiments.

F. Forward Error Correction (FEC)

We have implemented our application on the latest OFDM
reference design version 16.1 [12]. This version has inbuilt
support for FEC. We have been able to get better results after
incorporating the latest OFDM reference design, compared to
earlier ones.

III. PROTOTYPE

We have performed our experiments on a test bed of 4
WARP boards. We describe the WARP platform and other
details of our implementation in this section.

A. Platform

To build our prototype, we needed a platform which could
operate at the speed of a hardware solution, provide very fast
frequency hopping yet also retain the exibility of a software
solution. We eventually chose Rice Universitys WARP [12],
a scalable and extensively programmable wireless SDR plat-
form. Our prototype makes use of the OFDM reference design
v16.1 available in the WARP repository.
The WARP motherboard is equipped with a Xilinx Virtex-4
FPGA (older versions use the Virtex-2) and can be interfaced
to 4 daughter boards. Each RF daughterboard operates in the
2.4GHz and 5GHz ISM bands. For our experiments, we used
the 2.4GHZ frequency band.
The WARP reference design provides the ability to write a
MAC application using the libraries provided by it.

B. Test bed

The test bed for our experiments consists of 4 nodes in
a topology illustrated in Figure 1. Each node consisted of a
WARP board with a client PC attached to it via Ethernet. Every
node communicates with every other node. Of all the nodes
in range, only one of them will act as a server and others will
be clients who will hop according to the information sent by
the server. This decision for server selection is done on the
basis of node ID. A node with the lowest ID will be selected
as a server.

Fig. 1. Network Topology

IV. IMPLEMENTATION DETAILS

The following subsections describe the specific outline for
complete protocol

A. Node Booting

Initially, when a node boots up, it scans all the available
channels, thus ensuring generation of the channel vector. This
scan involves energy sensing as well as packet reception. Thus
the list of available and busy channels is available with all
nodes. A node, post this scanning,knows whether a server
already exists or if it should take up the role of a server. If a
server already exists, the node will join that particular channel
and become a part of the network.

Any node after joining the network, waits for a specific
amount of time before assuming the role of the server. This

will ensure that the node does not miss out on the presence
of the server. If a server already exists, the node will remain
in client mode. We have carried out several experiments to
decide on a suitable metric for this purpose. This wait time
has been set as two times the node’s ID in seconds. In general
the wait time can be a suitable function of the node ID.
Since node id’s can be manually set on WARP boards, we
can safely assume that the node ID’s are small. Among the
various configurations, this setting was found to work well,
which was confirmed through a number of experiments with
different parameters.

This setting also ensures a deterministic priority among the
nodes. A node with the lowest ID, will first become the server,
provided all nodes boot up at approximately the same time.
Other nodes, on receiving CH HOP packets from a node of
lower ID will continue to act as clients. This CH HOP packet
contains the following information

• Next Channel to hop
• Time Left for hopping
• Server ID (ie. senders own node ID)
• On-demand session information ie. which nodes are cur-

rently on which on-demand channel
This CH HOP packet is sent 10 times within the hopping

interval. The hopping interval has been set as 5 seconds and
can be modified through serial input. Ultimately, we will be
hopping only when the control channel gets occupied by a
primary user. We are hopping after every 5 seconds only in
order to test our protocol. Effectively we send a CH HOP
packet after every 500ms. This ensures adequate redundancy.
Even if some CH HOP packets are lost in transit, the nodes are
unlikely to lose synchronization. The booting process does not
take more than two seconds and all the nodes are synchronized
quickly. Even in case of an outage, when the node acting as
the server goes out, parity is regained within 5 seconds.

Channel vector information can also be generated if we
have some sort of TV white space database. If that is the
situation, we know about the available channels and set the
starting default channel as the channel with the lowest center
frequency. But since this database is not available, we have
used a scanning method to determine the channel vector.

B. Maintaining Priority

Once the network gets set up, the node with the lowest ID
assumes the role of the server. This node keeps on sending
CH HOP packets to ensure synchronization amongst all the
nodes in the network. The other nodes which are receiving
these CH HOP packets, keep acting as clients. If a node is
acting as a server, receives a CH HOP packet from a node
with higher priority, i.e., lower ID, this node switches to client
mode. In this way, the priority among the nodes is maintained.

C. Maintaining Robustness

If a node which is currently acting as a client does not
receive the CH HOP packet for a specified time emperically
set as two times its ID, then it switches to server mode
and starts broadcasting CH HOP packets. This ensures that

if a node with ID as 1 goes down, then node with ID 2
assumes the role of the server and so on. Thus the rest of the
network is again synchronized within the switching time from
client to server of the node with lowest ID. This mechanism
ensures adequate robustness and resilience to node failures and
outages. No matter which node fails, the rest of the network
quickly assumes a new stable state.

If a node is currently a server, and still receives CH HOP
packets, it checks for the source ID of those packets. If the
source ID is less than its own ID, it switches to client mode
else it continues as a server. This particular check ensures
that priority is maintained amongst all the nodes. Figure 2
represents the flow chart of how robustness is ensured.

Fig. 2. Maintaining Robustness

D. Requesting On-Demand Bandwidth

Fig 3 explains the steps involved in requesting on-demand
bandwidth. A node, if required can request for a dedicated
channel for communication. The requesting node sends a
COG REQ packet to the destination node. The COG REQ
packet contains the ID of the requesting node and the channel
proposed for subsequent communication.

The destination node, sends a COG RES packet on accept-
ing the request to jump to the new specified channel. This
packet is broadcast so that other nodes mark that particular
channel as illegal. This ensures subsequent undisturbed trans-
mission among the nodes on that particular channel.

The destination node can also deny the request by sending
a COG DEN packet. On receiving such a packet, the initiator
node knows that its request has been denied.

Another reason for broadcasting the COG RES packet is
to ensure that every nodes will get the information about
on-demand sessions currently going on. By broadcasting the
COG RES, all other nodes know that this particular channel is
currently busy and they cant request for that particular channel
at this time. Thus the nodes know about the busy channels, and
when they request for their own dedicated bandwidth, they do
not select channels which have been marked as busy. We also
ensure that if the channel on which nodes are communicating
gets occupied by a primary user, the nodes get re-synchronized
and then again request for a new free channel instead of
directly jumping to a new channel.

E. Ending On-Demand Bandwidth Allocation

When any of the nodes involved in the On Demand Band-
width session, want to terminate the session, they broadcast
a COG END packet on the selected channel. On receiving
such a packet, the node will again start channel hopping in
the usual manner as explained earlier. Then these nodes re-
synchronize with the rest of the network, i.e., as soon as these
nodes receive a CH HOP packet from a node which was not
a part of session, they broadcast a COG BACK packet. On
receiving a COG BACK packet, all other nodes in the rest of
the network, make the particular channel which was selected
for on demand bandwidth, as legal. The COG BACK packet
is sent twice to ensure redundancy. Moreover, the information
about which nodes are on which channel is broadcast by the
server along with the CH HOP packet . This ensures that,
every node has the updated information about the lists of busy
and free channels. Thus every node will now know that the
nodes which were involved in the session are back, and the
spectrum which was being used is again available for re-use.
Figure 4 explains the termination of on-demand bandwidth
allocation.

F. Re-Synchronization

After ending the session, the participating nodes need to re-
synchronize with the rest of the network. These nodes do not
know the channel on which the network is on. So they scan all
the channels, starting from the channel from which they had
jumped, and re-synchronize. We believe that the criticality is
only during the on demand stage and it is acceptable even if
the nodes take some time to come back and re-synchronize
as the on demand period would be over by then. As soon as
the nodes gets re-synchronized, they broadcast a COG BACK
packet. This packet informs the rest of the network to mark
the previous On-Demand channel as free. This packet is sent
as soon as the nodes receive a CH HOP packet from a node
which is a part of the rest of the network.

V. PERFORMANCE EVALUATION

We perform experiments to determine the throughput, jitter
and loss percentage for different scenarios using the test bed
shown in Figure 1. We have used QPSK as our modulation
scheme. We have used VLC Player to stream a video in order
to test our cognitive MAC protocol. One server has been

Fig. 3. Requesting On-Demand BW

Fig. 4. Termination of On-Demand Bandwidth Session

used to stream the video to two clients. We have observed
that the video stream continues uninterrupted across frequency
changes. Resetting of any node causes the video link to break.
The link gets revived in some time when the nodes get
synchronized again.

The performance in terms of throughput, loss and jitter
were measured by performing UDP Iperf test. The experiments
performed have been discussed below

A. Iperf Test between two nodes

In the following test, Iperf measurements have been carried
out for different offered loads in order to observe the net
throughput and loss figures, with changes in the offered
load. In these experiments, only two nodes were involved in
transmission while other two nodes were silent. Iperf tests
were performed on the nodes involved in transmission. The
result is summarized in table 1.

TABLE I
UDP TEST RESULTS

Offered Load Throughput Jitter Loss(%)
(Mbps) (Mbps) (ms) (%)

1.0 0.98 0.01 0
2.0 1.97 0 0.35
3.0 2.89 0.1 0.68
4.0 3.9 4.84 1.5
5.0 4.9 5.34 1.2

The throughput in this case was found to be almost equal
to the offered load as other nodes in the network were silent.

B. Iperf Test with Streaming Video

In the following test, Iperf measurements has been carried
out with a video being streamed on VLC, all nodes being on
the same channel at any instance of time. Thus a large decrease
in throughput is observed in Table II as expected. The decrease
is caused by the presence of video being streamed which takes
a large portion of the available bandwidth.

C. Iperf Test with Streaming Video On Different Channels

In the following test, Iperf measurements has been carried
out with a video being streamed on VLC, after invoking on

TABLE II
IPERF TEST WITH STREAMING VIDEO

Offered Load Throughput Jitter Loss(%)
(Mbps) (Mbps) (ms) (%)

1.0 1 0.07 0
2.0 1.90 0.09 0.39
3.0 2.71 3.4 1.4
4.0 3.7 3.9 3
5.0 4.74 5.2 5.1

demand bandwidth between a pair of nodes. Each pair of nodes
is on a different channel at the same instance of time, leading
to an improvement in the net throughput. Iperf test results are
shown in table III.

TABLE III
IPERF TEST WITH STREAMING VIDEO ON DIFFERENT CHANNELS

Offered Load Throughput Jitter Loss(%)
(Mbps) (Mbps) (ms) (%)

1.0 0.99 0.07 0
2.0 1.98 0.09 0.32
3.0 2.87 1.4 0.58
4.0 3.89 3.6 1.2
5.0 4.87 4.5 1.4

It was observed that there is a marked improvement in
throughput as compared to the scenario when video is being
streamed on the same channel. The throughput value was
found to be comparable to the throughput value of the scenario
when all other nodes were on silent mode (Table I) .

D. Offered Load vs. Loss % For Different Scenarios

Fig 5 shows the graph that has been plotted between the
offered load and the loss for our three different settings
as described in the previous points. As expected, the best
performance is when on demand bandwidth is invoked, as a
dedicated channel is now available between a pair of nodes.
This is the best scenario as now there is no overhead of
CH HOP packets, and a dedicated link is available between a
pair of nodes or for a group of nodes, as may be the case.

E. Varying Throughput With On Demand Bandwidth (Test at
3Mbps)

In this experiment, we tried to determine the effect on
throughput our protocol will have. We start with an Iperf test
between two nodes. Meanwhile, a VLC video transmission
is started by some other node on the same channel. After the
start of video, the two nodes on which Iperf test was performed
were moved to a new on-demand channel.

Fig 6 shows the effect on throughput when an on-demand
channel request is invoked. As expected the throughput spikes
up prominently when the nodes have negotiated a dedicated
channel and have made the transition. The transition period is
for the negotiation phase when the link is being established. So
the throughput falls heavily during this short phase. When the
on demand bandwidth session is terminated, the nodes revert
back to the initial state after a brief period.

F. Varying Loss (%) With On Demand Bandwidth (Test at
3Mbps)

Figure 7 shows the effect on loss percentage when a request
for on-demand bandwidth is invoked. As expected the loss
percentage reduces drastically when the nodes have negotiated
a dedicated channel and have made the transition. The transi-
tion period is for the negotiation phase when the link is being
established. So the loss percentage spikes up heavily during
this short phase. When the on-demand bandwidth session is
terminated, the nodes revert back to the initial state after a
brief period.

G. Robustness

The Server sends the CH HOP packets to the clients so
that the clients can initiate the hopping process. If a server
goes down, the clients can come out of synchronized hopping.
Within the threshold time , the client next in line for promotion
to server will switch to server mode and start sending the
CH HOP packets. This results in establishing a synchronized
state ensuring that rest of the network is not affected.

VI. RELATED WORK

We have developed a fully distributed and robust MAC
protocol for Cognitive Radio. Furthermore, in keeping with
current trends and the advances in digital communication,
we have implemented a single transceiver protocol wherein
every node has a single high performance frequency agile half-
duplex transceiver.
Already the IEEE 802.22 [http://www.ieee802.org/22/] work-
ing group has standardized a MAC layer based on CR for
reuse of spectrum that is allocated to TV broadcast service.
The architecture of the 802.22 MAC layer is centralized and
relies on a base station, while our protocol is designed for
fully decentralized operation.
Several projects have also been implemented to exploit the
vacant white spaces in the TV band. The WhiteFi project [13]
is one such promising project. Like RODMAC, the need for
a dedicated control channel has been obviated here. WhiteFi
implements a technique called SIFT (Signal Interpretation
before Fourier Transform) which enables nodes to rapidly
discover base stations operating at different centre frequencies
while also having different channel widths. These signals are
analysed in the time domain. A new metric, called MCham
has also been proposed which allows base stations to choose
the best slice of the spectrum to operate on. This spectrum
slice can obviously span multiple channels. In our network,
however, all nodes are equal and are within hearing distance
of each other so the need for having dedicated base stations
is obviated. Also each node operates exclusively on a single
channel at any point of time.

A protocol called Cooperative MAC or CoopMAC [14]
has been implemented on the WARP platform. Here bridge
nodes are used to connect nodes which do not have direct
connectivity on a common channel, or are operating under
poor and dynamically changing channel conditions.

Fig. 5. Offered Load vs. Loss % For Different Scenarios

Fig. 6. Varying Throughput With On Demand Bandwidth (Test at 3Mbps)

In [15], the authors present a fully distributed MAC pro-
tocol implemented on the WARP platform. This protocol
focusses on maintaining a pool of available channels and
assigns weights to these channels based on a channel selection
algorithm. Over a period of time this data is collated and the
best available channel is provided for use. At any point of
time all the nodes in a network are on the best available
channel which has the minimum interference. Our protocol
is an improvement over this protocol as we also have a
facility for on demand channel hopping which can be used
in our applications. So different groups of nodes can be
on different channels simultaneously thereby improving the
network throughput.

In [16], a node’s MAC address determines the channel with
which the node will be associated. This particular channel
is termed as the home channel and is used by the node
to wait for incoming packets. A source node wanting to
communicate with another node has to switch to the receiver
nodes home channel before transmission, and immediately
return to its home channel after completion. The home channel
is a single channel which is provided to the node for lis-
tening to incoming transmissions. This approach considerably
increases the switching and the synchronization overhead vis-
a-vis RODMAC where nodes are operating either on a single
common channel or have jumped to dedicated channels.

Channel Hopping Multiple Access (CHMA) [17] and the

Fig. 7. Varying Loss (%) With On Demand Bandwidth (Test at 3Mbps)

Slotted Seeded Channel Hopping (SSCH) algorithm [18] use
a channel hopping approach. If a node wants to communi-
cate with another node, it follows the other nodes schedule.
Only if two nodes are able to successfully exchange control
information, do they go ahead and initiate data transfer.

The Hop Reservation Multiple Access (HRMA) protocol
[19] is a multi-channel MAC scheme for slow frequency
hopping spread spectrum (FHSS) wireless adhoc networks.
Here all nodes hop according to a pre-defined hopping pattern.
Whenever a node has a data packet to send, it exchanges
RTS/CTS control packets with the receiver. Both nodes remain
in the same hop for the entire data transmission duration. Other
nodes not involved in the communication are not affected and
follow the pre-defined hopping sequence. This approach is
quite different from RODMAC where the server dynamically
informs all nodes to switch to a channel with every CH HOP
packet. Our protocol potentially has better spectral efficiency
then HRMA or any pre-defined hopping pattern based proto-
col. Moreover, a fixed approach will fail in the presence of
incumbents as the behaviour of an incumbent is inherently
random, while the channel hopping always follows a fixed
pattern in HRMA.

VII. CONCLUSION & FUTURE WORK

We have developed and implemented a CR MAC protocol
called RODMAC which can be used in several application con-
texts. RODMAC has several features, such as robust design,
on-demand channel hopping, fully distributed architecture
which make it apt for applications having specific bandwidth
requirements. We have established a basic experimental test
bed of 4 WARP nodes for our platform for implementing
RODMAC. The feature of on-demand bandwidth enhances
the throughput of the network, while also reducing the loss
percentage by avoiding collisions.

Our prototype implementation on WARP boards validates
the technique RODMAC which we proposed in this paper. The
code for our implementation will in due course be added to the
WARP software repository to benefit the research community.

We have only implemented a rudimentary energy based
spectrum sensing scheme. This scheme needs improvement.
Incorporating a spectrum sensing scheme based on feature
sensing should give better results. The technique proposed in
this paper requires the communicating nodes to be in range
of each other. As future work, we will want to extend the
technique to multi-hop scenario. Moreover, while currently
we are using CSMA for intra-channel communication, we can
explore the usage of a TDMA based contention scheme for
QoS guarantees.

The on-demand channel hoping helps in utilizing the white
space efficiently without causing interference with the already
established data transfer. In future, we will like to explore the
capability of having more than 2 nodes communicating on the
on-demand channel.

ACKNOWLEDGMENT

This work was supported by the projects titled “Design
and development of a rapidly deployable Wimax based mesh
network” (RP02177) and “SPARC: Spectrum Aware Rural
Connectivity” (RP02565) funded by the Department of Infor-
mation Technology, Government of India.

REFERENCES

[1] A. Iyer, K. K. Chintalapudi, V. Navda, R. Ramjee, V. Padmanabhan, and
C. Murthy, SpecNet: Spectrum Sensing Sans Frontires, in 8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
Mar 2011.

[2] Second Report and Order and Memorandum Opinion and Order In the
Matter of Unlicensed Operation in the TV Broadcast Bands, Additional
Spectrum for Unlicensed Devices Below 900 MHz and in the 3 Ghz Band,
Federal Communication Commision, Document 08-260, Nov. 14, 2008.

[3] F. Digham, M. Alouini, and M. Simon, In the energy detection of unknown
signals over fading channels, in Proc. IEEE Int. Conf. Commun., vol.
5, Seattle, Washington, USA, May 2003.

[4] S. Shankar, C. Cordeiro, and K. Challapali, Spectrum agile radios:
utilization and sensing architectures, in Proc. IEEE Int. Symposium
on New Frontiers in Dynamic Spectrum Access Networks, Baltimore,
Maryland, USA, Nov. 2005.

[5] S. Jones and N. Wang, An experiment for sensing-based opportunistic
spectrum access in CSMA/CA networks, in Proc. IEEE Int. Symposium
Symposium on New Frontiers in Dynamic Spectrum Access Networks,
Baltimore, Maryland, USA, Nov. 2005.

[6] J. Lehtomaki, J. Vartiainen, M. Juntti, and H. Saarnisaari, Spectrum
sensing with forward methods, in Proc. IEEE Military Commun. Conf.,
Washington, D.C., USA, Oct. 2006.

[7] T. Yucek and H. Arslan, Spectrum characterization for opportunistic
cognitive radio systems, in Proc. IEEE Military Commun. Conf.,
Washington, D.C., USA, Oct. 2006.

[8] A. Ghasemi and E. Sousa, Optimization of spectrum sensing for oppor-
tunistic spectrum access in cognitive radio networks, in Proc. IEEE
Consumer Commun. and Networking Conf., Las Vegas, Nevada, USA,
Jan. 2007.

[9] Z. Tian and G. B. Giannakis, A wavelet approach to wideband spectrum
sensing for cognitive radios, in Proc. IEEE Int. Conf. Cognitive Radio
Oriented Wireless Networks and Commun. (Crowncom), Mykonos Island,
Greece, June 2006.

[10] K. Maeda, A. Benjebbour, T. Asai, T. Furuno, and T. Ohya, Recognition
among OFDM-based systems utilizing cyclostationarity-inducing trans-
mission, in Proc. IEEE Int. Symposium on New Frontiers in Dynamic
Spectrum Access Networks, Dublin, Ireland, Apr. 2007.

[11] P. D. Sutton, K. E. Nolan, and L. E. Doyle, Cyclostationary signatures
for rendezvous in OFDM-based dynamic spectrum access networks, in
Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum
Access Networks, Dublin, Ireland, Apr. 2007.

[12] ”Rice University WARP Project”, http://warp.rice.edu.
[13] P. Bahl, R. Chandra, T. Moscibroda, R. Murty,M. Welsh White Space

Networking with Wi-Fi Connectivity, in SIGCOMM 2009, Barcelona,
Spain.

[14] J. Sharma, V. Gelara, S. Singh, T. Korakis, P. Liu, S. Panwar, Imple-
mentation of a cooperative MAC protocol using a software defined radio
platform, in Local and Metropolitan Area Networks, in LANMAN 2008.

[15] Junaid Ansari, Xi Zhang and Petri Mhnen, A Decentralized MAC for
Opportunistic Spectrum Access in Cognitive Wireless Networks , in
CoRoNet’10, September 20, 2010, Chicago, Illinois, USA.

[16] S. Chaudhuri, R. Kumar, and A. Saha, A MAC Protocol for Multi
Frequency Physical Layer, Technical Report, Rice University ,Texas,
Jan. 2003.

[17] A. Tzamaloukas and J. Garcia-Luna-Aceves, Channel-hopping multiple
access, in IEEE ICC ,June 2000.

[18] P. Bahl, R. Chandra, and J. Dunagan, SSCH: Slotted seeded channel
hopping for capacity improvement in IEEE 802.11 ad-hoc wireless
networks, in ACM MobiCom, Sept. 2004.

[19] Z. Tang and J. J. Garcia-Luna-Aceves, Hop-Reservation Multiple Access
(HRMA) for Ad Hoc Networks, in IEEE Infocom, 1999.

[20] J. So and N. Vaidya, Multi-Channel MAC for Ad Hoc Networks:
Handling Multi-Channel Hidden Terminals Using a Single Transceiver,
in ACM Mobihoc, May 2004.

[21] Carlos Cordeiro, Kiran Challapali, C-MAC: A Cognitive MAC Protocol
for Multi-Channel Wireless Networks, in Proceedings of IEEE DySPAN,
April 2007.

[22] A. Chawla, V. Yadav, V. D. Sharma, J. Bajaj, E. Nanda, V. Ribeiro, H.
Saran RODEO: Robust amd Rapidly Deployable TDM Mesh with QoS
Differentiation, in WISARD 2012.

