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Abstract—The immense popularity of new-age “Web 2.0”
applications such as YouTube, Flickr, and Facebook, and non-
Web applications such as Peer-to-Peer (P2P) file sharing, Voice
over IP, online games, and media streaming have significantly
altered the composition of Internet traffic with respect to what it
was a few years ago. In light of these changes, this paper revisits
Internet traffic characteristics and models that were proposed
when “traditional” Web traffic was the largest contributor to In-
ternet traffic. Specifically, we study whether or not the following
characteristics, namely: (1) traffic is self-similar and long-range
dependent, and (2) traffic can be approximated by Poisson at
smaller time scales, are still valid. Our experiments on recent
traces show that these traffic characteristics continue to hold.
We further argue that current Internet traffic can be viewed to
have two key constituents, namely Web+ and P2P+; Web+ traffic
consists of traffic from both Web 1.0 and Web 2.0 applications;
P2P+ traffic consists largely of traffic from P2P applications and
other non-Web applications excluding applications on well-known
ports such as FTP and SMTP. We then show that both Web+
and P2P+ components exhibit self-similar behavior and can be
approximated by Poisson at smaller time scales.

I. INTRODUCTION

Traditionally, data traffic was modeled by Poisson processes.

Poisson processes are characterized by packet interarrival

times that are distributed exponentially and are independent

of each other. In addition, the number of Poisson arrivals in

non-overlapping time segments are independent. When such

a process is aggregated to large time-scales, the law of large

numbers applies and the aggregated process tends to the mean

quickly. Visually the aggregated process appears “smooth” and

non-bursty.

Since the early 1990s, numerous studies have demonstrated

that Internet traffic when aggregated to large time-scales does

not appear smooth and is in fact quite bursty [18]–[21],

[23]. Such behavior is typical of long-range dependent (LRD)

processes where there is a strong (non-summable) correlation

between number of arrivals in different time segments. This

strong correlation inhibits the smoothing that normally takes

place with aggregation of a weakly correlated process.

The seminal work of Leland et al. showed that traffic

was in fact well-modeled by a sub-class of LRD processes

called second-order self-similar processes [20], [21]. These

processes essentially “look-similarly bursty” at different time-

scales. Willinger et al. [27] unraveled the physical causes of

self-similarity in traffic; their work showed that Internet traffic

could be viewed as a superposition of heavy tailed ON/OFF

processes which gives rise to self-similarity [20]. Crovella

et al. [12] later supported these findings by analyzing Web

browsing traffic collected in 1994-95.

However, despite the ubiquitous presence of LRD, Kara-

giannis et al. demonstrated that Internet traces collected in

2002-03 do appear to possess certain Poisson-like charac-

teristics at small timescales such as packet interarrivals that

are exponential and have autocorrelation close to zero [18].

This finding of exponential inter-arrival times is in contrast

to earlier ones which showed that the distribution of packet

interarrivals on the Internet are far from exponential [13], [16]

and implies that simple Poisson models can still be used for

design and optimization of network systems.

The primary objective of this paper is to revisit and in-

vestigate the coexistence of self-similarity and Poissonity in

recent Internet traffic. We want to revisit these models as the

composition of Internet traffic has changed in the last six years.

Today’s Internet traffic consists of various modern applications

such as P2P (BitTorrent, Gnutella) file sharing, VoIP (Skype),

online games, and video sharing portals (YouTube, Hulu).

P2P traffic has steadily increased and this traffic has become

a major constituent of Internet traffic [6], [14], [17]. The

emergence and vast popularity of video portals like YouTube

and Hulu, however, has likely restored the balance and some

studies report that Web traffic has once again overtaken P2P

traffic [4], [5] in 2007. Skype traffic has increased from 6.9

billion minutes in the forth quarter of 2006 to 20.5 billion

minutes during the same time frame in 2008; Skype is adding

30 million new subscriptions every quarter and Skype minutes

are only expected to grow [3]. Similarly, online gaming market

is expected to hit $4.4 billion in 2010 up from $1.7 billion in

2006 [2]. A multitude of other applications like newsgroups,

Facebook, and Flickr have become very popular in last few

years and thus a snapshot of today’s Internet traffic looks quite

different to five years back [6], [7], [9], [10], [15].

Traffic of these applications may have very different proper-

ties as compared to traditional Web traffic and can thus affect

Internet traffic characteristics. For example, P2P traffic intro-

duces many elephant flows (≥ 5 MB) [6] while HTTP traffic

does not, P2P connections are long lived [6] while HTTP

connections are short, video transfer sizes from YouTube

are orders of magnitude larger than non-video content trans-



fers [15], and so on. Secondly, overall traffic and as a result

link utilization has gone up in last six years primarily due

to wide usage of P2P applications and video sharing portals.

High link utilization may also result in different Internet traffic

models and characteristics.

The primary contribution of this paper is an intensive

analysis of recent traces (publicly available) from a high speed

backbone link to establish the coexistence of Poissonity and

self-similarity. These traces differ in two significant ways from

traces used by Karagiannis et al. [18] wherein the coexistence

of Poissonity and long-range dependence was first demon-

strated. First, compared to earlier traces, these traces have

been collected from a backbone link with significantly higher

utilization (≈3 times). Second, earlier traces were collected

in the pre-YouTube era1 while our traces are likely to contain

YouTube content because such traffic is widely believed to be

a significant part of current Internet traffic [4], [5]. Overall, our

traces reflect, as discussed above, the changed composition of

Internet traffic.

Our analysis finds that recent Internet traffic exhibits biscal-

ing behavior in Hurst parameter. Specifically, we find that the

Hurst parameter is significantly smaller at small time scales

as compared to the Hurst parameter at larger time scales,

with the point of transition being around 100 ms. We further

notice that the behavior of recent traces over an interval of few

seconds (≈ 5 s) can be nicely modeled by Poisson ( i.e., packet

interarrivals are found to be independent and exponential).

In addition, we notice that modern Internet traffic can be

viewed to consist of two main components, namely Web+

and P2P+. P2P+ traffic is defined as P2P traffic as well as

traffic due to other applications such as online games and

Skype which also use dynamic and random ports rather than

well defined default ports. Web+ consists of both traditional

Web browsing traffic and traffic owing to audio/video sharing

applications such as YouTube. We extract Web+ and P2P+

components and establish coexistence of Poissonity and self-

similarity in Web+ and P2P+ traffic components as well. To

the best of our knowledge, no study has looked at recent Web

traffic (Web+) for verifying the assumption of coexistence of

Poissonity and self-similarity. Some studies have investigated

self-similarity in individual components of P2P+ traffic such

as BitTorrent [22] and individual online games e.g. ‘Call of

Duty’ [8]; however, to the best of our knowledge this is the

first study which analyzes P2P+ traffic for the coexistence of

Poissonity and self-similarity.

The remainder of this paper is organized as followed. Sec-

tion II gives a brief introduction of Poissonity, self-similarity,

and statistical tests to identify them. Section III summarizes

related work. Section IV describes methodology and the traces

used in this paper. Section V analyzes the recent traces as

well as Web+ and P2P+ components and shows that they can

be approximated by Poisson distribution when analyzed over

time-intervals of few seconds. Section VI analyzes the recent

traces and shows that they display self-similar behavior and

1YouTube was launched in Nov 2005.

models recent traces using heavy tailed ON/OFF process to

explain the self-similar behavior. Web+ and P2P+ components

are also shown to display self-similar behavior. Section VII

summarizes the paper.

II. BACKGROUND

A. Poisson Process and Statistical Tests

A stochastic arrival process is said to be Poisson having rate

λ, λ > 0, if the interarrival times X1, X2,... have a common

exponential distribution function [24]:

P (Xn ≤ t) = 1 − e−λt, t ≥ 0. (1)

The average interarrival time is given by 1
λ

. All the arrivals are

independent of each other and the number of arrivals occurring

in a given time interval depends only on the length of the

interval.

To evaluate whether a process is Poisson or not [18], we

need to test whether the process is exponentially distributed

and is consistent with independent arrivals. A linear behavior

of Complementary Cumulative Distribution Function (CCDF)

with y-axis on log scale indicates an exponential distribu-

tion. To check whether arrivals are uncorrelated, we compute

autocorrelation coefficients (ACF) at various lags. ACF of a

time series Xn;n = 1, 2, . . . ,∞ at lag k, is defined as its

normalized auto-covariance:

r(n, k) =
Cov(Xn,Xn+k)

V ar(X)
=

E[XnXn+k] − E2[X]

V ar(X)
(2)

If the arrivals are truly uncorrelated, the estimated ACF is

approximately normally distributed with mean 0 and variance
1
N

and hence most of ACF values lie within 95% confidence

interval ± 2√
N

where N is the number of packet inter-arrivals.

Index of Dispersion for intervals (IDI): Let Sk denote the

sum of k consecutive inter-arrival times Sk = X1 +X2 + ...+
Xk. The IDI or k-interval squared coefficient of variation is

defined as:

c2
k =

kV ar(Sk)

[E(Sk)]
2 (3)

IDI of an ideal Poisson process is equal to 1 for all k. If the

arrival process has higher variance than Poisson at some time

scale, then the index tends to increase as a function of k. c2
k

only depends upon the length of the series used, not on any

specific part of the trace [25].

B. Self-Similarity, Long-Range Dependence, and Statistical

Tests

Self-similarity and long-range dependence (LRD) are

closely related phenomenon. Self-similarity refers to the

phenomenon where a process aggregated at different time

scales has similar structure and various statistical properties

such as mean, variance, and marginal distribution remain

the same (under a transformation). Note that for a process

X , its aggregated process X(m) is given as X(m)(k) =
1
m

∑i=km
i=km−m+1 X(i), k = 1, 2, . . . ,∞. LRD refers to the

phenomenon where the correlations in data across large lags,



though decreasing, never become insignificant. Precise defini-

tions of self-similarity and LRD follow.

A process X is called exactly second-order self-similar with

self-similarity parameter H = 1 −
β
2 if

• X(n) is wide sense stationary (WSS). A process is called

WSS if its first two moments (mean and variance) do not

vary with time.

• for all m = 1, 2, . . . ,∞

V ar(X(m)) = σ2m−β (4)

A WSS process is LRD if its autocorrelation is non-

summable, that is
∑

k r(k) = ∞.

Second-order self-similar processes with H > 0.5 manifest

equivalent properties, such as (a) slowly decaying variance,

i.e., the variance with scale V ar(X(m)) decreases very slowly,

(b) long-range dependence, i.e., the ACF decays very slowly

toward zero and is non-summable, and (c) power spectrum

decays in a 1/f fashion near the zero frequency. These

properties are not shared by Poisson processes.

Several proposed estimators for Hurst parameter are dis-

cussed next:

R/S Estimator: R/S statistic (rescaled adjusted range) for

the process Xn with mean X̄(n) and variance S2(n) given

as:
R(n)
S(n) = 1

S(n) [max(0,W1,W2, ...,Wn)

−min(0,W1,W2, ...,Wn)],
(5)

where Wk = (X1 + X2 + ... + Xk) − kX̄(n), k ≥ 1. For an

asymptotic second-order self-similar process Xn the following

condition holds:

E

[

R(n)

S(n)

]

≈ cnH , 0.5 < H < 1. (6)

For a second-order self-similar process, a plot of log(E[R(n)
S(n) ])

with log(n) will be linear with slope H, 0.5 < H < 1.

Variance-Time Estimator: This plots the variance of

aggregated process versus aggregation level on a log-log plot.

From (4) we see that such a plot is linear with slope −β. The

Hurst parameter can be estimated as H = 1 −
β
2 .

Wavelet Estimator: Veitch and Abry [26] describe a semi-

parametric estimator of H based on the discrete wavelet

transform (DWT). They plot the logarithm of variance of the

wavelet coefficients obtained after taking the DWT of the

original process against scale j (also called octave). The slope

of this plot γ obtained by linear regression gives an estimate

of H(= 1+γ
2 ). Wavelet estimators are generally preferred as

they are immune to smooth polynomial trends in the data and

hence are comparatively robust to nonstationarity in the data.

For further details please refer to [26].

C. Heavy Tailed Processes and Statistical Tests

A random variable X is said to be heavy tailed if P [X > x]
is proportional to x−α as x → ∞, 0 < α < 2. A heavy tailed

distribution has a heavier tail than an exponential distribution

(i.e., large x values occur with non-negligible probability

in heavy tailed distributions). To check whether or not a

distribution is heavy tailed we look at the distribution’s log-log

complementary distribution (LLCD) plot. LLCD plot graphs

logarithm of complementary cumulative distribution (CDF)

against log(x). The parameter α is called the tail index and

is equal to the slope of the tail on LLCD plot. Hence if a

distribution is heavy tailed, the tail on LLCD plot will appear

linear with a slope between 0 and 2. Superposition of many

heavy tailed ON-OFF processes gives rise to a self-similar

process [12], [19], [20].

Hill Estimator Test: This is a more rigorous test for

computing heavy tail index α [27]. Let X1,X2, ...,Xn be the

values for a stochastic process Xt. Rearranging the individual

values in increasing order i.e., X(1) ≤ X(2) ≤ X(3)... ≤ X(n).

Hill’s estimate αn is then given by:

αn =

(

1

k

i=k−1
∑

i=0

(logX(n−i) − logX(n−k))

)−1

, (7)

where k denotes how many of largest observations enter into

the calculation of Equation 7. A plot of Hill’s estimate αn

is drawn as a function of k for a range of k-values. In the

presence of a heavy tail, Hill’s plot may vary considerably

for small values of k but stabilizes as more points are added.

Hill’s estimate of heavy tail index α then can be read from

the y-axis where the plot becomes stable. If Hill’s plot does

not become stable, it indicates an absence of heavy tail.

III. RELATED WORK

Many studies have concluded that network behavior is char-

acterized by the presence of long-range dependence, scaling

phenomenon, and heavy tailed distributions. The presence of

long-range dependence and self-similarity in network traces

was first shown by the seminal work carried out by Leland

et al. [20]. Later Willinger et al. [27] showed that the self-

similarity can be explained due to superposition of ON/OFF

sources based on Packet Trains Model whose period lengths

have heavy tailed distributions. For recent traces we verify

these findings.

Self-similarity has also been studied in the context of Web

traffic. Crovella et al. [12] verified that Web traces collected

in 1995 at Boston university were self-similar. We verify self-

similar behavior for recent Web traces (Web+). Additionally

we also show that recent Web+ traffic when analyzed locally

shows Poisson characteristics over time-intervals of few sec-

onds.

Karagiannis et al. [18] analyzed network traces collected

in 2002-03 and revisited Internet traffic characteristics. The

rationale to revisit these traffic models was that there had been

a tremendous growth (more than three orders of magnitudes)

of Internet backbone link speeds and number of Internet

connected hosts in the previous few years. As a result large

number of flows, elephants as well as mice, got multiplexed

within the core and this huge traffic multiplexing might have

resulted in characteristics not captured well by the traffic



TABLE I
SUMMARY OF TRACES

Trace
Period Packets

Avg Traffic Link
Flows

Web+ P2P+ Web+ P2P+
Rate Utilization Packets Packets Bytes Bytes

(JST) (M) (Mbps) (%) (%) (%) (%) (%)

SPJ07 Jan 01, 07 (0700-0930) 114.6 70.87 70.87 5311006 43.09 32.51 57.16 29.41
SPM08 Mar 18, 08 (0900-1130) 128.6 73.36 48.90 7557911 41.31 29.99 53.64 30.10
SPJ09 Jan 22, 09 (1400-1415) 20.5 124.95 82.66 2194862 41.36 45.15 41.43 53.74

models in vogue. Contrary to the general understanding, the

authors first showed the coexistence of Poissonity and long-

range dependence. We verify these findings on recent traces.

Some recent studies have analyzed self-similarity of traffic

from few individual P2P+ applications. Liu et al. [22] showed

the self-similarity of BitTorrent traces and explained it due

to heavy-tailed distributions of BitTorrent transmission times

and quiet times. Cevizci et al. [8] revealed the self-similar

behavior of an online game ‘Call of Duty’. using two PCs in

a laboratory where one machine played the game while the

other one collected the trace. In this paper, we look at P2P+

traffic extracted from recent traces and show the coexistence

of Poissonity and self-similarity.

IV. METHODOLOGY

This work uses publicly available traces collected from

WIDE backbone [1], [11]. For each day a 15 minute extract

is made public for download after anonymizing IP addresses.

For our analysis we have chosen one such 15 minute extract

collected in Jan 2009. One such 15 min extract was used by

Karagiannis et al. [18] as well. Additionally two longer traces

of 48 and 72 hour long duration are available which were

collected in January 2007 and March 2008, respectively. From

these two traces, we choose two 150 minutes long extracts.

Next we describe how we extract P2P+ and Web+ compo-

nents. As discussed above, the P2P+ component consists of

applications that use random ports rather than well defined

default ports. P2P forms the major component of P2P+ traffic.

To extract P2P traffic we make use of techniques that identify

P2P traffic at transport layer [17]. These techniques identify

P2P traffic based on flow connection patterns of P2P traffic

and do not inspect packet payloads (see [17] for details). We

also implement heuristics to extract gaming traffic provided

in [17]. We identify the rest of the P2P+ traffic as packets

with both source and destination port greater than 1023. Port

numbers in range 0-1023 are reserved and hence most of the

P2P+ traffic is found on ports greater than 1023.

To extract Web+ component we inspect traffic on ports 80,

443 and 8080 (i.e. traffic using the ‘http’ protocol). After

extracting out P2P+ traffic, every packet is inspected and if

either of the source or destination port is 80, 443 or 8080

the packet is classified as Web+. P2P+ traffic is first extracted

out as a part of P2P traffic may be on ‘http’ ports. Further

classifying a Web+ packet whether it belongs to traditional

Web page download or non traditional video streaming portal

is difficult as it requires checking the payload and these traces

do not capture any payload. However, due to popularity of

TABLE II
SUMMARY OF P2P+ COMPONENT

Trace
P2P P2P Gaming Gaming

Packets Bytes Packets Bytes
(%) (%) (%) (%)

SPJ07 95.63 98.49 2.85 1.10
SPM08 86.60 96.15 9.10 2.84
SPJ09 93.84 98.09 4.56 1.57

video sharing portals worldwide, we can safely assume that

any recent Web+ traffic should have significant component

emanating from audio/video portals [4], [5].

Table I presents the summary of three selected traces2.

Web+ and P2P+ components together are found to constitute

majority of the aggregate traffic (≈ 80%) for each of the three

traces. This provides evidence to support the assertion that

Web+ and P2P+ form the major components of recent traffic.

Table II presents the breakdown of the P2P+ component.

We find that P2P traffic constitutes majority of P2P+ traffic

(≈ 95%). Link utilization of these three traces approximately

varies between 50% to 80% which is significantly greater than

traces used in [18] where utilization was between 10% and

35%.

Analyzing a trace at timescale t ms means we look at the

series obtained by averaging the base series over consecutive

blocks of t ms. In context of Poissonity, however, we use the

terminology timescale to mean the analysis of a trace extract

of length t ms. Timescale t ms is called small or large based

on whether t is small or large depending on the context.

In the remainder of the paper we use the following no-

tations: (a) All the plots for components Web+ and P2P+

are titled ‘Web+’ and ‘P2P+’ respectively, (b) All the plots

for complete traces are titled ‘Agg’, (c) All logarithms are

taken for base 10 unless stated otherwise and (d) The terms

‘complete trace’ and ‘aggregate component’, ‘packet interar-

rival times’ and ‘interarrival times’, ‘milliseconds’ and ‘ms’

are used interchangeably. For lack of space the results of all

three traces are not shown for every test; however, the results

presented apply to all three traces unless stated otherwise.

V. POISSONITY AT TIME SCALES OF FEW SECONDS

In this section we show that recent traffic can be approx-

imated by Poisson process at time scales of few seconds(≈

2This link was upgraded from 100Mbps to 150Mbps in June 2007. That is
why SPM08 has higher average rate but lesser link utilization as compared
to SPJ07.
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Fig. 2. AutoCorrelation Coefficients for Packet Interarrival Times and Packet (duration - 5 seconds) for trace SPJ07

5s). We show that packet interarrivals follow exponential

distribution and are uncorrelated. Our discussion uses tests

described in Section II.

A. Distribution of Interarrival Times

Figure 1 shows CCDF plot for a 5 second portion of all the

three traces. We can see that distribution of interarrival times

for the aggregate as well as Web+ and P2P+ components can

be nicely modeled as exponential. The CCDF of interarrival

times when Y axis is plotted on log scale shows approximately

linear behavior across entire range except for small interarrival

times (less than 7 µs). When a linear regression is carried out,

the coefficient of determination3 R2 is found to be more than

99% which shows a good fit to the data points. Other packet

arrivals like TCP packets, specific sized packets (e.g 1518

bytes) etc. are similarly found to have exponentially distributed

interarrivals. A similar behavior of CCDF plot is observed for

any 5 second extract of a trace.

A little deviation at small interarrival times (less than 7 µs)

can be explained due to the effect of back-to-back packets.

In a heavily utilized link interarrival times are a function of

packet sizes as many packets are sent back-to-back, hence as

a result may not contain any idle time. Additionally we can

see that interarrivals of SPJ09 trace are comparatively shorter

when compared to traces SPJ07 and SPM08. Trace SPJ09 has

higher link utilization and hence successive packets contain

3Coefficient of determination R2 is defined as the square of the sample
correlation coefficient between the outcomes and their predicted values.

lesser idle time when compared to SPJ07 and SPM084.

Interestingly we find that for traces SPJ07 and SPM08,

CCDF plots of P2P+ and Web+ components lie almost on

top of each other while for trace SPJ09 they are pretty close.

Plot for aggregate component is below that of Web+ and P2P+

component which is intuitive. As number of packets increase,

successive packets contain lesser idle time and as a result the

probability of occurrence of a large interarrival time is quite

low.

B. Independence

Autocorrelation Function: Figure 2 plots the autocorrela-

tion coefficients for interarrival times at varying lags (between

0 and 200) for trace SPJ07. Identical 5 second portions have

been used as those used to draw the CCDF plots in Figure 1.

Horizontal lines represent 95% confidence intervals. As can

be seen, autocorrelation coefficients for most lags lie between

95% confidence interval. This shows that interarrival times are

almost independent of each other and we can conclude that

aggregate traffic as well as Web+ and P2P+ components can

be approximated by Poisson distribution at a time scale of few

seconds.

Burst Sizes: To further strengthen the claim of memoryless

Poisson arrivals and independence, we look at packet bursts. A

4Looking closely at Figure 1 we see that CCDF plot consists of a series of
small steps. This wavy behavior is more pronounced for traces with higher
link utilization (SPJ09). Traces with low link utilization collected few years
back from the same link do not exhibit such a behavior. We plan to study this
behavior more closely.



burst is defined as a sequence of successive packets with each

packet interarrival less than a threshold value. If the arrival

process is memoryless, the characteristics of the burst will

remain the same irrespective of the threshold chosen [18].

Figure 3 plots the CCDF of burst busy periods (time span

between first and last packet arrival of a burst) for 5 seconds

extracts of traces SPJ07 and SPJ09 using three different thresh-

olds. We see that CCDF plots nicely fit a straight line thereby

showing that packet arrivals can be nicely approximated by

Poisson. Distribution of burst idle periods (burst interarrivals)

is similarly exponential.
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C. Deviation from Poisson at large timescales

Next we show Internet traffic when analyzed over large

timescales deviates from Poisson behavior.

Tailed Interarrival Times: Figure 4 plots the CCDF plot

of interarrival times for the entire duration of the traces. We

find that CCDF plot does not follow an exponential distri-

bution. Large interarrival times (also called tailed interarrival

times) deviate considerably from a straight line although their

probability of occurrence is quite low. A similar deviation is

observed for busy periods of packet bursts when computed
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Fig. 5. IDI Plot : SPJ07

for the entire duration of the traces. This shows that for larger

time scales (more than a few milliseconds), an exponential and

hence Poisson model cannot be applied. When we investigate

the packet arrivals on a 5 second extract, the number of tailed

interarrival times is very small and hence not significant.

As a result we find that packet arrivals can be modeled

as exponential for short time intervals. Though not shown

here, we find that as the timescale of analysis increases,

the deviation from straight line increases more and more.

Similar deviation for large values of interarrival times has been

observed for SMTP sessions [19]. Here we observe such a

behavior for recent network traces.

Once again the CCDF plots for Web+ and P2P+ components

are found to lie on top of each other for traces SPJ07 and

SPM08. Additionally, we notice that interarrival times for the

aggregate component deviate earlier than Web+ and P2P+

components. All interarrivals greater than 1.7 ms for SPJ07

show a deviation from a straight line. The corresponding

number for Web+ and P2P+ components is approximately 4

and 5 ms. Similar behavior is observed for trace SPM08 as

well. However no deviation (except ≤ 7µs) from a straight line

behavior is found for trace SPJ09. This again can be attributed

to higher link utilization of trace SPJ09 because of which no

large interarrival is observed.

Index of Dispersion for Intervals: Similar deviation at

large scales can also be visualized using the Index of disper-

sion for interval (IDI) plot (cf. section II). Figure 5 shows the

IDI plot for three extracts of different time intervals for trace

SPJ07. An ideal Poisson process has c2
k ≡ 1 for all k. If arrival

process has higher variance at some timescale, c2
k increases

with an increase in k; Figure 5 shows such behavior. Values

of c2
k for all k are close to 1 for 5 second extract. However,

the values of c2
k for larger timescales (100 sec and 15 mins)

quickly diverge as k increases which indicates a deviation from

Poisson behavior. Web+ and P2P+ components are found to

behave similarly.

VI. BISCALING BEHAVIOR OF HURST PARAMETER AND

SELF-SIMILARITY

In this section we first show that recent traces can be mod-

eled as piecewise wide sense stationary. Then we investigate

the self-similarity of recent traces as well as Web+ and P2P+
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Fig. 6. Visualization of trace SPM08. Number of Bytes transferred are plotted for different timescales.

components. First we show the presence of self-similarity by

means of traffic visualization and autocorrelation functions.

Next we augment the evidence by computing Hurst parameter

and showing it lies between 0.5 and 1. Finally we model

the traces using a Packet Train Model to explain why recent

traces display self-similar behavior despite an increase in non-

traditional traffic.

A. Piecewise Wide Sense Stationarity

Figure 7 plots for trace SPJ07, the average number of bytes

transferred in a millisecond within every 10 second window.

This results in 900 data points for the 2.5 hour long SPJ07

trace. Figure 7 clearly shows the non-stationary nature of

aggregate and Web+ traffic. However traffic can be nicely

modeled as piecewise wide sense stationary. Looking closely

at Figure 7 we see that mean and variance of aggregate

and Web+ traffic can be considered stationary for first 500

data points, next 200 data points and last 200 data points.

Interestingly, P2P+ traffic is found to be wide sense stationary

across entire duration. Similar observations also hold true for

trace SPM08.

This concept of describing network behavior as a series of

piecewise stationary intervals (also called change free regions)

has been applied elsewhere as well [18], [28]. It allows us

to extract out a change free region and analyze it without

the interference of underlying nonstationary. For trace SPJ07

we extract out the traffic component spanning the first 500

data points (i.e., 5000 sec long) and carry out a self-similarity

analysis on this component. We similarly find trace SPM08

to be WSS between data points 100 and 500 and extract this

component for further analysis. Trace SPJ09 is 15 min long

and is found to be WSS for entire duration. All plots in the

rest of the paper have been drawn over these extracts, however

are labeled with original trace-names.

B. Presence of Self-Similarity

As discussed above a self-similar traffic exhibits burstiness

at various levels of aggregation which is caused by a scale-

invariant variance property. We can aggregate either the num-

ber of bytes transferred or the number of packets observed. We
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Fig. 7. Nonstationary nature of trace SPJ07

find that all the results are similar for both these formulations.

Hence for the rest of the paper we have shown results only for

the formulation where we aggregate bytes sent over a time-

interval. Figure 6 plots the number of MBs sent per time unit

at various timescales for the trace SPM08. Both P2P+ and

Web+ components are shown as well. Timescales plotted are

5, 10, 50, 100 and 500 ms. All the plots have 1500 data-

points. We can see that recent traffic as well as both Web+ and

P2P+ components exhibit burstiness at all timescales thereby

indicating self-similar behavior.

Figure 8 plots autocorrelation coefficients for the aggregated

sizes series for trace SPM08 at various time scales. Plots for

aggregation level 1,10, 50 and 100 ms are shown. Unlike

Poisson process the values of autocorrelation coefficient, for
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Fig. 8. AutoCorrelation Coefficients for trace SPM08 at various aggregation
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aggregation level larger than 1ms, are not close to zero

showing thereby a dependence of data values at different lags.

A non-zero value of autocorrelation coefficient at large lags

shows the presence of long-range dependence. We see that

all the curves are fluctuating, neither decaying exponentially

nor converging to zero, thereby behaving like self-similar

processes. Next we estimate Hurst parameter using various

estimators described in section II.

C. Estimation of Hurst Parameter

First we employ variance-time estimator. For each trace we

construct a sequence where each value in the sequence repre-

sents the number of bytes sent over the link every millisecond.

From this sequence X we construct various aggregated series

Xm for different values of m. Next we plot log(V ar(Xm))
versus log(m) for each trace by varying log(m) from 0 to

4 and obtain the slope −β of each variance-time plot using

a linear regression plot. Finally Hurst parameter for the trace

can be calculated as 1 −
β
2 .

Figure 9 shows the variance time plots and linear regression

results for the trace SPJ07. We observe that instead of being

linear across all time scales, variance time plots are piece-

wise linear. This dichotomy has been observed elsewhere as

well [18], [19]. This dichotomy happens because the traffic

is not globally self-similar and the value of Hurst parameter

depends on the scale at which the traffic is viewed. At scales

below a certain threshold the Hurst parameter is smaller and at

larger scales it increases. The threshold and the values of Hurst

Parameter vary depending on the trace. Table III summarizes

the results obtained. Values of Hurst parameter are found to

be noticeably larger than 0.5 and less than 1 which suggests

the LRD behavior of the traces. Web+ and P2P+ components

are also found to be displaying self-similarity and similar

dichotomy in Hurst parameter value.

Result of R/S estimator also shows self-similar behavior

of recent traces. A plot of log(E(R(n)
S(n) )) vs. log(n) is taken

with increasing values of n where n represents the size of a

non-overlapping block. A roughly linear plot shows the self-

similarity of the distribution. Slope of the linear plot estimates

the Hurst Parameter. Figure 10 shows R/S plots (also known

as pox plots) for trace SPJ07. A similar dichotomy in values

of Hurst Parameter can be observed here as well.

Finally we apply wavelet estimator for computing the value

of Hurst parameter. Figure 11 presents the Logscale diagrams

as obtained for trace SPJ07. Logscale diagrams also nicely

bring out the biscaling behavior of current traces with the

change of point being around 100 ms. Both variance-time and

R/S estimators also agree with this observation.

Table III enlists the values of Hurst parameter both at

below and above the point of change(100-200 ms) as predicted

by variance-time, R/S and wavelet estimators. Predictions of

all three estimators match nicely. Interestingly we find that

values of Hurst Parameter (both at small and large scales) of

aggregate, Web+ and P2P+ components are roughly similar

for all traces.

TABLE III
ESTIMATION OF HURST EXPONENT

Estimator
Trace Variance-Time R/S Wavelet

Agg
SPJ07 0.65,0.93 0.62,0.92 0.63,0.98
SPM08 0.71,0.91 0.57,0.98 0.59,0.98
SPJ09 0.65,0.89 0.65,0.93 0.69,0.97

P2P+
SPJ07 0.61,0.94 0.62,0.86 0.59,0.98
SPM08 0.60,0.93 0.56,0.99 0.62,0.99
SPJ09 0.61,0.81 0.60,0.92 0.70,0.79

Web+
SPJ07 0.65,0.93 0.61,0.94 0.64,1.03
SPM08 0.73,0.92 0.59,0.98 0.67,0.98
SPJ09 0.63,0.88 0.59,0.97 0.65,0.89

D. Heavy Tailed ON/OFF sources

Next we investigate the reasons behind self-similarity using

ON/OFF model [12], [27]. To validate ON/OFF modeling we

group the traffic by source IP address and for each source

an ON/OFF process is constructed. An ON period is defined

as a packet train which has burst of packets arriving from

the same source. If the interval between two packets exceeds

a predefined threshold, they are said to belong to different

packet trains. Lengths of these ON periods constitutes the ON

process. The spacing between two packet trains constitutes

the OFF process. During OFF periods there is no packet

arrival. The threshold is a system parameter dependent on



 5.5

 6

 6.5

 7

 7.5

 8

 0  1  2  3  4

lo
g
(v

a
ri
a
n
c
e
)

log(m)

-0.70*x+7.53
-0.15*x+6.38

(a) Agg

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0  1  2  3  4

lo
g
(v

a
ri
a
n
c
e
)

log(m)

-0.81*x+7.11
-0.12*x+5.55

(b) P2P+

 5.5

 6

 6.5

 7

 7.5

 0  1  2  3  4

lo
g
(v

a
ri
a
n
c
e
)

log(m)

-0.69*x+7.26
-0.14*x+6.13

(c) Web+

Fig. 9. Variance Time Plots for trace SPJ07. m represents the aggregation level in millisecond.
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Fig. 11. Logscale Diagrams for trace SPJ07. j represents the octave (time = 2
j ms)

the frequency with which applications use the network. If the

distribution of the lengths of either ON or OFF periods is

heavy tailed (Noah effect), the superposition of these processes

will result in a self-similar process (Joseph effect) [27].

Figure 12 presents LLCD plots for distribution of ON period

lengths for SPM08 and SPJ07 sources. Two popular sources

are chosen for each trace. The threshold for separating packet

trains is taken to be 40 ms. Tails for all the distributions

are found to span two to three orders of magnitudes which

indicates the presence of a heavy tail. A linear regression is

carried out on the tail of each distribution. Table IV presents

the values of heavy tail parameter α calculated using linear

regression. We can see that the slopes of all the tails turn

out to be between 1 and 2. We also use Hill’s estimator to

estimate the values of heavy tail parameter α. The α values

as estimated by Hill’s estimator are also given in Table IV and

are found to be close to those estimated by linear regression.
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Fig. 12. LLCD plots for ON period lengths for two popular sources

Distribution of ON period lengths for P2P+ and Web+ sources

is found to be heavy tailed as well.



TABLE IV
VALUES OF HEAVY TAIL PARAMETER α FOR ON TIME DISTRIBUTION

Test
Heavy Tail Parameter(α)

SPJ07 SPM08

Linear Regression 1.01,0.84 1.90,1.49
Hill Estimator 1.06,0.95 1.96,1.62

VII. CONCLUSIONS

In this paper we demonstrated the coexistence of Poissonity

and self-similarity in recent Internet traces collected across a

high speed Internet backbone with heavy utilization.

At a time-scale of few seconds, we found that packet inter-

arrivals can be approximated by Poisson. Interarrival times are

found to follow exponential distribution and are uncorrelated.

At large timescales, however, we observed a deviation from

Poisson behavior.

We further showed that recent traces exhibit self-similarity

and long-range dependence. Values of Hurst parameter display

a dichotomy. At small scales it lies between 0.6 and 0.75

while at large scales it lies between 0.85 and 0.98 with the

point of change being between 100 to 200 ms. Distribution

of ON period lengths for individual sources is found to be

heavy tailed which explains the self-similarity of recent traces.

These findings again emphasize the fact that choosing a proper

timescale for traffic analysis is of paramount importance.

We also argued that recent Internet traffic can be looked to

have two main constituents: Web+ and P2P+. Web+ encom-

passes traditional ‘Web page downloads’ as well as recent

audio/video streaming traffic. P2P+ comprises traffic from

applications which use random ports instead of well defined

ports. We further show that both Web+ and P2P+ components

exhibit coexistence of Poissonity and self-similarity.

Avenues for future research include verifying Internet traffic

models and characteristics on traces collected from other links.

Of particular interest also is studying flow and host-level

properties of recent Internet traffic traces. Another interest-

ing direction would be to study how flow and host-level

characteristics have changed over the years as Internet traffic

configuration changes.
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