
A Longitudinal Study of Small-Time Scaling
Behavior of Internet Traffic

Himanshu Gupta1,2, Vinay J. Ribeiro2, and Anirban Mahanti3

1 IBM Research Laboratory, New Delhi, India
higupta8@in.ibm.com

2 Indian Institute of Technology, New Delhi, India
vinay@cse.iitd.ac.in

3 NICTA, Alexandria, NSW, Australia
anirban.mahanti@nicta.com.au

Abstract. We carry out a longitudinal study of evolution of small-time
scaling behavior of Internet traffic on the MAWI dataset spanning 8
years. MAWI dataset contains a number of anomalies which interfere
with the correct identification of scaling behavior, and hence to miti-
gate these effects, we use a sketch-based procedure for robust estimation
of scaling exponent. We first show the importance of robust estimation
procedure while studying small-time scaling behavior of Internet traffic.
We further study the evolution of the following properties concerning
the origins of small-time scaling behavior: (1) Scaling at IP level is in-
dependent of flow arrivals and (2) Dense flows are primary correlation-
causing factor in small time scales. Traditionally these properties have
been shown to hold by using a semi-experiments based methodology. We
next show that due to network anomalies, semi-experiments can result
in misleading inferences. Hence we propose and motivate the use of “ro-
bust semi-experiments” i.e., a semi-experiment coupled with the use of
a robust estimation procedure for inferring scaling behavior. By mak-
ing use of robust semi-experiments we find the above properties to be
invariant across the entire MAWI dataset. Our other results consist in
showing that dense flows form a larger fraction of aggregate traffic for
recent traces and hence recent traces show larger short range correlations
vis-a-vis earlier traces.

Key words: Traffic Analysis, Small-time scaling, Dense Flows, Robust
Estimation, Semi-experiment

1 Introduction

Scaling behavior of Internet traffic has been the focus of much networking re-
search. It is well documented that Internet traffic displays two scaling regimes
with transition point lying in 100ms - 1s time range [8, 3]. Internet traffic when
aggregated to large time scales (≥1s) is quite bursty and is modeled using long-
range dependent (LRD) processes [13, 15]. Scaling parameter (H) in large time
scales lies within the range (0.8,1) which represents highly correlated packet ar-
rival process. Few studies predicted that LRD may disappear as Internet traffic
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evolves and backbone links become highly loaded [12, 4]. However some stud-
ies [3, 7] showed that recent traces from highly loaded links do clearly exhibit
LRD and that LRD is indeed an invariant.

The focus of this paper is on small-time scaling behavior of Internet traffic
(≤100ms). Many studies have looked at the nature and mechanisms of small-time
scaling behavior of Internet traffic [9, 8, 11, 10, 17]. Unlike in large time scales,
Internet traffic displays tiny (h≈0.55) to moderate (h≈0.7) correlations4 in small
time scales [17]. Hohn et al. [8, 9], by using a semi-experiments5 based methodol-
ogy, showed that scaling at the IP level is independent of flow arrivals and hence
small-time scaling structure has its origins in packet patterns within individual
flows. Zhang et al. [17] further showed that packet patterns within dense flows,
flows with bursts of densely clustered packets, are the primary correlation caus-
ing factors in small time scales. These two properties taken together explain the
origins of small-time scaling behavior of Internet traffic.

Since the traces used in prior studies were collected (2000-02), a number
of changes have taken place. Backbone capacities as well as Internet connected
hosts have gone up. Composition of Internet traffic is significantly altered (Web-
2.0 vs Web-1.0). This raises a number of interesting questions. As today’s traffic
consists of various modern applications e.g. YouTube, P2P file sharing, VoIP
etc with widely different characteristic vis-a-vis traditional Web-1.0 traffic [2],
does it still hold true that scaling at IP level is independent of flow arrivals?
Do traces still display tiny to moderate short range correlations? Are recent
flows more dense? Is the amount of traffic carried out by dense flows increasing
or decreasing? Does it impact small-time scaling exponent? Answers to these
question are not immediately apparent as with increasing backbone speed flows
will appear sparser and the traffic uncorrelated. However with wide deployment
of broadband access, large files will be transmitted faster with more correlated
bursts, thereby making the flows more dense [17]. A clear understanding of small-
time scaling behavior is critical to various network engineering problems e.g.,
router buffer dimensioning, delay-sensitive service provisioning etc [14, 6].

In light of these questions, this paper conducts a longitudinal analysis of
small-time scaling behavior and properties on MAWI dataset [1] spanning 8
years (2001-2009). This dataset is known to contain a number of anomalies [5]
which interfere with the reliable computation of scaling exponent and hence
pose a problem in disentangling smooth long term evolutions from day-to-day
fluctuations. To mitigate the effects of network anomalies, Borgnat et al. [3]
developed a sketch-based procedure for robust estimation of scaling exponent
and used this method to study the evolution of LRD behavior of Internet traffic
across MAWI dataset. In this paper we use this method to study the evolution
of small-time scaling behavior of Internet traffic.

4 Scaling parameter in small time scales is represented as h while in large time scales
is represented as H

5 The approach of artificially modifying the packet arrival process for a trace is referred
as a semi-experiment in the networking community.
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The primary contribution of this paper is to present a case for application of a
robust estimation procedure [3, 5] while carrying out a study of small-time scaling
behavior of Internet traffic. Once the effects of network anomalies have been
disentangled, we find that scaling parameter in small time scales consistently
lies within 0.55-0.7 range, thereby showing the presence of tiny to moderate
correlations in small time scales to be an invariant. Without the application of
robust estimation procedure [3] we find many instances of traces either showing
negative correlation (h <0.5) or large correlation (h >0.8).

We next present a case for coupling the robust estimation procedure with
semi-experiments based methodology while studying scaling behavior of Internet
traffic. By making use of such robust semi-experiments we show that the two
properties (1) small-time scaling behavior is independent of flow arrivals and
(2) dense (and not large flows) are primary correlation causing factors in small
time scales, are invariant. If we do not couple robust estimation procedure with
semi-experiments, we find many instances of traces which do not conform to
these properties thereby giving misleading results. To the best of our knowledge,
this is the first study which motivates the need of robust semi-experiments.

Our other results consist in showing the evolution of small-time scaling be-
havior of Internet traffic. We find that recent MAWI traces consistently show
larger small time correlations (h≈0.7) as compared to earlier traces. This is in
contrast to the observations made in [17] that packet traces only occasionally
show small correlation (h within 0.6 and 0.7). This finding also provides an ev-
idence against the prediction that Internet traffic will likely be describable by
simple models (e.g. Poisson) [12]. We further show that dense flows in recent
years are carrying a larger fraction of aggregate traffic vis-a-vis earlier years.

The rest of the paper is organized as followed. Section 2 summarizes MAWI
dataset and sketch-based procedure for robust estimation of scaling parameter.
Section 3 studies small-time scaling behavior across the years and shows the need
of robust analysis for the same. Section 4 motivates the concept of robust semi-
experiments and shows that the property of IP level scaling being independent
of flow arrivals is invariant. Section 5 shows that dense flows are consistently
driving small-time scaling behavior across the years and further highlights the
importance of robust semi-experiments. Section 6 concludes the paper.

2 MAWI dataset and Robust Estimation Procedure

MAWI Dataset: We use publicly available traces collected from WIDE, a
trans-Pacific backbone [1]. A detailed statistical characterization of this dataset
is provided by Borgnat et al. [3]. For each day a 15 minute extract is made public
for download. We use data collected across samplepoints B and F. Samplepoint-
B was a 100 Mbps link and was replaced in July 2006 by Samplepoint-F, a 150
Mbps link. For our study we select the trace collected on 1st and 15th of every
month, from Jan 2001 to Dec 2008. Days for which traces are unavailable are left
out. This gives us a set of 180 traces spanning 8 years. Each trace is partitioned
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into two subt-races, one for traffic flowing in each direction, labeled UStoJp and
JptoUS. We analyze each sub-trace separately.

As mentioned earlier, nearly all traces contain some sort of anomaly while
some anomalies are severe and last weeks or months(e.g., Sasser worm for 2004/07
to 2005/04; UStoJp, Ping flood for 2003/08 to 2003/12 both directions, severe
volume decrease for 2003/05 to 2004/03; JptoUS, flooding attacks in 2001 etc) [5,
3]. The dataset displays wide range of throughput values, a global increase of
throughput from 100 kbps in 2001 to more than 12 Mbps in 2008. There are sev-
eral long lasting congestions (e.g. 2005/09 to 2006/06; JptoUS). To mitigate the
effects of anomalies, Borgnat et al. [3] proposed a method for robust estimation
of scaling parameter (also called Hurst parameter), described next.

Robust Estimation of Hurst Parameter: We use the Wavelet method [16]
to estimate the value of Hurst parameter. This method plots the logarithm of
variance of the coefficients obtained after taking a discrete wavelet transform of
the process against scale j, the plot known as logscale diagram (LD). The slope
of this plot α , gives an estimate of Hurst parameter (H = 1+α

2 ). A hurst value
of 0.5 implies uncorrelated scaling. In this paper we interpret Hurst values of
0.55, 0.6 and 0.7 to represent tiny, small and moderate correlations respectively.

Robust estimation enables long term analysis without being affected by spe-
cific traffic conditions or anomalies. Let fn denote a hash table of size M . Original
collection of packets is split into M sub-collections, each of them consisting of all
packets with identical sketch output m = fn(A) where the hashing key A is cho-
sen as one of the packet attributes (IPdst,IPsrc,...). This amounts to performing
random projections, preserving flow structures as packets belonging to a given
flow are assigned to same sub-collection. Each sub-collection is aggregated and
Hurst parameter computed. Robust estimation of Hurst parameter results by
taking median over the values of Hurst parameter estimated by using individual
sketch outputs [3].

Statistically, robustness in estimation is achieved by performing averages over
independent copies of equivalent data. Finding equivalent traces is a complex
problem. Random projection using sketches is one way to achieve independent
copies of equivalent traces. Resulting LDs have the same shape as original, with
a variance which is appropriately scaled down6, consistent with an independent
and identically distributed (i.i.d.) superposition model [8]. In presence of anoma-
lies, sketching the original packet stream reduces their impact, possibly mapping
them to few bins only. Small time correlation structure of the traffic in the bins
containing anomalies differs from normal traffic as well as traffic in other bins.
Median over indepedent sketches achieves the robustness. Median is chosen in-
stead of mean as median is a non linear procedure providing robustness against
outliers. Robust estimator can still be fooled if anomalies are dominant part
of the traffic. Robustness in such cases can then be achieved by maintaining
multiple sketches and taking median over estimates computed from them. For a
detailed description of the method we refer the reader to [3].

6 if one selects flows with probability 0.7, the resulting LD will have a variance ap-
proximately 70% of the original



A Longitudinal Study of Small-Time Scaling Behavior of Internet Traffic 5

 16

 18

 20

 22

 24

 26

 28

 30

16s4s1s128ms32ms8ms2ms

lo
g2

(w
av

el
et

 e
ne

rg
y)

timescale

hg=0.65

hm=0.64
 16

 18

 20

 22

1s128ms32ms8ms2ms

lo
g2

(w
av

el
et

 e
ne

rg
y)

timescale

hg=0.39

hm=0.55

Fig. 1. Robust Estimation (a) Anomaly Free Trace (b) Anomalous Trace

3 Evolution of short range correlations
This section first illustrates the importance of robust estimation of scaling pa-
rameter (to remove the effects of anomalies) while studying small time correla-
tions of Internet traffic. Then it shows that, once the effects of network anomalies
have been disentangled, MAWI traces consistently display tiny to moderate small
time correlations with scaling parameter lying in range (0.5-0.7).

Figure 1(a) shows logscale diagram (upper plot) for a MAWI trace (July 11,
2005; UStoJp) which is free of any anomaly [3]. Stationarity for 15 minutes is
well established [3, 7] and hence wavelet estimator can be applied. We construct
a time series by counting the number of bytes every millisecond and then use this
time series to do scaling analysis using wavelet method. Figure 1(a) plot shows
the representative scaling behavior of Internet traffic [9]. Biscaling behavior is
clearly evident with the knee point (change of scaling behavior) falling within
(100ms-1s) range. This trace has small correlations in small time scales (h =
0.65). As the focus of this paper is on small-time scaling behavior of Internet
traffic, for all experiments we run our analysis only on 5 minutes long extract
which is enough to give good estimates of small-time scaling behavior (1-100ms).
Also all occurrences of scaling parameter and logscale diagram from hereon mean
scaling parameter in small time scales and logscale diagram for small time scales
respectively unless specified otherwise.

Figure 1(b) shows logscale diagram for a trace (Oct 11, 2005; JptoUS) which
deviates from normal behavior. This trace contains a low-intensive long-lasting
spoofed flooding anomaly [5]. Scaling exponent is found to be 0.39 which indi-
cates the presence of small negative correlation (also called anti-persistent behav-
ior) in the trace. This is in direct contrast to the fact that Internet traffic consists
of tiny to moderate positive correlation in small time scales (0.5<h< 0.7) [17].

Next we estimate the scaling exponent using sketch based robust estima-
tor [3]. We hash the trace (destination IP as hash-key) into 8 bins and estimate
the scaling exponent for each sub-trace. Figure 1(b) plots all sub-traces LDs for
anomalous trace. Except for two sub-traces (possibly containing anomaly), all
other sub-trace LDs have recovered normal behavior and each of these sub-traces
now displays tiny positive correlation. As a result hm, median of estimates over
8 sketches, is found to be 0.55 while the global estimate hg was 0.39. This shows
that hg being 0.39 is an artifact of network anomalies; otherwise all sketched LDs
should have had a similar value of scaling exponent. For anomaly free trace, all
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Fig. 2. Short range correlations across the years, both directions

sketched LDs (Figure 1(a)) are found to be parallel to original LD as expected
and hence median value hm matches with hg computed from whole trace.

Figure 2 plots scaling exponent for MAWI traces across 8 years, with and
without robust estimation. There are multiple traces for which hg is found to be
less than 0.5 signifying negative correlations. Specifically, from 2005 to mid-2006;
JptoUS, value of hg is consistently less than 0.5, often close to 0.4, suggesting
small negative short range correlations. However the median values of scaling
parameter hm, computed by using robust estimation procedure, are markedly
different with hm consistently lying close to 0.55. Similarly for many traces hg is
found to be close to 0.8 (e.g., around 2007 UStoJp) suggesting large correlation
in small time scales, in contrast with common knowledge. However the values of
hm revert back to their usual behavior i.e. tiny to moderate correlations. This
illustrates the importance of using a robust estimation procedure while studying
short range correlations and in absence of such a procedure one may draw faulty
conclusions e.g. the presence of negative correlation in small time scales.

This median-sketch based longitudinal analysis of MAWI traces shows that
the presence of tiny to moderate short range correlations, with corresponding
scaling parameter lying in the range (0.5-0.7), is an invariant. Despite evolution
of Internet traffic, presence of congestions and anomalies, variation in bandwidth
occupancy rate etc, small-time scaling behavior is found to be stable.

We note that many traces, in both directions, manifest small to moderate
correlations (h between 0.6 and 0.7). This is in contrast with the findings that
small to moderate correlations are found only in small number of traces [17].
A close look reveals that this phenomenon is more frequent for recent traces
(2007 onwards). Most of the pre-2007 traces have scaling exponent less than 0.6
and 0.65 for directions JptoUS and UStoJp respectively while many post-2007
traces cross these bounds. This suggests that the trend is towards increasing
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Fig. 3. Logscale Diagrams before and after permuting the flows (a) Anomaly Free
Trace (b) Anomalous Trace

short range correlations, although the scaling exponent remains less than 0.7
. Section 5 provides an explanation for recent traces having larger correlations
(proliferation of dense flows). However this observation suggests that sub-second
Poisson modeling is unsuitable for recent traces and provides an evidence against
the prediction that Internet traffic is moving towards simpler to describe models
(e.g., Poisson) [12].

4 Independence of scaling at IP level from flow arrivals
This section illustrates the importance of coupling a semi-experimental method-
ology with a robust estimation procedure. A semi-experiment based methodology
has been frequently used to infer various properties regarding scaling behavior
of Internet traffic [8, 17, 10]. We argue that in presence of network anomalies,
it is important to couple semi-experiments with a robust estimation procedure
otherwise semi-experiments may give misleading inferences. By making use of
such robust semi-experiments we show that the property, scaling at IP level is
independent of flow arrivals, is found to be invariant. Hohn. et al. [8] showed this
independence while trying to unravel the origins of scaling in small time scales.
This property is important as it suggests that for the purpose of modeling the
overall process of IP packets, flows can be treated as statistically independent
and hence forms the basis of cluster process models [9].

For our analysis we make use of a similar semi-experiments based methodol-
ogy as used by [8, 9]. We modify the arrival process of flows while maintaining
in full the packet arrival patterns within each flow. Specifically, we permute the
flows around the original arrival points and then compare the scaling structure
before and after the semi-experiment. Any flow which lasts longer than the trace
finish-time is wrapped around. If the scaling behavior remains identical, it shows
the independence of IP level scaling from flow arrivals process.

Figure 3(a) plots LDs of anomaly-free trace before and after the permuting
semi-experiment. As expected, scaling behavior is found to be identical, both
in small and large scales. Figure 3(b) shows LDs for anomalous trace which
displays different small-time scaling behaviors before and after the permuting
semi-experiment (upper two plots)7. While the original LD has small negative
7 Figure 1 and Figure 3 use the same traces
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Fig. 4. Short range correlations across the years before and after flow permutations,
with and without robust estimation

correlation (hg = 0.39), LD after flow permutation shows tiny positive correla-
tion (h-Permg = 0.54). At first glance it suggests that this violates the indepen-
dence property. However as pointed out in previous section, network anomalies
may interfere in identifying the correct scaling behavior, we need to do a ro-
bust estimation. Hence for both original and permuted trace, we estimate the
scaling exponent using robust estimation procedure and compare the median-
LDs. Figure 3(b) plots the median-LDs for both original and permuted trace
(lower two plots). Scaling behavior for both median-LDs is found to be identical
thereby showing the independence of scaling from flow arrival process for this
trace. This shows the importance of using a robust semi-experimental methodol-
ogy. One can alternatively think of first sketching the original trace, permuting
each sketched sub-trace and finally checking whether this independence prop-
erty holds for majority of sketched sub-traces. Median can then be taken over
matching sketched sub-traces. However, the former approach is more strict as
the robust value should not depend on the actual hash-mappings taking place
during the sketching procedure.

Figure 4 plots the values of scaling exponent for MAWI dataset for direction
JptoUS. Both median (a) and global (b) are plotted before and after permuting
the flows. Figure 4(a) shows that median values of scaling exponent match quite
nicely before and after permuting the flows, thereby showing invariance of this
property. Similar results are obtained for direction UStoJp as well.

A comparison of Figure 4(a) and 4(b) again throws light on the importance of
using a robust semi-experimentation based methodology. For duration 2005-mid
2006 global estimations of scaling exponent, hg and h-Permg, do not match.
For direction UStoJp same observation is made for mid 2001-2002 and 2007
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traces (plot not shown here). In absence of a robust estimation procedure one
may draw a misleading conclusion. On the other hand for few traces (notably
around 2004, JptoUS) global estimations of scaling exponent (hg and h-Permg)
are close to 0.8 and are found to be matching before and after permuting semi-
experiment. For such traces one will draw the correct conclusion of independence
of IP level scaling from flow arrivals but the exact nature of scaling behavior will
be misinterpreted (large correlations instead of moderate correlations). A true
picture is obtained only after applying the robust estimation procedure.

5 Small-time scaling behavior and Dense flows

Hohn et al.’s [8] result regarding independence of scaling behavior at IP level from
flow arrival process implies that dependence between packet processes across
different flows are very weak and hence Internet traffic can be considered to
be a collection of independent flows layed down in some independent manner.
This further suggests that small-time scaling behavior arises out from packet
patterns within individual flows. Zhang et al. [17] showed by analyzing backbone
traces collected in 2001-02 that small-time scaling behavior is driven by packet
patterns within individual dense flows. A flow is defined as dense if 50% of packet
interarrival times are less than a threshold T . Moreover large flows do not have
much say in small-time scaling behavior of Internet traffic. This was a surprising
result as large flows are known to be reason behind LRD. Main objective of this
section is to look whether the property that dense flows, and not large flows, are
the primary correlation causing factors in small time scales is an invariant or not.
In doing so, this section reinforces the importance of coupling robust estimation
method with semi-experiments. We further study the evolution of MAWI traces
vis-a-vis dense flows.

For our experiments on MAWI traces we carry out a similar semi-experiments
based analysis as used by [17]. For a given trace we extract out all dense flows
with threshold T = 2ms and remove these dense flows from the trace. This
hence leaves us with sparse component of the original trace. Next we construct
the small component as followed: We compute the number of bytes contributed
by the dense flows dense-bytes and then remove top-k flows (in terms of size)
which taken together contribute as many bytes as dense flows do i.e. dense-
bytes. We then compare the scaling behavior of sparse and small components
vis-a-vis the original trace in small time scales. Once again we apply the robust
estimation procedure to weed out the effects of network anomalies.

Figure 5 plots the scaling parameter of sparse and small components as well
as aggregate for MAWI traces across the years. Both directions are shown. Scal-
ing parameters only after application of robust estimation procedure are shown.
For all the traces having small to moderate correlations, removal of dense flows
brings down the scaling parameter. Scaling parameter for sparse component is
consistently close to 0.55 for all the traces (both directions). For traces JptoUS;
2004-2006 aggregate scaling parameter is close to 0.55 (i.e. almost uncorrelated)
and hence no further reduction in scaling parameter is observed for sparse com-
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ponent. For traces 2001-04; Jp2US scaling parameter is close to 0.6 and hence
only a small decrease in scaling parameter is observed for sparse component.
However traces for UStoJp and JptoUS; 2006-09 contain small to moderate cor-
relations and a clear decrease in scaling parameter is observed.

It can be further observed that removing large flows from the traces does not
have much of an effect on scaling exponent. Scaling exponent (across all traces)
of small component is close to aggregate trace as compared to sparse component
even though both sparse and small components have been obtained by removing
same number of bytes. We tried out multiple other values of threshold T and a
similar result is observed every time8. This analysis along with the earlier obser-
vation of sparse component consistently displaying almost uncorrelated scaling,
shows that the property, small-time scaling behavior is driven by dense flows
(and not large flows), is an invariant.
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Fig. 5. Comparison of small-time scaling behavior across the years: sparse and small
components vis-a-vis aggregate

We next look at global values of scaling parameter (without robust estima-
tion) for sparse and small component. We find that sparse component consis-
tently has a smaller global scaling exponent (h-sparseg) as compared to small
(h-smallg) and aggregate (hg) component (plot not shown). However we find
anomalies clearly interfere with the reliable estimation of scaling parameter. Fig-
ure 6 plots the global estimations of scaling parameter for sparse components.
Once again we find multiple instances of traces showing negative correlations
clearly indicating the effect of anomalies. Moreover many traces display a value

8 We also tried computing small component by removing all flows with size greater
than 1 MB. Scaling exponent for sparse component is again found to be less than
that of small component.
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close to 0.7 for sparse component which is counter-intuitive as dense flows have
been removed and hence this raises the question what is causing moderate cor-
relations in sparse component for these traces. This again shows that a correct
and consistent picture is obtained only by carrying out robust semi-experiments,
thereby underlining their importance.

Next we study the evolution of Internet traffic vis-a-vis dense flows. Fig-
ure 7 plots the fraction of traffic carried by dense flows (with T=2ms) by MAWI
traces across the years. We find that for both directions fraction of aggregate
traffic carried by dense flows has increased. This also explains the earlier ob-
servation that scaling exponent for recent traces is found to be relatively larger
as compared to traces from earlier years. Further as direction UStoJp carries
more traffic by dense flows, scaling exponent for UStoJp direction is found to be
relatively higher as well. Secondly we notice that for traces UStoJp; 2001-2006,
dense flows almost carry 60% of traffic. Scaling exponent of small component,
obtained by removing 60% (a significant number) of total bytes from large flows,
is found to be close to that of aggregate trace. This observation reaffirms the
fact that small-time scaling behavior has its origins in packet patterns within
dense flows.
6 Conclusions
This paper carries out a unique longitudinal analysis of small-time scaling behav-
ior of Internet traffic on MAWI dataset spanning traces across 8 years. We think
that this study has served multiple purposes. First this study has re-emphasized
the need of a robust analysis in general and while studying small-time scaling
behavior in particular. We have also motivated the coupling of Robust analy-
sis with semi-experiments by showing how a semi-experiment without robust
analysis can give misleading inferences.
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Secondly our study is complimentary to many previous works analyzing
small-time scaling behavior (e.g. [17], [8]). We have shown that small-time scal-
ing behavior and properties proposed by these studies remain invariant through-
out this decade despite many things having changed e.g. Internet traffic compo-
sition, bandwidth usage etc. Third our study suggests some trends regarding the
evolution of small-time scaling behavior. Our study suggests that the percentage
of traffic carried out by dense flows is increasing thereby pushing scaling param-
eter in small time scales upwards. As a result recent traces frequently display
small to moderate short range correlations as compared to earlier years. This
also provides an evidence against the prediction that Internet traffic is moving
towards simpler to describe models (e.g. Poisson). However it is prudent to note
here that these trends should be verified by a longitudinal analysis from traces
collected on other backbone links as well.
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