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Abstract—Indoor maps are highly essential for indoor posi-
tioning and location-based services. Applications providing navi-
gation support to users are rendered useless without a map of the
vicinity being available. Presently, floorplans of public locations
are collected and maintained by designated organizations using
methods that require excessive manual intervention. This process
of creating a database of indoor maps is neither efficient nor
scalable to the practically infinite number of public indoor places
around the world.

In this paper, we present a crowdsourcing algorithm to
automatically create floorplans of buildings with zero prior
information. The algorithm leverages the positioning data shared
by pedestrians using smartphone-based navigation systems in the
building. It expects only position fixes and associated uncertain-
ties from the navigation systems and does not depend on any
particular navigation algorithm. The available positioning data
in a completely unknown building is essentially PDR-based and
is known to be prone to high amounts of accumulated error
primarily due to the lack of reliable error resetting techniques.
The presented algorithm takes into account the possibility of
such highly erroneous motion traces of pedestrians while trying
to generate map as accurately as possible. As an added merit,
the algorithm does not depend on the availability of Wi-Fi access
points.

I. INTRODUCTION

Indoor positioning and navigation has been a hot topic of
research for the past few years. Researchers have developed in-
novative systems and algorithms like NavShoe [1], FootSLAM
[2] etc. to make indoor navigation a reality in known as well
as unknown environments. However, the dependence of these
methods on specialized hardware limit their use. The ubiqui-
tous modern day smartphones, equipped with Wi-Fi receiver
and inertial sensors, have changed the scenario altogether.
Wi-Fi fingerprinting based methods like the Horus [3] and
with PDR based techniques like UPTIME [4] can localize
pedestrians in indoor locations with reasonable accuracy using
just smartphone and reasonable additional infrastructure like
Wi-Fi access points. These methods have been widely accepted
commercially and as a result, in a few places, the general
public is already reaping the benefits of indoor navigation
via easy-to-use smartphone applications. But, despite these
advancements, indoor navigation is not as widespread as
outdoor navigation using GPS and GNSS. We believe that a
primary reason for this is the reduced availability of indoor
maps.

Indoor maps are a prerequisite for many popular indoor
positioning solutions like the Horus [3]. Even algorithms that
do not directly depend on indoor maps, benefit from their
availability. Applying map-matching techniques increases the
accuracy and consistency of almost any PDR-based solution
like the UPTIME [4]. More importantly, indoor maps are a
neccessity for the end users of navigation solutions. For assis-
tance in navigation, pedestrians require their present location
relative to the structure and positioning of hallways and rooms
in the building. In such a scenario, only estimating the latitude
and longitude of their current position is useless to them. This
positioning data makes sense to them only when supplied with
a building floorplan.

Despite the immense importance of the availability of indoor
maps, the database of floorplans available with any location-
based service provider like SkyHook [5] is limited. This is
because the present process of acquiring indoor maps involves
intensive manual intervention. Given the vast number of indoor
locations worldwide and the fast rate at which new public
buildings like shopping malls are being constructed, manually
acquiring floorplans is in itself not scalable. The situation
is made worse by the fact that original floorplans become
outdated with time as the buildings are renovated or their
internal structures are altered. There is a need to automate
this process of map collecting and maintanence.

In this paper, we present a server-side algorithm which
automatically creates and maintains a database of indoor loca-
tions, making use of the positioning data shared by pedestrians
using their indoor navigation applications in their smartphones.
The positioning data required by the mapping algorithm is
comprised of the position fix (i.e. latitude and longitude)
and its associated uncertainty which can be in one of many
standard forms like lat-long deviation, radius of 50% (or 90%)
confidence region etc. In our opinion, these requirements of
positioning data do not limit the viability of our algorithm
because most navigation solutions leveraging smartphone’s
inertial sensors calculate these values inherently. The mapping
algorithm is a truly crowdsourcing one in the sense that it
works with the shared positioning data irrespective of the
positioning solution used to generate the data. Also, unlike
SLAM techniques which depend on looping trajectory of
pedestrians, our algorithm expects zero additional effort by
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Fig. 1. System Overview

users.
Not controlling the positioning method or the quality of off-

the-shelf smartphones used presents the challenge of using
a mixture of accurate as well as highly erroneous position
fixes in generating indoor maps as accurately as possible.
We introduce the concept of spatial density histograms using
varied Gaussian kernels as a non-parametric statistical way to
address this problem.
The rest of the paper is organized as follows. We start with
an overview of our algorithm, followed by a discussion on the
mathematical model used. Then we lay down our algorithm in
specific terms and present the results of our experimentation.
Finally, we review related work and conclude our paper.

II. SYSTEM OVERVIEW

In this section, we formulate the indoor mapping problem.
We also describe the complete system (see Fig. 1) of which
the mapping algorithm, discussed in the rest of the paper, is a
central part.

A complete indoor map consists of two important types of
information. First, it specifies the position of the walls shaping

hallways and rooms along with the position of rarely moved
obstacles like tables, decorative installations in shopping malls
etc. Second, it specifies the defining labels associated with the
various parts segregated by the postioning of the obstacles.
For example, in a shopping mall, the labels could be the
names of various shops. The work presented in this paper
deals with estimating only the former of the two types of
information. Once the positioning of walls and other obstacles
are estimated, the defining labels can be set through human
contribution and feedback or by using prior work like the
SurroundSense [6].

The system we propose is a data collection and processing
server which maintains a database of indoor maps. Any
positioning and navigation application can send positioning
data of the user over an Internet connection. Specifically, the
server accepts the tuple (latitude, longitude, uncertainty) as
positioning data. The mapping algorithm used by the system
represents each position fix as a normal distribution with
latitude and longitude of the position fix as mean and the
uncertainty as the co-variance matrix. Hence it is necessary to
represent the uncertainty as a 2x2 co-variance matrix. Some
positioning systems like those using Kalman filter internally
calculate the covariance matrix denoting uncertainty, but other
systems may instead measure uncertainty in terms of latitute
and longitude deviation or radius of 50% confidence region.
We argue that all standard forms of representing uncertainty
can be converted to the co-variance matrix form with inherent
approximations. For example, when latitude and longitude
deviation form is used, the distributions along latitude and
longitude can be considered independent and the co-variance
matrix entries can be calculated accordingly. These conver-
sions are inexpensive and can be done by peripheral sub-
systems in our system, each of which converts one of the
finitely many standard forms of uncertainty to the co-variance
matrix form. The mapping algorithm is run periodically over
the collected data to generate or modify maps and store them
in the database. The positioning data is stored in the system
in a time-bound manner, i.e., each data point is stored in the
system only for a certain time after which it is discarded. This
helps in keeping the maps in the database up-to-date.

At this point, it is worth mentioning that the system can
be easily extended to store Wi-Fi RSSI values as well which
will enable us to associate Wi-Fi fingerprints with the gen-
erated map. This inturn can be useful for a variety of Wi-Fi
fingerprint-based positioning applications. Our work presented
in this paper, however, focuses only on generating building
floorplans from crowd-collected position fixes.

III. MATHEMATICAL PROBLEM FORMULATION AND
SOLUTION

In this section, we formalize the mapping problem and
depict it as a statistical problem. We also introduce Spatial
density histograms using varied Gaussian kernels as a non-
parametric way to tackle the statistical problem, thus generat-
ing a probabilistic version of the indoor map.
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A. Problem Formulation
The task is to use a collection of uncertain position fixes of

pedestrians to generate the map of a building. This problem
statement can be defined, in a probabilistic setting, as the
estimation of map given all the position fixes of pedestrians.

pdf(M|f1, f2...fn) (1)

where M denotes the map random variable, and each fi
denotes an uncertain position fix modelled as a Gaussian
distribution (explained below). M is a random variable for
various possible states of the map where each map state is a
specific way to distributing the vacant areas and the blocked
areas over a 2-D space. Therefore, we can say thatM captures
the various ways of distributing vacant areas over a 2-D space.
The ith position fix in the input collection of positioning data
is given by the tuple (lati,longi,Σi), where lati is its latitude,
longi is its longitude and Σi is its co-variance matrix denoting
the uncertainty of the position fix observed. The erroneous
position fix is mathematically represented in our problem
formulation as an independent bivariate Gaussian distribution,
denoted by fi, with (lati,longi) as mean and Σi as the co-
variance matrix.

fi(lat, long) = N ([lat, long]|µ = [lati, longi], σ = Σi) (2)

where lat and long are the latitude and longitude of the
location at which we want to evaluate the value of fi; N
stands for normal distribution. Since Σi is the uncertainty of
the position fix observed, we can say that, fi represents the pdf
of the actual position of a person given his observed position
fix.

Keeping in mind the above inferences, we conclude that the
probability expression in (1) represents the probability density
function of vacant locations over a continuous 2-D space,
given the finite observations of vacant locations (i.e. fi’s).
The use of fi as an observation of vacant location is a simple
probabilistic extension of the following conjecture which intu-
itively applies if position fixes are not erroneous : the location
associated with a position fix of a pedestrian is always vacant.
In our proposed method, we estimate the bivariate pdf, in (1),
in a non-parametric way using spatial density histograms. The
concept of our spatial density histograms derives heavily from
the statistical technique of Kernel Density Estimation (KDE)
[7], widely used in computer vision and signal processing. We
briefly discuss the essentials of KDE in the next part and then
subsequently describe our spatial density histograms.

B. A primer of Kernel Density Estimation
Kernel Density Estimation (KDE) is used to estimate the

probability density function of a random variable in a non-
parametric way. Given a finite number of independent and
identically distributed samples, (x1, x2 . . . xn), drawn from an
unknown distribution, the pdf of the distribution is estimated
using the following equation :

pdf(x) =
1

nh

n∑
i=1

K(
||x− xi||

h
) (3)

In the above equation, K( r) is called the kernel function and is
controlled by the parameter h called the kernel bandwidth; ||.||
denotes the Euclidean norm of the vector. The most popular
choice of kernel function is the normal kernel described by
the following equation :

K(d;h) ∝ e−
d2

2h2 (4)

An important advantage of KDE is that it can asymptotically
achieve estimation optimality for a distribution without making
any assumptions about it. In other words, as the number of
observed samples increases, the pdf estimate converges to the
true density of ANY distribution [8].∫

|p̃(x)− p(x)|dx→ 0 as N →∞ (5)

where p̃ is the actual pdf ; p is the estimated pdf ; N is the
number of input samples and |.| is the standard modulus
operator for real numbers. This convergence property makes
KDE, in our opinion, an ideal technique for crowdsourcing
indoor maps. However, we do not directly use KDE for our
map estimation problem primarily for one reason. In KDE,
the contribution of all training points are identical in nature
because the same kernel function is applied to all the points.
This is not a suitable property in case of our mapping problem
where some position fixes are quite accurate while others can
be highly erroneous (as demonstrated by the data collected
for our experiment see figure 6b). An ideal solution, hence,
should give higher weightage to the more certain position fixes
and discount the contribution of highly uncertain points. Our
method of spatial density histogram using varied Gaussian
kernels inherently incorporates this differential weighting strat-
egy.

C. Spatial density histograms using varied Gaussian kernels

The transition from KDE to spatial density histograms
comprises of two changes.

1) Discretization of continuous space: We discretize the
continuous 2-D space over which the state of map random vari-
ableM is to be estimated by choosing a grid representation of
the map. We represent the map as a grid of square tiles of fixed
dimensions (δ x δ), each of which is either vacant or occupied.
The vacant tiles are available for pedestrians’ use while the
occupied ones are blocked by obstacles to human motion
(e.g. walls, tables). Each of these tiles, much like individual
pieces of a jigsaw puzzle, when put together generate the entire
building floorplan. The density estimate within each tile, Tij
(i.e. the map tile in the ith row and jth column of the grid),
in the map grid is considered to be uniform and same as the
density estimate at it’s center point, cij . In other words, the
tiles are 2-D histogram bins whose values are the accumulated
density at their center points (cijs).

2) Varied Gaussian kernels: We use fis,described in sub-
section III-A, for calculating density contributions of position
fixes. Each fi is essentially the output of the corresponding po-
sition fix applied to a Gaussian kernel whose kernel bandwidth
is proportional to the uncertainty of the position fix. The use
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of Gaussian kernels with customized bandwidths makes the
contributions of the various position fixes non-identical and
dependent on the certainty of the position fixes. Position fixes
with high uncertainties have spread-out or flattened fis. As a
result, these position fixes contribute small values to a large
area of the map. Such almost-uniform, global contributions are
incapable of changing the shape of the pdf of the map. On
the contrary, highly certain position fixes have sharp fis and
hence have high local contributions to the pdf. These sharp,
local contributions have significant effect on the shape of the
map pdf.

In summary, we estimate the density at each tile in the map
grid using the following equation:

pdf(Tij) ∝
n∑
i=1

fi(cij) (6)

The density estimates at the map tiles correspond to the
likelihood of the tiles being vacant and together form the pdf
of the indoor map.
The statistical significance of our method is that it estimates
the likelihood of a map location being vacant using the
expected number of pedestrians who have walked over that
location, calculated using the erroneous position fix readings.
To substantiate this claim, we show the equivalence between
the density estimate at a map tile (calculated using (6)) and
the expected number of pedestrians who have walked over it.
Remember from equation (2) that each fi represents the pdf
of the actual position of a pedestrian given his position fix
reading. Therefore, the expected number of persons who have
been over a particular tile of dimensions δ × δ is given by:

E(pij) =

n∑
i=1

∫ Xcij
+δ/2

Xcij
−δ/2

∫ Ycij
+δ/2

Ycij
−δ/2

fi(x, y) dx dy (7)

where Xcij and Ycij are the X-coordinate and Y-coordinate of
the tile center cij . For δ much less than the variance of fi, the
above equation can be approximated as :

E(pij) =

n∑
i=1

δ2fi(Xcij , Ycij ) ∝
n∑
i=1

fi(cij) (8)

Comparing equation (8) with equation (7), we see that the
expected number of people who have walked over tile Tij
is proportional to the density estimate at the same tile, thus
proving our claim of equivalence between expected number of
pedestrians and density estimate.

IV. THE ALGORITHM

Our algorithm can be broadly divided into two parts : gen-
erating the probabilistic map using spatial density histograms
discussed above and using the probabilistic map thus generated
to mark the positions of walls and other obstacles. In this
section, we describe both the parts in order.

A. Generating probabilistic maps

The algorithm for generating a probabilistic map is based
on the concept of spatial density histograms with varied
kernels discussed in Section III-C. We take up the various
aspects of the algorithm separately. The complete algorithm is
summarized in Algorithm 1.

1) Forming a grid representaion: We ideally want to rep-
resent the map as a grid of square cells of fixed dimensions
as discussed in III-C1. But for computational efficiency and
representational ease, we approximate the sets of parallel
horizontal and vertical lines, which demarcate the individual
squares, with latitudes and longitudes separated by fixed inter-
vals. Within the limited spread of almost all indoor locations,
the latitudes and longitudes form two sets of almost parallel
lines (see Fig. 2). The slight skewness imparted to the squares
as a result of this approximation has negligible effect. The
interval size between latitudes (and longitudes) is a design
decision and depends on the desired size of individual square
tiles. Forming the grid is the first step of our algorithm which
can be done by identifying the demarcating latitudes and
longitudes. Since the interval between damarcating latitudes
and longitudes is fixed (say ∆), storing just the minimum
and maximum latitudes and longitudes essentially stores the
positions of all reference latitudes and longitudes and fulfils all
our algorithmic requirements. The minimum (and maximum)
latitude (and longitude) can be identified by a single scan of
the batch of position fixes (i.e. latitude, longitude tuple) used
for generating the map.

2) Matrices for storing density contributions: Remember
from the discussion in III-C1 that we calculate the density
contributions only at the centeres of the tiles. For storing the
density contributions at the centers, we use a 2-D rxc matrix,
V . Here r and c are:

r = dmax lat−min lat

∆
e (9)

c = dmax long −min long

∆
e (10)

We call the matrix V as vacancy matrix and each of it’s
element, νij , stores the density contribution at the center, cij ,
of the tile, Tij . We use another rxc matrix N , called the nor-
malization matrix, which stores the normalization coefficients
corresponding to the stored density evaluations. We initialize
all elements of V with 0 and all elements of N with 1.

3) Representing density contribution of a position fix:
Recall from section III-C2 that density contribution of each
position fix is calculated using it’s corresponding fi. Given
latitude (lati), longitude (longi) and co-variance matrix of
uncertainty (Σi), the corresponding fi is given by

fi(lat, long) =
1√

(2π)2|Σi|
e−

1
2L

T
i Σ−1

i
Li (11)

where

Li(lat, long) =

(
lat
long

)
−
(
lati
longi

)
(12)
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Fig. 2. Skewed grid formed using latitudes and longitudes used in our experiment to map the hallway of Bharati building (IIT Delhi). Visualized using
Google Earth.

We are interested in finding the density contributions only
at discrete points, i.e. the centers of the map tiles. Hence
we represent the continuous fi as a matrix, K. Since K is
the matrix representation of a 2-D Gaussian, it contains the
symmetric structure of Gaussian distribution (see Fig. 3 for
sample) and hence is indexed about the center-most cell. The
center-most cell is indexed (0,0), the cell just right to the
center-most cell is indexed as (0,1), cell just left to the center-
most is indexed (0,-1), cell vertically at the top of center-most
is indexed (1,0) and so on. Following this indexing pattern,
the value of the element kij of matrix K is given by:

kij =
1√

(2π)2|Σi|
e
− 1

2

(
i.∆
j.∆

)T

Σ−1
i

(
i.∆
j.∆

)
(13)

fi extends to infinity but it’s matrix representation, K, has
fixed dimensions. To limit the dimensions of the matrix, an
error tolerance parameter ε is chosen. The density contribution
by fi at a point (lat,long) is effectively ignored if it is below ε.
The dimensions of K can now be chosen as (2rk+1) x (2ck+
1) such that k(rk+1)0, k(−rk−1)0, k0(ck+1) and k0(−ck−1) are
all just below ε. Therefore, solving inequality with ε using
equation (13), rk and ck are given by:

rk = b

√
−2

∆2.Σi22
log(

√
4π2|Σi|.ε) c (14)

and

ck = b

√
−2

∆2.Σi11
log(

√
4π2|Σi|.ε) c. (15)

0.0033 0.0478 0.1163 0.0478 0.0033
0.0081 0.1163 0.2829 0.1163 0.0081
0.0033 0.0478 0.1163 0.0478 0.0033


Fig. 3. An example of matrix K

4) Accumulating density contributions: The final pdf of the
map or the probabilistic map is generated by accumulating the
density contributions by all position fixes at the canters of the
tiles, cij . We already know that the density contribution of
each position fix is represented by the corresponding matrix
K and the contributions are stored in the vacancy matrix, V .
The process of accumulating density contributions is iterative
: One position fix (along with its associated uncertainty) is
chosen at a time, it’s K matrix is formed which is then used to
update the vacancy matrix, V . At each iteration, the elements
of V are updated as follows (see Figs. 4 and 5). The matrix K
is imagined to be placed over the matrix V such that the center
of the smaller matrix K (cell with index (0,0)) is positioned
over the cell (p, q) of V . Here p, q is the subscript of the map
tile Tpq within the bounds of which the position fix represented
by K (i.e lati, longi) lies. These are given by

p = b lati −min lat

∆
c (16)

q = b longi −min long

∆
c. (17)

Once this alignment of both matrices have been done, the
respective overlapping elements are added to one another and
stored back into the cells of the matrix N .
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Fig. 4. The smaller matrix to the right, represents the K matrix for a position fix. The larger matrix to the left represents vacancy matrix V . The red
boundaries show the imaginary placement of matrix K over V . The center of K, marked with broad red borders, is placed over broad red-bordered cell of V .
The updated vacancy matrix is shown in Fig. 5. The values shown here are imaginary.

Fig. 5. Updated vacany matrix, V at the end of 1st iteration. The values shown here are imaginary.

At every iterative step, for every cell of matrix V that is
updated the corresponding cell of the normalization matrix
N is incremented by 1. At the end of all iterations, all the
elements of the vacancy matrix are divided by the elements of
the normalization matrix in an element-by-element manner.

νij final = νij/nij (18)

The final vacancy matrix stores the desired probabilistic map.

B. Generating building floorplan

We use the probabilistic map, generated in the first stage,
to demarcate the position of walls and other obstacles. In
the probabilistic version, every tile is associated with the
probability of it being vacant. But for the building floorplan,
we want to get rid of the probabilities and clearly classify
each tile as being either vacant or occupied by wall (or any
other obstacle). Since the final vacancy matrix already stores
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Algorithm 1 Generating probabilistic map
Input: P,∆
Output: V,min lat,min long
min lat← {min latitude in P} - tolerance
min long ← {min longitude in P} - tolerance
max lat← {max latitude in P} + tolerance
max long ← {max longitude in P} + tolerance
Initialize V matrix with all 0’s
Initialize N matrix with all 1’s
for all (lat,long,σ) tuples in P do

Form K matrix
Update V matrix
Update N matrix

end for
V ← V./N

values in the normalized form, the classification is easily done
by applying a common global threshold. The tiles whose
corresponding values in the vacancy matrix are below the
chosen threshold are marked as occupied and the rest as
vacant. Rendering the final map with occupied locations (or
tiles) marked differently from the pedestrian usable locations,
is surely an acceptable way of map representation. But within
the limits of our experimentation method we have found that,
when the map is depicted in the above manner, the implied
boundaries of the hallways appear highly irregular and noisy.
The discretization of the map into tiles may be a primary
reason for this. Therefore, we go a step further and determine
and then regularize the boundaries of the obstacles. We render
the final map as walkable sections enclosed and demarcated
by boundaries to obstacles.

For marking the boundaries, we first assimilate together the
corner points of the vacant tiles and then find the α-shape
[9] of the 2-D point cloud. α-shapes are essentially composite
shapes formed by a chain of piecewise linear strokes, where
the parameter α controls the length of each stroke. They are a
generalization of the convex-hull and can be used to determine
the shape of any finite set of points. Lowering the value of
the parameter α produces more regularized boundaries. But
this regularization, which may be needed in one part of the
map, leads to the loss of intricate structure in other parts of
the map. So, we propose to use an intermediate value of α
and then apply additional heuristics to regularize all sections
of map boundaries without the loss of structural intricacy. At
this point, we cannot argue about the best value of α, but
based on our experimentation, we recommend choosing 1

α as
3-5 times the width of the map tiles (i.e ∆) and then applying
the heuristic defined below.

We define for ourselves a small angular tolerance, τ (some
value between 5-15 degrees is recommended). We start with
one of the linear stokes of the composite α-shape. We keep
on accepting subsequent strokes in the chain as long as their
angles, relative to the initially chosen stroke, lie within ±τ .
When a subsequent stroke violates the angular tolerance, we

stall the process of accepting strokes, replace all currently ac-
cepted strokes with a single linear stroke joining the endpoints
and then again repeat the process starting with the previously
unaccepted stroke (i.e. the stroke that stalled the process). This
way, we replace sets of smaller strokes with larger strokes thus
regularizing the boundaries, but at the same time preserve the
intricate structures wherever required.

V. EXPERIMENTS

We tested our mapping algorithm by estimating the shape of
the hallway of Bharati building in IIT Delhi campus. As men-
tioned earlier, the algorithm is independent of the positioning
device or method used. But for contextual purposes, we first
present a qualitative overview of the positioning method used
before discussing the procedure and results in detail.

A. Overview of positioning method
We implemented a dead reckoning [10] positioning algo-

rithm which estimates the final position of a pedestrian, given
his initial position, by calculating the net displacement. The
entire algorithm can be divided into 3 broad parts: heading
estimation, step detection and stride length estimation.

1) Heading estimation: For heading estimation we use the
work on robust attitude estimation of hand-held positioning
systems by Mahesh Chowdhary et al. [11], making implemen-
tation level changes wherever necessary. The complete attitude
of the smartphone is estimated by fusing the readings of
gyroscope as well as magnetometer. The fusion is carried out
by an Extended Kalman Filter (EKF) which uses an S-shaped
curve to adaptively change the measurement noise matrix (R)
and the system noise matrix (Q). The heading estimated by
this method is claimed to be robust and resilient to arbitrary
human actions like swinging of hands while walking.

2) Step detection and stride length estimation: The exact
algorithms used for step detection and stride length estimation
are proprietary of CSR Technologies Pvt. Ltd. Both these
algorithms make use of the absolute accelerations measured
with respect to earth-centered, earth-fixed (ECEF) frame of
reference. But, the accelerations measured by the 3-axis
accelerometer in a smartphone are relative to the phone’s
orientation. Estimating the full 3-D attitude of the smartphone
during heading estimation (refer to section V-A1), enables
us to transform the measured accelerations relative to the
smartphone’s frame of reference to the required absolute
accelerations in ECEF frame. This transformation is brought
about by the multiplication of the 3-D vector of relative
accelerations with a rotational transformation matrix whose
elements can be calculated using the heading, pitch and roll
of smartphone’s orientation.

We do not numerically characterize the performance of the
positioning method implemented and rather acknowledge that
more accurate and efficient techniques do exist. But the ability
to use readings from such sub-optimal positioning methods,
to generate maps as accurately as possible, is a desirable
characteristic of any crowd-sourcing mapping algorithm. As
results indicate, our mapping algorithm does have this impor-
tant characteristic.
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(a) Reference floorplan (b) 100 representative trajectories

Fig. 6. (a) Reference floorplan of the Bharati building. The blue and red lines mark the present true boundaries of the hallway. A, B and C are the starting
points of all trajectories in our dataset. (b) 100 representative trajectories are visualized using Google Earth. The red dots are individual position fixes.

B. Experimental procedure

We implemented the positioning algorithm, described
above, in an off-the-shelf Samsung Galaxy S-III smartphone
as an android application. The android application, curtailed
for our experiment, records pedestrian trajectories as log files
stored in the smartphone. These log files are later downloaded
into a computer and our mapping algorithm is run to generate
the map. In our experiment, the starting point of each trajectory
was calculated using GPS fix. Therefore, we chose only those
3 positions as starting points where GPS fix was readily
available, for example, entrance to the adjoint terrace, hallway
corners with large windows (see letter labels in figure 6a).

We collected 300 trajectories of varied lengths and shapes to
generate the final map presented. Equal number of trajectories
(100 each) were recorded with the smartphone held steadily
in hand, smartphone placed in trouser pocket and smartphone
in hand with arms swinging. A representative set of 100
trajectories has been shown is figure 6b. As it is evident
from the visualization, some of the trajectories have arbitrarily
large errors. The primary reason for these large errors, we
believe, is significant heading error induced by the momentary
loss of magnetometer caliberation in the presence of strong
magnetic disturbances at certain points of the hallway. Apart
from these visibly erroneous trajectories, we have also found
that a majority of the trajectories recorded, have significant
deviation from the original path traversed. But such errors can
be expected from any PDR positioning algorithm without the
assistance of error-resetting techniques.

We evaluate the generated probabilitic map qualitatively by
comparing it to the original floorplan of the building (figure
6a). The reference boundary to the hallway (against which the
algorithmically estimated boundary is compared in figures 8
and 9) is drawn to scale by precisely overlaying the floorplan
over Bharati building using Google Earth. The reference
floorplan used, was prepared when the building was initially
constructed and does not show an extension of the hallway
that was later done (the section bounded by red boundaries in

figure 6a). This extension of hallway, as we show in figures 8
and 9, is captured by our algorithmically generated map thus
highlighting an important utility of automatically maintaining
indoor maps: keeping floorplans up-to-date.

C. Results

The skewed grid used for representating the map in our
experiment is visualized in figure 2. The minimum and
maximum latitudes in the grid are 28.544733 degrees North
and 28.545303 degrees North respectively, the minimum and
maximum longitudes in the grid are 77.189950 degrees East
and 77.190811 degrees East respectively. The interval between
adjacent latitudes (or longitudes), i.e. ∆, is chosen to be
6x10−6 degrees. The map tiles , therefore, have a size of about
66 cm x 66 cm.

The vacancy matrix (V) and the normalization matrix (N )
have dimensions 95 x 144, calculated using equations (9) and
(10). The implemented positioning android application logs

Fig. 8. Estimated boundaries of the hallway obtained using α-shapes.
The red lines represent the estimated boundaries, the blue lines represent
the boundaries depicted in the reference floorplan. Notice that the outdated
reference floorplan does not show an extension in the hallway which the
estimated boundaries accurately incorporate. The small loop in the center of
the hallway represents the estimated boundaries of small sitting arrangement
located there but not incorporated in the reference floorplan. The boundaries
are drawn to scale.
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(a) Thresholded vacancy matrix (b) Predicted vacant map tiles

Fig. 7. (a) The thresholded vacany matrix. The various colours in the heatmap are arranged in the colourbar, from bottom to top, in an increasing order of
the sets of values that they represent. (b) The prediced vacant tiles are shaded in dark colours and overlaid over the reference floorplan.

uncertainties as tuples : (deviation in latitude, deviation in
longitude). We convert these tuples to the required 2x2 co-
variance matrix format in the manner described in system
overview (refer to section II).

The final vacancy matrix (V) obtained, is used to classify
the vacant map tiles from the occupied ones. The classification
is done by choosing a common global threshold which is
0.4 in our case. The thresholded vacancy matrix, obtained by
replacing the values below the threshold with 0 and leaving the
the values above the threshold unchanged, is shown in figure
7a as a contour plot (or heatmap). The predicted vacant map
tiles overlaid over the reference floorplan, is presented in figure
7b for qualitative comparison. Having identified the vacant
tiles, we estimate the boundaries using α-shapes with 1

α set
as 200 cm. We use Delaunay traingulation for the computation
of the α-shapes. The estimated boundaries using α-shapes
is presented in figure 8. The boundaries formed are highly
irregular and hence we apply our boundary regularization
heuristic (discussed in the last paragraph of the section IV-B).
The final estimated map with regularized boundaries is shown
in figure 9.

VI. RELATED WORK

In this section, we review three prior works which we
believe are closely related to our contribution and, in the
process, highlight the importance of our work.

SmartSLAM [12] is a system which extends the Simulta-
neous Locatization and Mapping (SLAM) technique to smart-
phones. SLAM is a technique used to generate the map of an
unknown location while localizing the pedestrian at the same
instant. SmartSLAM uses inertial sensors as well as WiFi sig-
nals to construct RF fingerprints and building floorplans. But,
like any SLAM technique, SmartSLAM requires the pedestrian
to walk in loops i.e. revisit previously visited places, so that
convergence of the map estimate is possible. This might be an
onerous responsibility for the general pedestrians. Also, since

Fig. 9. Regularized boundaries using the proposed boundary-regularization
heuristic. Red lines mark the estimated boundaries, blue lines mark the
boundaries drawn to scale from the reference floorplan.
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localization and mapping are inter-dependent in SmartSLAM
(any any SLAM algorithm), using it for crowdsourcing indoor
maps inherently enforces the restriction of using the same
navigation application by all participating pedestrians. Such a
restriction cannot be practically ensured at a large scale, thus
reducing SmartSLAM’s viability as crowdsourcing method for
automatic maintenance of map database.

CrowdInside [13] is a crowdsourcing-based system for
automatically maintaining indoor floorplans. The mapping
algorithm segments the motion traces of pedestrians and then
uses α-shapes to determine the shape of hallway and rooms.
This mapping technique is highly dependent on the accuracy of
the motion traces. It fails in the presence of highly erroneous
motion traces like those in our experiment dataset (refer to
figure 6b). To ensure highly accurate motion traces, it uses a
PDR positioning algorithm which utilizes landmark anchors
(like elevators, escalators etc). Firstly, such landmark anchors
may not be available in many places. Secondly, by limiting the
positioning algorithm compatible with the mapping technique,
the participation of general pedestrians in crowdsourcing is re-
stricted to only those who are using that particular positioning
algorithm.

Yifei Jiang et al. proposed a system for automatic floorplan
construction [14], which overcomes most of the challenges
of the above systems. The system uses WiFi fingerprints to
identify and enumerate rooms and inertial sensor readings
to estimate the shape of hallways. However, the system has
its own shortcomings. It works only for rectangular shaped
rooms. It does not include the positions of furniture into the
floorplan. Finally, it is highly dependent on the availability of
WiFi fingerprints.

Keeping in mind the 3 different prior works discussed
above, we present the major contributions of our proposed
mapping algorithm. Our algorithm removes the requirement
of conformity among the positioning methods used to collect
data. It can work with any positioning method or device
as long as the required data is supplied. It is robust to the
varying amounts of error that might be present in the dataset
and always generates the best possible map given the data.
It does not expect loop-closure or other special forms of
participation from the users. It only requires pedestrians to
walk into the building with positioning system switched on
(to get the initial position fix from GPS data) and navigation
applications to keep sharing the positioning data they calculate.
The algorithm does not depend on the availability of WiFi
signals and gives a more complete picture of the building
floorplan by incorporating the position of walls, furniture or
other obstacles to pedestrian motion in the floorplan.

VII. CONCLUSION

In this paper, we present a crowdsourcing based server-side
mapping algorithm which can accept data from any positioning
device and method. The algorithm can be used to automatically

maintain a database of indoor floorplans. We present a novel
way to approach the mapping problem using spatial density
histograms with varied kernels which, by virtue of its origin
from kernel density estimation, promises the convergence of
the estimated map with the actual map as number of input
samples tend to ∞. The underlying concept also ensures that
the mapping algorithm is robust to the varying amounts of
error present in the input positioning data. The results from
our experiment, conducted in a building of our university,
qualitatively validate the robustness of the mapping algorithm
to arbitrarily high errors in positioning data supplied.
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