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Abstract—This paper presents a waist-worn Pedestrian Dead
Reckoning (PDR) System that requires minimal end-user cali-
bration. The PDR system is based on an Inertial Measurement
Unit (IMU) comprising of a tri-axial accelerometer, a tri-axial
magnetometer and a tri-axial gyroscope. We propose a novel
heading estimation scheme using a quaternion-based extended
Kalman filter (EKF) that estimates magnetic disturbances and
corrects for them. Accelerometer measurements are used to detect
step events and to estimate step lengths. Experimental results
show that a relative distance error of about 3% to 8% can be
obtained using our methods.

Index Terms—Inertial navigation, Dead reckoning

I. INTRODUCTION

Indoor environments, street canyons and areas with heavy
tree cover are typical examples of places where the GPS
fails to perform satisfactorily due to degradation of satellite
signals. A popular solution to this problem in the context
of Pedestrian Navigation Systems (PNS) is to integrate GPS
with an Inertial Measurement Unit IMU) [1]. Typically, IMU-
based Pedestrian Dead Reckoning (PDR) systems model the
motion of human body during various activities to overcome
the large drift introduced by the numerical integration of IMU
measurements [2], [3].

We present a waist-worn IMU based PDRS that requires
minimal user-specific calibration (see Figure 1). The IMU con-
tains a tri-axial gyroscope, a tri-axial magnetometer and a tri-
axial accelerometer. A waist-worn IMU is more practical for
consumer navigation purposes than a shoe-mounted one which
requires an IMU to be attached to the shoe [4], [5], [6], [7],
[8], [9]. Typically, systems using foot mounted IMUs benefit
from Zero-Velocity Updates, that can be performed during the
stance phase, as the foot is stationary. However, waist-worn
systems need more sophisticated algorithms for navigation
because the pelvis does not have similar zero-velocity points
during walking motion. The techniques described in this paper
can be extended to placement of the IMU on those parts of
body that move with the pelvis. This includes the case where
the device is carried in a trouser pocket [10].

We propose the use of a quaternion based extended Kalman
filter (EKF) to estimate the full 3D attitude of the sensor
module. A full 3D estimation of the attitude allows correction
of sensor measurements for changes in tilt of the IMU. Simple
numerical integration of the gyroscope data introduces drift
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Fig. 1.

Sensor module worn by a user

errors and is insufficient for heading estimation. Some of
these errors can be reduced by combining the gyroscope
data with magnetometer data. However, magnetic disturbances
introduce errors in the heading obtained from magnetometers.
Our method allows estimation of the magnetic disturbance
thereby increasing estimation accuracy.

We use the method described by Wienberg et al. to per-
form step length estimation [11]. This method is known to
perform well even if generalized calibration values are used
for different users [10]. Various other kinetic models have
been proposed to estimate the step length using accelerometer
measurements [12], [13], [14], [11]. These models, however,
require that some parameters be tuned for every different user.
Although user specific calibration typically results in more ac-
curate estimation of step length, acquiring data for calibration
is quite challenging. This is especially true for kinetic models
that are sensitive to external factors like hardness of floor,
footwear, etc., as user specific parameters need to be re-tuned
for these changes.

Several methods have been proposed to compute user
specific parameters for different kinetic models using GPS
data [15]. These methods automate the collection of user
specific training data and the computation of user parameters.
However, as it takes some time to collect training data, a
minimal calibration system, such as ours, can be used to
estimate the position while training data is collected. It can
also prove useful in situations where user specific calibration
can not be done due to the lack of GPS and Indoor Map data.



II. HEADING ESTIMATION

Gyroscopes and magnetometers are popularly used in dead
reckoning systems to estimate the heading. Gyroscope mea-
surements contain bias and scale errors which introduce a
drift in the heading estimate. A well calibrated compass, on
the other hand, is known to give a stable heading. However,
external magnetic disturbance due to electronic systems, power
lines, magnetic objects like speakers, motors are known to
degrade the performance of a compass. This is especially true
for indoor environments.

Among various techniques proposed to counter the errors
introduced by magnetic disturbance, Gusenbauer et al. have
described a method that uses a simple linear recursive filter
to estimate the heading using only magnetometer measure-
ments [15]. This method uses a filter weight parameter that
can take different values for different users. Besides, as the
experimental setup described by Gusenbauer et al. does not
include a gyroscope, the compass tilt-compensation has to be
performed using only accelerometer data.

As a three-axis gyroscope is fast becoming a standard
feature in smartphones and Personal Digital Assistant (PDA)
devices, more sophisticated techniques can be used to counter
the errors introduced by indoor magnetic disturbance. More-
over, as the rotation of IMU is not constrained to the vertical
axis, a full 3D attitude estimation can achieve better heading
accuracy by incorporating gyroscope measurements for three
orthogonal axes.

We propose that an EKF be used to estimate the full 3D
attitude of the IMU using the data from the gyroscope, the
magnetometer and the accelerometer. Owing to several com-
putational benefits offered by quaternions over other attitude
representations including Euler angles and Direction Cosine
Matrix (DCM) [16], we chose to represent the full 3D attitude
as a quaternion.

A. Quaternion Mathematics

For the sake of completeness, we shall provide a brief
mathematical description of quaternions. Quaternions extend
the complex number system and can be expressed as,

q=qo+ qi + q25 + q3k. (D

The 3-D orientation of an object expressed as a quaternion
offers several advantages over Euler angles or DCMs. In the
following equations, the attitude of the body with respect to
ground is given by the quaternion ¢ [17]. A 3 X 1 vector
(Z) can be transformed from its representation in a reference
frame (V) fixed on the ground @) to its representation in a
reference frame (B) fixed on the object @B, using,

P = CR(gaY, )

where C%(q) is the 3-D rotation matrix obtained from the
quaternion (q) as follows,
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The reverse transformation matrix (C) can be simply
obtained as the transpose of (C’ﬁ).

A quaternion (¢ = qo + q1¢ + q2J + q3k) can be rotated
by multiplying it with a quaternion representing the spatial
rotation (r = rg + r1¢ + r2j + r3k). The resulting quaternion
(¢ = qp + g1t + ¢bj + ¢5k) can be obtained as,
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B. Magnetic Disturbance

We estimate the magnetic disturbance using the EKF. Our
method involves estimation of magnetic disturbance in a
reference frame fixed with respect to ground, as the magnetic
disturbance is a property of a particular location. This is
different from several other techniques proposed to handle
the errors introduced by magnetic disturbances. Sabatini et
al. have described a quaternion based EKF in which, the
magnetic disturbance is estimated as magnetometer bias error
in the state vector [18]. This is equivalent to estimation of a
magnetic disturbance vector fixed with respect to the sensor
module. Among other techniques, Roetenberg et al. employ a
Complementary Filter (in contrast to the EKF of our method)
that models the errors introduced by magnetic disturbance
[19].

A magnetometer measures the total magnetic field (ﬁ )ata
point, which is given by,

ﬁ = ﬁearth + I—_jewt (4)

where H’eamh and ﬁemt denote the Earth’s magnetic field at
the point and the external magnetic field respectively.

Hem can be split into two components, d and Hsys, where
H sys 18 the constant magnetic field generated by the navigation
system (including the user) and d is the magnetic disturbance

generated by surroundings,
ﬁemt = ﬁsys + J (5)

It is assumed that the contribution of H sys 1s removed from
the raw measurement during sensor calibration. As d cannot
be measured directly, it has to be estimated indirectly.

C. Extended Kalman Filter

We will now describe the EKF. The state vector (x)
for the filter is composed of the rotation quaternion (¢ =
[q1, G2, g3, q4]), augmented by the tri-axial gyroscope scale
(s =[S, Sy, 8-]) and bias factors b= [bs, by, b;]) and external
magnetic disturbance vector (dV = [d,, dy, d.]), that is,



x = [q,s,b,d]. (6)

A Kalman Filter typically involves alternating state predic-
tion and state update phases. These phases are detailed below.
State Prediction Step:

The state prediction step in a Kalman Filter involves pro-
jecting the filter state vector for the next measurement,

Ty = flap—1,u) + wy N

where Z, is the projected state vector, x;_1 is the initial state
vector, u; is the control input, f is the process model and w;
represents Gaussian process noise.

The state covariance (FP;_1) is projected using,

P, = F,P,_Fl' +Qy, 8)

where P, is the projected covariance, F; is the linearized
process model, obtained as the Jacobian of the process model
(f), and @ is the process noise.

In our implementation, the control input u, is obtained from
gyroscope inputs. As described in [16], for the discrete case the
gyroscope readings can be incorporated in the attitude quater-
nion (g;) by multiplying it by a quaternion (r;) representing the
change in orientation during the sampling period AT, given
by,

Gt = qt—1 @1 + wy, &)

where ® represents quaternion multiplication (equation 3)
and 9w; represents Gaussian noise. r; is obtained from the
gyroscope readings after correcting for scale and bias errors
as follows.

at,c
Q¢ 50
ry = t,sYt,x (10)
At 50ty
at,s0t,z
where
Ot,x (St,xwt,x - gbt,x)AT
Ot = |0ty | = (stvywt’y - gbt7y)AT + gwt7 (1 1)
Ut,z (st,zwt,z - gbt,z)AT

[Wt,zawt,vat,z] denotes the raw measurements of the gyro-
scope along x, y and z axes, 9b; ., 9b; ,, and bi.= are gyroscope
bias terms and Jw; is Gaussian noise. The values of a; .
and a; s depend on the chosen order of approximation of
quaternion integration [16]. We found that the first order
approximation with a;. = 1 and a;s = 1/2 performs
satisfactorily for a PDRS.

The scale and bias corrections for the gyroscope, and the
external magnetic disturbance vector are modeled as a random
walk, given by,

(12)

13)

= S
St = S¢—1 1+ "Wy,
7 b
by = bi—1 + "wy,

dy = dy 1 + Yy, (14)

where “wy, bw,, Pw, are 1 x 3 vectors representing Gaussian
noise terms.
Measurement Update Step:

The measurement update step of a Kalman Filter involves
refining the state estimate by incorporating sensor measure-
ments. The update step requires the computation of the Jaco-
bian (H;) (see footnote 1) of the measurement model (h),

Zy = h(ft) + Vt, (15)

where z; is the estimated sensor measurement at the k'
interval and v, represents Gaussian sensor noise.
The Kalman gain (/;) is computed as,

K,=PHI'(H,PHI +V,)71, (16)

where, P; is the projected covariance from the last state
prediction step and V; represents Gaussian noise. The state
vector is updated as,

Tt :.’ft—‘th(Zt —h({ft)), (17)

where x; is the updated state vector, Z; is the predicted state
vector from the last state prediction step and z; are sensor
measurements. The covariance matrix is updated as,

Py = (I — K,H,)P, (18)

where P, is the updated state covariance and [ is the identity
matrix. !

We shall now describe our measurement model. We assume
the accelerometer and magnetometer measurement noise to
be uncorrelated zero mean white noises. Independent update
steps are performed for the magnetometer and accelerometer
readings.

The magnetometer measurement (" z;) can be modeled as,

"z = CR (@) (HY + ) + ™7, 19)

a
where O (g;) is the reference frame transformation matrix
derived from ¢, H é\[mh is the magnetic field due to Earth
in the ground reference frame, d.¥ is the estimated magnetic
disturbance and ¥ represents Gaussian noise.

Besides the gyroscope and magnetometer, the accelerometer
also provides information about the attitude of the IMU. This is
due to the fact that gravity always acts along the vertical axis.
However, the accelerometer measurement is used to perform
an update step only if the variance of accelerometer signal,
computed over a running window of length 1 second is below
a fixed threshold. It is assumed that if the accelerometer signal
remains constant for a long time, then the user is at rest.
Hence, acceleration measured by the accelerometer (@) can
be assumed to be equal to gravity (g). The accelerometer
measurement in this condition (*Zj41) can be modeled as,

% = CR(a) (V) + T, (20)
where gV is the gravity vector in ground reference frame and

%4, represents Gaussian noise.

IPlease note that H; used in equations 16, 17 and 18 represents the Jacobian
of the measurement model where as H used elsewhere in this paper represents
magnetic field.



Fig. 2. Sensor module reference frame

D. Heading from 3D attitude

The EKF estimates the 3D attitude of the sensor module. We
compute the heading as the angle between anterior-posterior
vertical plane and a vertical reference plane fixed with respect
to ground. This method assumes that the IMU stays fixed on
the user.

In order to compute this angle, we take a vector u";B fixed on
the sensor module, such that it is not collinear with the vertical
axis of the ground reference frame. The representation of this
vector in the ground reference frame @, can be obtained
using the following equation.

™ = CF (q)w” Q1)

. . Nk
The horizontal projection ;" """

obtained simply by,

of this vector can be

—

100
Nt =10 1 0| ulY (22)
0 0 0

Heading () is obtained as the angle that @;"""°" makes

with either of the horizontal axes fixed on ground. In our
implementation, we choose ;P as a unit-vector along the z-
axis of the reference frame fixed on the sensor (Figure 2)
module.

III. STEP DETECTION AND STEP LENGTH ESTIMATION

In this section we will describe the step detection and step
length estimation techniques used to estimate the distance
moved by the user.

A. Step Event Detection

Our step event detection scheme is based on the description
of waist accelerometry given by Zijlstra et al. [20], [14].
It relies on the fact that each step even involves the rise
and fall of the pelvis. We estimate the vertical displacement
of the pelvis by double integrating the vertical acceleration.
The vertical displacement thus obtained, however, has a large
integration drift. In order to remove this drift, it is filtered

using a zero-lag high-pass Butterworth filter with a cut-off
frequency of 0.1 Hz [20].

Steps are detected as peaks in the resulting vertical displace-
ment (Figure 3). As the numerical integration itself acts as a
low-pass filter, the resulting curve is smooth and no further low
pass filtering is required. However, there are some extraneous
peaks for each step. To get rid of these extra peaks, we ensure
that only one step occurrence is detected for each zero crossing
of the vertical displacement.

Each step event begins with an Initial Contact (IC) (Figure
4), after which the body swings forward on a single foot.
This is followed by the Final Contact (FC), which marks the
beginning of the double stance phase, during which both feet
remain on the ground. Our step length estimation (section
III-B) technique requires that ICs be detected for each step.
Once a step event is detected, the Initial Contact (IC) for
the step is detected as the highest local maximum in the
anterior-posterior acceleration between the peak in the vertical
displacement corresponding to the previous step and the peak
in the vertical displacement corresponding to the next step.
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Fig. 3. Step Detection using accelerometer data. The vertical displacement

is multiplied by 100 to make it comparable to vertical and anterior-posterior
acceleration.

B. Step Length Estimation

Several step length estimation techniques have been devised
for different applications. Levi and Judd have described a
technique in which step length is modeled as a linear function
of step frequency [12]. Jeong et al. have described a method
that does not need to be calibrated for different users. However,
their method assumes that the IMU is worn near the foot [13].
Zijlstra et al. have described an inverted pendulum model
for the motion of pelvis during a step [14]. This method
requires the leg length to be measured experimentally and is
known to be sensitive to user calibration [10]. Wienberg et al.
[11] have proposed an approximation of the popular inverted
pendulum model described by Zijlstra et al. [14], [20], that
does not require knowledge of the leg length. In prior work, a
comparison of several popular step length estimation schemes
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Fig. 4. Motion of the pelvis during a step

has revealed that the technique described by Wienberg et al.
[11] is best suited for a waist mounted IMU using generalized
calibration values [10].

The method proposed by Wienberg et al., estimates the
length of the step (L) (Figure 4) from the vertical displacement
of the pelvis (h). They have empirically demonstrated that the
step length can be approximated as [11],

_ 4
L = KvV/amaz — min,

where a4, and a,,;, denote the maximum and minimum
vertical acceleration during a step respectively and K is a
multiplication factor. The value of K is different for different
people, and can be found out experimentally. We compute the
values for a4, and a,,;, from the IC of each step to the IC
of succeeding step.

(23)

IV. INDOOR EXPERIMENTS AND RESULTS

We used the iNemo IMU module developed by ST Mi-
croelectronics to collect data. The module is mounted on an
adjustable waist belt (Figure 1 and 2). The module samples
sensor data for a tri-axial accelerometer, a tri-axial gyroscope
and a tri-axial magnetometer at 50Hz and transfers the raw
data to a laptop over USB, which in turn timestamps and logs
it. The collected data is processed offline using MATLAB.

Experiments were preformed at two different indoor loca-
tions to collect walk data for different users. The first set of
experiments were performed in a corridor on the first floor
of Old O.T Block, All India Institute of Medical Sciences
(AIIMS). Data was collected for 9 volunteers at this location.
We also collected data for 6 volunteers in a second set of
experiments performed in a corridor on the third floor of
Bharti School of Telecommunication and Management at India
Institute of Technology (IIT) Delhi.

In order to establish the ground truth trajectory, the subjects
were made to walk on a manually surveyed path marked on
the corridor floor. In both experiments the path starts and
ends at the same position. Both paths had several straight
stretches followed by sharp right-angle turns in clockwise and
anti-clockwise directions to test the accuracy of our attitude
estimation scheme.

TABLE I
ESTIMATION ERRORS FOR DIFFERENT VOLUNTEERS FOR THE
EXPERIMENTS PERFORMED AT AIIMS

Volunteer S.No Maximum Relative dis- | Average Relative
tance error over the entire | distance error
path

1 5.31% 3.48%

2 8.84% 5.66%

3 5.14% 3.65%

4 5.53% 3.62%

5 7.65% 4.69%

6 8.15% 5.75%

7 8.38% 5.14%

8 4.23% 3.58%

9 18.44% 7.99%

We use a measure of relative distance error to evaluate
the accuracy of our method. For any point in the estimated
trajectory, the relative distance error is the ratio of the distance
between the estimated position and the actual ground truth
position, and the length of the path up to that point from the
starting position. We evaluate this relative distance error for
the final position as well as all other sharp turns in trajectories.
Average values for relative error presented below correspond
to the average of relative error at all these points corresponding
to sharp turns.

The value of the scaling term (/) described in equation (23)
was computed for different subjects by making them walk on
a straight path of the known length. We chose the mean of this
distribution, as the generalized value of K. This value came
out to be 0.49. The same value of K was used to generate
trajectories for all subjects.

30r B
- ~
25r <
~
~
~
~
~
~
20+ s
~
— N N
E
S5
8 : "%
> -
10 [ E
i: mmmm Groundtruth trajectory
= i Gyroscope trajectory
5 | - = = - Magnetometer trajectory
- —— EKF trajectory
[} = = Floormap
ob X . X Finishing position
O Starting position
Il Il Il Il Il Il
-10 -5 0 5 10 15 20

X Position (m)

Fig. 5. Indoor Results: AIIMS
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A. Results: AIIMS

Figure 5 shows one of the results obtained for a experiment
performed at AIIMS. The figure shows three estimated trajec-
tories obtained by using only the gyroscope, only the magne-
tometer and the EKF filter. These trajectories are discussed in
detail in sections IV-B1, IV-B2 and IV-B3. The value of the
scaling term described in equation (23) was again taken to be
0.49. The maximum relative distance error over the entire path
was obtained to be 5.53%. As is evident from the figure, the
estimated position obtained using only the magnetometer has

Indoor Results: IIT Delhi

a large error. The total length of the path is 59.0m.

Figure 6 shows the estimated trajectories for all the 9
volunteers overlaid on the same plot. Table I captures the
average and maximum relative distance errors observed for
different subjects in this experiment. The average error varied
from 3.48% to 8% and the worst case relative distance error
varied between 4.23% and 18.44%. Note that these errors were
obtained for the case with K = 0.49 for all volunteers, that
is the minimal calibration scenario. If we chose K suitably
for each user, as can be seen in the right half of Figure 6,
a significant increase in accuracy is possible. The worst case
relative distance error obtained in this case improved to 9%.

B. Results: IIT Delhi

Figure 7 shows the results obtained for an exemplary experi-
ment performed at IIT Delhi. The figure shows three estimated
trajectories obtained by using only the gyroscope, only the
magnetometer and the EKF filter. The total distance walked
in the experiment in a total of 159 steps was 94.37m. The
duration of the experiment was 88.6 seconds. We shall now
compare the three different trajectories. The results obtained
in this set of experiments were similar to the results obtained
in the experiments performed at AIIMS (Section IV-A).

1) Only Gyroscope: User position was estimated using
the proposed EKF but with no updates performed for mag-
netometer measurements. It must, however, be noted that
the accelerometer updates were performed as described in
Section II-C. As expected, when the heading is estimated using
only the gyroscope measurements, the heading estimate starts
drifting. The total error observed in the estimated position at
the end of the experiment is 4.26m which translates to a 4.51%
relative distance error.



2) Only Magnetometer: User position was estimated using
only the magnetometer. The total error observed in the esti-
mated position at the end of the experiment is 10.89m which
translates to a 11.53% relative distance error.

3) Extended Kalman Filter using both Gyroscope and Mag-
netometer: The total error observed in the estimated position
at the end of the experiment is 3.61m which translates to a 4%
relative distance error. Although the relative distance error for
this case is very similar to the case where only the gyroscope
is used to estimate the heading, it can be seen in the figure
that the average error in the estimated position, when measured
over the entire path is much worse for the latter.

V. CONCLUSIONS AND FUTURE WORK

We have presented a waist worn IMU based PDRS that
requires minimal calibration on the user end. The obtained
average relative distance error of 3 to 8%, is encouraging and
comparable to other handheld systems [15] and foot mounted
systems [6].

The techniques and results discussed so far have been in
the context of a waist worn system, however, it is possible to
extend these to other placements of the IMU. The step length
estimation technique described is known to work for the case
where in the IMU is carried in a trouser pocket [10]. Besides,
a full 3D estimation of the attitude allows for an estimation of
heading in cases where the IMU changes its 3D orientation.
However, our heading estimation technique assumes that the
IMU is fixed on the user’s body. Given the flat shape of most
PDAs and cellphones, this assumption would hold for most of
the time when the device is carried in a trouser pocket as long
as it does not move or flip inside the pocket. Modeling the
changes in the relative orientation of the IMU with respect to
the user as a solution to these challenges represents a possible
direction for future work.
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