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Abstract—This paper introduces a new multiscale framework
for estimating the tail probability of a queue fed by an arbitrary
traffic process. Using traffic statistics at a small number of time
scales, our analysis extends the theoretical concept of the critical
time scale and provides practical approximations for the tail
queue probability. These approximations are non-asymptotic;
that is, they apply to any finite queue threshold. While our
approach applies to any traffic process, it is particularly apt
for long-range-dependent (LRD) traffic. For LRD fractional
Brownian motion, we prove that a sparse exponential spacing of
time scales yields optimal performance. Simulations with LRD
traffic models and real Internet traces demonstrate the accuracy
of the approach. Finally, simulations reveal that the marginals of
traffic at multiple time scales have a strong influence on queueing
that is not captured well by its global second-order correlation in
non-Gaussian scenarios.

Index Terms—Admission control, critical time scale, fractional
Brownian motion, long-range dependence, marginals, multifrac-
tals, multiscale, network provisioning, queueing, wavelets.

I. INTRODUCTION

WE MODEL a router queue as an infinite length queue
with constant service rate [2] and study the probability

that the queue size exceeds a threshold , , also
called the tail queue probability. The tail queue probability is
a useful metric for various applications including techniques
for maintaining low packet queueing delays and jitter at router
queues such as admission control and network provisioning [3],
[4]. Low network delays are critical for the viability of real-
time streaming media applications for telephony, telemedicine,
videoconferencing, economic transactions etc.

We can predict in several ways. First, we can
model network traffic using different processes (also called
traffic models) and use any exact formula for that
is available. Second, in case exact results are unavailable for a
particular process we can employ analytical results that only
approximate , which we call queueing approxima-
tions. Third, if modeling traffic with a standard random process
is cumbersome or inadequate then we can predict
directly from measured traffic statistics. In such a scenario it is
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desirable to use a small number of traffic statistics in order to
reduce data acquisition and computational requirements.

In this paper, we develop a new approach to queueing anal-
ysis called the multiscale queueing analysis that addresses the
second and third scenarios mentioned above.

While our analysis is relevant to any traffic process we
focus on processes with non-summable correlations (called
long-range dependence, LRD) since LRD is a ubiquitous prop-
erty of real-traffic [5].1 Classical Poisson and Markov queueing
techniques are unsuitable for LRD traffic which creates the
need for new analytical tools. Up to now exact formulas for the
queueing delay of LRD processes, other than for asymptotically
large delays [6]–[8], have not been found and we are thus forced
to use approximations.

To date, most approximations for the tail queue probability of
queues fed with LRD processes have been based on the notion
of the critical time scale [6]–[13]. Given a queue size threshold
, the critical time scale is the most likely amount of time it takes

for the queue to fill up beyond . While the critical time scale is
a powerful theoretical tool, computing it directly from empirical
measurements is impractical because this requires traffic statis-
tics at all time scales.

By using traffic statistics at only a finite set of time scales,
, our approach provides three practical approximations for

: the max approximation, the product approximation,
and the sum approximation. These have several important
features:

• they apply to any finite queue threshold , that is, they are
non-asymptotic;

• they apply to any traffic model including non-stationary
ones; and

• they are simple to employ because they require traffic sta-
tistics only at few time scales .

We prove numerous non-asymptotic error bounds, large-
queue asymptotic results, and other bounds for the three ap-
proximations for different traffic models including fractional
Brownian motion (fBm), fractional Gaussian noise (fGn), the
wavelet-domain independent Gaussian model (WIG), and the
multifractal wavelet model (MWM). We also compare the
different approximations through numerical experiments.

Determining an appropriate candidate for is a key issue we
address. The choice of involves a tradeoff between the accu-
racy of the approximations and the requirements for computa-
tion and data acquisition. For example, a sparse decreases the
accuracy of the max approximation but simultaneously requires
the computation of traffic statistics and data acquisition at fewer
time scales. We prove that the choice of exponential time scales
for is optimal with respect to this tradeoff for a queue with fBm

1Note that standard LRD traffic processes typically become short-range de-
pendent (i.e., non-LRD) with a special choice of parameters. Our results for
LRD models also hold for these non-LRD cases.
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input traffic. A significant advantage of exponential time scales
is their sparsity; just a few exponential time scales span a wide
range. This result thus strongly recommends the use of traffic
statistics at exponential time scales in queueing applications.

Traffic models such as fGn and the WIG suffice to capture the
queueing behavior of traffic in Gaussian scenarios that can occur
with traffic aggregation as on backbone links [11]. However
they do not perform as well in non-Gaussian traffic scenarios.
We term the distributions of traffic at different time scales as
marginals. Through simulations with the WIG and the MWM
which have different marginals we demonstrate the strong im-
pact of marginals on queueing. This result supports similar find-
ings in [12], [14].

Our main contributions are thus: 1) a novel multiscale
approach to queueing analysis that provides practical queueing
approximations; 2) optimality and error bounds related to
the approximations for various traffic models; and 3) the
demonstration that marginals can strongly influence queueing
behavior.

Paper Organization: Section II reviews previous work on
the critical time scale. In Section III we present the multi-
scale queueing analysis of the paper and derive the various
queueing approximations. Section IV describes the fBm, the
fGn, the WIG, and the MWM traffic models. In Section V
we prove the optimality of exponential time scales for fBm.
Section VI proves that large buffer asymptotic results and
Section VII proves bounding results for the different queueing
approximations. Section VIII demonstrates the accuracy of the
approximations through simulations with Internet and synthetic
model data and also demonstrates the impact of marginals on
queueing. We conclude in Section IX. The proofs of various
results are placed in Appendix.

II. REVIEW OF CRITICAL TIME SCALE ANALYSIS

In this section, we review previous work on the critical
time scale queueing analysis to set the stage for our multiscale
queueing analysis in subsequent sections.

A. Queue Size as a Multiscale Function

Consider a continuous-time fluid queue with constant service
rate with traffic process as input. We refer to

(1)

as the traffic process at time scale . To avoid notational ambi-
guity we occasionally add superscripts such as in to
identify the traffic process. For the ease of notation we drop the
subscript for all time-invariant quantities.

Assuming that the queue was empty at some time instant prior
to , the queue size equals the difference between the total
traffic that arrived at the queue and the total traffic serviced since
the time instant the queue was last empty. This is succinctly
captured by Reich’s formula

(2)

We address the requirement of an empty queue prior to with
mathematical rigor in Section IV-E.

A key interpretation of (2) is that equals a function of
, the traffic process at all time scales . The question arises

as to whether or not we can accurately approximate
using the distribution of at a single time scale .

B. Critical Time Scale Queueing Approximation

Most proposed approximations of for queues fed
by LRD traffic are indeed based on a single time scale called the
critical time scale [6]–[13]

(3)

We term the associated queue tail approximation the critical
time scale approximation

(4)

Clearly is a lower bound of since by
(2) ; thus

(5)

Earlier work based on large deviation theory has shown that
has the same log-asymptotic decay as when

for a large class of input traffic processes including fBm
[6], [7]. As the simulations in Section VIII demonstrate,
is also a good approximation for for any finite for
fBm-fed queues. The intuition for the accuracy of is that
“rare events occur in the most likely way.” In other words given
that is a rare event, if the queue size is conditioned to
fill up greater than then it does so in time in which this
is most likely. That is, conditioned on , we have that

is approximately equal to .
While the critical time scale is a powerful tool that has ad-

vanced the state-of-the-art in queueing theory, using it in prac-
tice is not straightforward. First, consider the problem of com-
puting for a queue fed with an arbitrary process, solely
from empirical traffic measurements. From (4) we see that we
require the distribution of for all possible . This is in-
feasible to obtain empirically. Even if we replace purely empir-
ical schemes by techniques that use both empirical statistics and
analytical models, similar computational problems may persist.
For example if we use traffic models for which analytical ex-
pressions for are unknown then we may have to employ
computationally intensive algorithms to determine .

Second, say that we wish to compute the critical time scale
approximation when two independent processes and are
multiplexed and input to a queue. Such a scenario often arises in
admission control and network provisioning [3], [4]. Obtaining

directly from the statistics of and is again
fraught with similar problems.
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III. MULTISCALE QUEUEING APPROXIMATIONS

In this section, we develop three new queueing approxima-
tions that do not have the computational problems that are as-
sociated with using the critical time scale approximation. A key
factor that simplifies their computation is that they use traffic
statistics only at a fixed finite set of time scales . Note
that while some of our theoretical results are for countably infi-
nite sets , in practice we always employ a truncated, finite set

when computing the queueing approximations. We typically
choose the set to span the range of time scales in which we
expect the critical time scale to lie, for values of relevant
to a particular application.

A. Max Approximation

In analogy to the queue size formula and the critical time scale
[see (2) and (3)] define

(6)

and

(7)

for . This leads to the max approximation

(8)

Comparing (4) to (8) we see that the max approximation is sim-
ilar to the critical time scale approximation with the difference
that the supremum is taken over a finite set in (8) instead of over
all time scales in (4). From (4), (5), and (8) we have the bounds

(9)

We note from (2) and (6) that

(10)

and from (6), (8), and (10) that

(11)

The max approximation is a practical replacement for .
Since the max approximation requires estimates of

only for , the difficulties associated with com-
puting as we described earlier do not arise. First, consider
the problem of obtaining the max approximation from empir-
ical traffic measurements. We simply compute histograms of the
traffic at time scales and then estimate .
Second, consider the problem of computing the max approxima-
tion when two independent processes and are multiplexed
and input to a queue. By simply convolving the distributions of

and for we obtain the corresponding
distributions of , which immediately give the max
approximation.

B. Product and Sum Approximations

Two additional approximations of based on the
set of time scales are the product approximation

(12)

and the sum approximation

(13)

Note that the product approximation equals if the

events , , are independent,2 and that the

sum approximation equals if the same events are
mutually exclusive.

C. Intuition for the Accuracy of the Approximations

The max, product, and sum approximations inherit the
accuracy of the critical-time scale approximation while being
practical. If there exists an element of close enough to the
critical time-scale then will be close to [see (4)
and (8)]. Moreover, if a single probability term dominates the
summation in (13), then the product and sum approximations
will closely approximate and hence . Simulations
below in Section VIII demonstrate that the product and sum
approximations are often closer to than the max
approximation.

IV. TRAFFIC MODELS

This section describes four traffic models that we focus on in
this paper. While all have been shown to model the LRD in real
Internet traffic well, they differ in their ability to model other
properties of traffic.

A. Fractional Brownian Motion

Fractional Brownian motion (fBm) is the unique Gaussian
process with stationary increments and the following scaling
property for all , and :

(14)

The symbols “ ”, “ ”, , and “ ” denote equality in dis-
tribution, variance, expectation, and covariance respectively.

B. Fractional Gaussian Noise

Fractional Gaussian noise (fGn) is the increment process of
fBm. While fGn is stationary, fBm is itself non-stationary by
definition. Denote the stochastic differential of as . We
denote fGn by

(15)

While it is difficult to define rigorously, its aggregate
is well-defined. Often one is interested only in the

2If events E ; i 2 ; are independent, then so are their complements.
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Fig. 1. Multiscale tree representation of a traffic trace. Nodes at each horizontal
level in the tree correspond to the sum (aggregates) of the process in non-over-
lapping blocks of sizes of powers of two, with lower levels corresponding to
smaller block sizes. Each node is the sum of its two child nodes.

time series with a constant time lag. From
(14) and (15) we have that

(16)

and thus

(17)

where . When , fGn is LRD.

C. Wavelet-Domain Independent Gaussian (WIG) Model

The WIG is a Gaussian traffic model that is able to approx-
imate fBm and fGn as well as processes with more general
scaling than (14) and (17). It uses a multiscale tree to model
traffic over the time interval [15], [16]. The nodes
on the tree correspond to the total traffic in the time interval

, (see Fig. 1).
Starting at node , the WIG models nodes and

using independent additive random innovations
through

(18)

In practice one uses a WIG tree of finite depth to obtain a dis-
crete-time process . The have the same variance within
each scale , thus guaranteeing that is a first-order sta-
tionary process. The root and all are Gaussian which
ensures that all tree nodes are Gaussian.

To fit a traffic model means to choose its parameters either
to match key statistics of observed traffic or to ensure that the
model has certain prespecified statistical properties. Fitting the
WIG involves choosing its parameters to obtain a required vari-
ance progression of . The WIG can provide a Gaussian
approximation for any stationary discrete-time process ; that
is, the WIG can be fit to obtain

(19)

We will refer to a WIG model for which (19) holds as a “WIG
model of ” in the rest of the paper.

D. Multifractal Wavelet Model (MWM)

The MWM is a non-Gaussian model based on a multiscale
tree that, like the WIG, allows a more general scaling behavior
of the variance of tree nodes than fGn [17]. Unlike the WIG, it

ensures positivity at all time scales, an intrinsic property of real
data traffic that is often ill approximated by Gaussian models.
Setting the MWM uses independent multiplicative
innovations to model the two children of node
through

(20)

Because the product of independent random variables converges
to a lognormal distribution by the central limit theorem, the
nodes become approximately lognormal with increasing .

Following [17], we model the ’s and as symmetric
beta random variables. The tree node is thus the product of
several independent beta random variables. Using Fan’s result
[18], we approximate the distribution of as another beta dis-
tribution with known parameters in order to compute different
queueing approximations for the MWM.

Fitting the MWM involves choosing its parameters to obtain
a required variance progression of . The MWM can
model any stationary discrete-time process with positive au-
tocovariance in the sense of (19).

While the WIG and MWM models are first-order stationary,
they are not second-order stationary. This is apparent from
Fig. 1. Observe that and have the same
parent node while and do not. Thus, the
correlation of with its two neighbors, and

, are different. Both models however have a time-av-
eraged correlation structure that is close to the stationary
process that they model (see [16] and [17] for details).

E. Queueing Analysis Setup for fBm, fGn, WIG, and MWM

We now state precisely the queueing setup for the fBm, fGn,
WIG, and MWM models that we analyze in subsequent sec-
tions. We set the initial queue size to be empty to satisfy the
sufficient condition for (2) to hold (see Section II-A).

In this paper, all queueing results for queues with fBm input
correspond to a continuous-time queue with service rate , initial
value , and .
We have

(21)

where the limit holds because of stationarity of fBm increments
and Lemma 13 (in the Appendix). We assume that

and study the quantity as defined in (21).
For fGn, WIG, and MWM traffic we consider discrete-time

queues that are initialized to and evolve according to

(22)

Defining for and
, and we have

(23)
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For fGn we set and for
. We study the quantity which is

defined as in (21) with the difference that and take integer
values.

For the WIG and MWM we consider only for
with where is the depth

of the multiscale tree. Here . We assume that

(24)

and study which is a time-varying quantity.
For the fGn, WIG, and MWM models is only defined

for . For these models we define ,
, and as in (8), (12), and (13) except that we

replace by .

V. OPTIMALITY OF EXPONENTIAL TIME SCALES FOR

THE MAX APPROXIMATION OF AN FBM QUEUE

Comparing (4) and (8) we see that the more dense is in ,
the closer the max approximation is to the critical time
scale approximation . However, we simultaneously have to
acquire data at more time scales, and the computational cost of
the max approximation increases [see (8)]. In this section, we
prove that the sets of exponential time scales

(25)

optimally balance this tradeoff in accuracy versus computa-
tional cost.

First, for a queue with fBm input we first define a metric to
characterize the accuracy of . Second, we prove that
is the most sparse of all sets that satisfy a particular accuracy
criterion for . Third, we obtain a non-asymptotic bound
on the error of in approximating . This bound
proves that accurately approximates for a wide
range of .

A. Metric to Characterize Accuracy of

Consider a queue fed by fBm traffic as described in
Section IV-E. Then for , using (14) it is easily shown
that [9]

(26)

where

(27)

and is the complementary cumulative distribution function of
a zero mean unit variance Gaussian random variable. From (4)
and (8) we have

(28)

and

(29)

Given a range of time scales , we characterize the accuracy
of in terms of the following metric:

(30)

Intuitively, the closer is to 1 the tighter we can bound the
error of in approximating for all queue thresholds

whose corresponding critical time scale lies in . We
refer to as when . We use the following
function to evaluate the accuracy metric:

(31)

Let be a set of time scales with elements ar-

ranged in increasing order. We begin by studying

where . Remarkably is solely

a function of the ratio of time scales and does
not depend on any other property of . We denote the largest
ratio of consecutive scales in by .

Theorem 1: The accuracy metric over the range of scales
equals

(32)

Corollary 2: If extends from 0 to , that is,
and , then the accuracy metric for
equals

(33)

The proof of Theorem 1 relies on the fact that for a fixed
threshold , whose corresponding critical time scale lies
in , the function is minimized over at either

or . Thus, depends only on

and and not on other elements of . This fact and the elegant
scaling properties of fBm result in (32).

B. Optimality of Exponential Time Scales

Given a range of time scales , , we wish
to find that time-scale set which is the most sparse (i.e., has the
fewest elements) in while guaranteeing a certain accuracy of

.
The next theorem proves that there exists an exponential set

of time scales that is most sparse among all sets that have
accuracy metric less than a specified threshold. Define

(34)

and let denote the number of elements of that lie in .
Define the generalized exponential time scales as

(35)

where .



1010 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 5, OCTOBER 2006

Fig. 2. (a) � (�) versus �. For a large range of �, � (�) is close to 1.
(b) M (b) versus C(b). Observe that the lower bound of M (b) is
almost identical to the upper bound C(b).

Theorem 3: For all , we have and

(36)

Moreover, there exists such that

(37)

Theorem 3 follows from Theorem 1. Note that in-

creases with because is an increasing function of
[see (31) and (32)]. Thus, for any , if we
must have . In the exponential set , the ratio of all
consecutive time scale elements, , equals the maximum al-
lowed value of . Thus, is the most sparse of all sets in .

C. Accuracy of

We use Theorem 1 to obtain the maximum error of
in approximating for all possible fBm traffic processes sat-
isfying . Define .

Theorem 4: For fBm input traffic with

(38)

In Fig. 2(a) we see that the plot of versus , which we
obtained numerically, is close to 1 for a large range of values
of . As a result the lower bound of from (38) for
different values of is close to as depicted in Fig. 2(b). In
fact is almost identical to when .
Thus, is for all practical purposes as accurate as
in approximating .

VI. ASYMPTOTIC ANALYSIS OF FBM QUEUES

In this section, for a queue with fBm input, we study the
accuracy of the max, product, and sum approximations of

for asymptotically large queue thresholds, that is
as . While asymptotic queueing results are not always
directly applicable to scenarios with finite queues, they often
provide intuition for network design [6], [7].

We begin with some terminology. If

(39)

we say that and have the same asymptotic decay and denote
it by . If we say that has
the same log-asymptotic decay as . Under the assumption that

as , it is easily shown that an asymptotic decay
implies a log-asymptotic decay, that is,

(40)

but not vice versa. We call an asymptotic upper bound of if

(41)

A. Related Work

Large deviation principles reveal that and
have the same log-asymptotic decay (see [6] and [7])

(42)

where is a constant depending on the traffic parameters
and independent of . However and do not
have the same asymptotic decay: is an asymptotic
upper bound of . Interestingly under transient conditions,
that is, for a fixed , has the same asymptotic decay
as [13].

Recent results show that for fBm has a Weibull
asymptotic decay [8], [19], [20]

(43)

where is a constant independent of . When
, which implies that fBm’s increment process is LRD,

this Weibull decay is slower than the exponential decay for a
queue fed with traffic that is not LRD, for example fBm with

[5].
From (43) we obtain that is an asymptotic upper

bound of when , since

(44)

This asymptotic upper bound was derived as the maximum vari-
ance approximation in [11]. For a detailed discussion on large
queue asymptotics of LRD traffic see [21, ch. 4–11] and the ref-
erences therein.

B. Asymptotic Decay of Approximations

We now compare the log-asymptotic and asymptotic decay
rates of the max, the product, and the sum approximations with
that of . Define

(45)

where is arbitrary. We only consider the case .
The next theorem summarizes our results.
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Theorem 5: The max, product, and sum approximations
have the same log-asymptotic decay as and

; that is, as we have

(46)

Moreover, the max, product, and sum approximations all have
the same asymptotic decay as ; that is, as

we have

(47)

However,

(48)

Theorem 5 reveals the strengths and limitations of using
traffic statistics only at exponential time scales to capture
queueing behavior. Recall from (2) and (6) that ap-
proximates the queue size using traffic only at time scales

. From (46) we see that is dense enough in to
ensure that and have the same
log-asymptotic decays for a particular unbounded increasing
sequence of queue sizes . However, is not dense enough to
ensure that and have the same
asymptotic decay.

We also observe from (47) that the max, product, and
sum approximations have the same asymptotic decay as

. As a result they have the same log-asymptotic
decay but different asymptotic decay as . We
next present non-asymptotic results comparing the different
queueing approximations to .

VII. BOUNDS FOR THE APPROXIMATIONS

The knowledge of whether or not a queueing approxima-
tion is an upper or lower bound of aids different
applications. For example if we provision the queue service
rate such that the critical time scale approximation equals

, then we must expect the actual tail queue probability
to exceed since lower bounds

[see (5)]. If is an accurate approximation of
to an order of magnitude, as our simulations with fGn traffic in
Section VIII affirm, then we would effectively be provisioning
for . If we replace the lower bound
by an approximation that is an upper bound of , then

is guaranteed to be less than .
In this section, we prove bounding results for the max,

product, and sum approximations, which we compare to
rather than . Note from (10) that lower

bounds of are also lower bounds of .
However, the queueing approximations that are upper bounds of

are not necessarily upper bounds of .

A. Bounds for General Input Traffic Processes

We first state a general result that holds for a queue fed by any
traffic random process and then present model-specific results.

Lemma 6: For a discrete or continuous-time queue of infinite
size, with an arbitrary input traffic process and constant service
rate

(49)

and

(50)

where is any countable subset of .
From Lemma 6 we see that max and sum approxima-

tions are always lower and upper bounds respectively of
both and the product approximation. In the
rest of this section we compare the product approximation to

.

B. Product Approximation Bounds for Gaussian Traffic

For queues fed with traffic from a large class of Gaussian
processes, including fBm and fGn, is an upper bound

of .
Theorem 7: Consider a Gaussian traffic process input to

an infinite buffer queue with constant service rate (discrete or
continuous-time). If for all then

(51)

where is any countable subset of .
Note that fBm satisfies the requirements of Theorem 7 since

for all and

(52)

Similarly fGn too satisfies the requirements of Theorem 7.

C. Product Approximation Bounds for WIG and MWM Traffic

For the WIG and MWM we restrict our attention to the set
of dyadic time scales, that is, with . Recall from
Section IV-C that the WIG and MWM are non-stationary traffic
models. As a consequence changes with time location

. We first compare to for , that
is, at the final time instant of the tree process, and then at all other
time instants . We denote the final time instant by “ ”.

Theorem 8: For the WIG and MWM with arbitrary model
parameters

(53)

Theorem 8 states that is an upper bound of

at the final time instant for the WIG and the
MWM for arbitrary model parameters. The only ingredient of
the proof of Theorem 8 is the fact that the quantities ,
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that determine are nodes along the
right edge of the tree and hence are related through independent
innovations (see Fig. 1). Since this fact is true for arbitrary
model parameters, so is (53).

Generalizing the proof of Theorem 8 so that (53) holds for
all time instants is not straightforward because the quantities

, are not always tree nodes for arbitrary
and are hence not related through independent innovations as the
quantities , are. However, for a WIG
model of fGn we can extend (53) to all as stated next.

Theorem 9: For the WIG model of fGn

(54)

As a consequence

(55)

Theorem 9 reveals that for a WIG model of fGn is

an upper bound of the time average of .
Earlier work on the queueing behavior of the WIG model of

fGn proved that the time average of the tail queue probability
has the same log-asymptotic behavior as that of

fGn [16].
We demonstrate through simulations in Section VIII that

approximates the time average of well for
a large range of queue sizes for both the WIG and the MWM.

VIII. SIMULATIONS

In this section, we demonstrate the accuracy of the max,
product, and sum approximations of through simu-
lations with fGn, WIG, and MWM synthetic traces as well as
with video and measured Internet traces. We also demonstrate
that the tails of marginals of traffic at different time scales have
a significant impact on queueing in certain scenarios by com-
paring the queueing behavior of the WIG and MWM models
with that of measured Internet traffic. We restrict our attention
to exponential time-scales with (that is, ). All
error bars in the plots correspond to 95% confidence intervals.

A. Comparison of Queueing Approximations for fGn Traffic

We now compare the different approximations of
through simulations with fGn traffic. The simulations use fGn
traces with Hurst parameter and standard deviation at
the 1 s time-scale bits that are generated using
the method described in [23]. We set and

and vary the mean rate of the traces to obtain different
utilizations.

We estimate for each simulation run as the frac-
tion of time for which the queue size exceeds . To eliminate
transients we only make estimates using queue sizes during the
second half of the simulation. The plots of tail queue probability
correspond to the mean obtained from 300 simulation runs. Each
run uses a trace of length data points corresponding to a 52 s
simulation time.

Fig. 3. Comparison of the max the product and the sum approximations to
fQ > bg for fGn traffic with parameters H = 0:8, link capacity 10 Mb/s

and � = 8 � 10 bits. For (a) 30% utilization and (b) 80% utilization, the
product and sum approximations are close to fQ > bg for a wide range of
queue thresholds b. The max approximation is a lower bound of fQ > bg and
is accurate to an order of magnitude.

The simulation results for two different utilizations are de-
picted in Fig. 3. We obtain the various queueing approximations
using (8), (12), and (13) by choosing
which is equivalent to truncated to lie within a fixed range of
time-scales. Observe that in all cases is a lower bound
of as predicted by (9). We also see that is
within an order of magnitude of for a wide range
of values of ( ). We conclude that ,
which lies between and (see (9)), is also
within an order of magnitude of for the same range
of .

From Fig. 3 observe that the product and sum approximations
are almost identical and accurately track for a wide
range of queue sizes . Also observe that they are better approxi-
mations than the max approximation in general. However unlike
the max approximation, which is a guaranteed lower bound of

, these two approximations do not bound
from above or from below and in fact intersect it at some point.
Call the queue threshold at which the product approximation
and intersect . We observe that in all cases the
product approximation is greater than at and
for is always less than . Thus, for
the product approximation lies between the max approximation
and which guarantees that it is a better approxima-
tion than the max approximation. The sum approximation has a
similar behavior.

B. Impact of Marginals on Queueing

The impact of different traffic statistics on queueing has been
extensively studied. Several studies have debated the impor-
tance of LRD for queueing [9], [24]–[27]. LRD is however only
a function of the asymptotic second-order correlation structure
of traffic (or equivalently the variance of traffic at different time
scales).

In this section, we move beyond second-order statistics
and demonstrate the impact of the tails of traffic marginals
at different time scales on queueing. We do so by comparing
the queueing behavior of the WIG and MWM processes with
video and Internet WAN traces through simulations. Recall
from Section IV that both the WIG and the MWM can capture
a wide range of second-order correlation structures. They how-
ever differ in their marginal characteristics: the WIG process
is Gaussian whereas the MWM process is non-Gaussian. We
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Fig. 4. Histograms of the bytes-per-time processes at time-scale 2 ms for (a) wide-area traffic at the University of Auckland (trace AUCK) [22], (b) one realization
of the WIG model, and (c) one realization of the MWM.

Fig. 5. Histograms of the bytes-per-time processes at time-scale 2.77 ms for (a) video traffic formed by multiplexing 15 video traces (trace VIDEO), (b) one
realization of the WIG model, and (c) one realization of the MWM. Note that the MWM matches the marginal of the video traffic better than the WIG; however,
the video traffic is more Gaussian than the AUCK traffic.

interpret our results using the product approximation and the
conclusions of earlier work which studied the influence of link
utilization on queueing [12].

1) Traces: The two traces we use are AUCK, which con-
tains the number of bytes per 2 ms of recorded WAN traffic [22]
and VIDEO, which consists of 15 video clips multiplexed with
random starting points [28]. The finest time-scale in VIDEO
corresponds to 2.77 ms, 1/15 the duration of a single frame. The
mean rates of AUCK and VIDEO are 1.456 and 53.8 Mb/s, re-
spectively. AUCK contains 1.8 data points and VIDEO

. The Hurst parameter of AUCK obtained from the vari-
ance-time plot using time-scales 512 ms to 262.144 s is

. For VIDEO, we find using time-scales 354 ms
to 90.76 s. From Figs. 4 and 5 observe that AUCK has strongly
non-Gaussian marginals while VIDEO’s marginals resemble a
Gaussian distribution.

2) Simulation Results: We fit the WIG and MWM to the
real data and then generated synthetic traces from the models.
We then compared the queueing behavior of the synthesized
WIG and MWM traces with that of the real data when they are
input to a queue of infinite length with constant service rate. The
plots of correspond to the mean obtained from 1000
simulation runs.

We first present results for high link utilizations ( 70%). Ob-
serve from Fig. 6(a) and (b), where we used the WAN traffic
trace AUCK, that the real and synthetic traces exhibit asymp-
totic Weibullian tail queue probabilities, in agreement with the
theoretical findings for LRD traffic [compare (43)]. However,
apart from this asymptotic match, the MWM is much closer to
the queueing behavior of the real trace. The link capacity we use
is 2 Mb/s, resulting in a utilization of 72%.

In the experiments with VIDEO [see Fig. 6(c) and (d)],
which is much closer to a Gaussian process than AUCK, we
observe that both the WIG and MWM closely match the correct
queueing behavior. This confirms the influence of marginals
and also reassures us that the MWM is flexible enough to model
Gaussian traffic. Gaussian-like traffic, which must be positive,
necessarily has a mean at least comparable to its standard
deviation. Since for a large mean to standard deviation ratio

Fig. 6. Queueing performance of real data traces and synthetic WIG and MWM
traces at high utilization. (a) AUCK versus WIG. (b) AUCK versus MWM.
(c) VIDEO versus WIG. (d) VIDEO versus MWM. In (b), we observe that
the MWM synthesis matches the queueing behavior of the AUCK data closely,
while in (a) the WIG synthesis is not as close. In (c) and (d), we observe that
both the WIG and the MWM match the queueing behavior of VIDEO. We also
observe that the product approximation P (b) is close to the empirical
queueing behavior for both synthetic traffic loads (both WIG and MWM) and
that it performs better than the max approximation, M (b).

the lognormal and Gaussian distributions resemble each other
closely (see Fig. 5), the approximately lognormal MWM is
suitable for Gaussian traffic [17]. The link capacity we use is
69 Mb/s, which corresponds to a utilization of 77%.

In the case of lower link utilizations from Fig. 7
we see that the MWM outperforms the WIG for both AUCK
and VIDEO traces to a greater extent than in the high utilization
case. For both the MWM and WIG we observe that the product
approximation is close to (see Figs. 6 and 7). The max
approximation is within an order of magnitude of .

3) Interpretation Using the Product Approximation: Ac-
cepting the product approximation as a close approx-
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Fig. 7. (a) AUCK versus WIG. (b) AUCK versus MWM. (c) VIDEO versus
WIG. (d) VIDEO versus MWM. Queueing performance of real data traces and
synthetic WIG and MWM traces at low utilization. The MWM outperforms the
WIG even more than at higher utilizations.

imation to the actual tail queue probabilities, a closer look at
(12) unravels how the marginals affect queue sizes. For traffic
with heavier tailed marginals, the terms
are smaller and the product approximation is larger. Since the
MWM marginals are more heavy tailed than the Gaussian WIG
marginals, the MWM has a larger product approximation than
the WIG.

In the case of VIDEO, which shows marginals much closer to
Gaussian (see Fig. 5), both the WIG and MWM perform simi-
larly in terms of capturing the tail queue probability at a high
utilization, while at a low utilization the MWM outperforms
the WIG. This result is easily explained using the finding in
[12] that fine time-scale statistics influence queueing more than
coarse time-scale statistics at low utilizations. Since fine time-
scale marginals of VIDEO are more non-Gaussian than coarse
time-scale marginals, obviously the MWM performs better than
the WIG at low utilizations.

IX. CONCLUSION

We have developed a new approach to queueing analysis of
network traffic that uses traffic statistics at a fixed finite set of
time scales. The queueing analysis provides three approxima-
tions for the tail queue probability of an infinite buffer queue
with constant service rate. Theoretical and simulation results
strongly support their use for different applications.

We also proved that exponential time scales are optimal for
fBm traffic with respect to a tradeoff in accuracy versus compu-
tational cost of the max approximation. Applications can thus
obtain accurate approximations to the tail queue probability by
employing traffic statistics only at a few sparse exponential time
scales.

Our simulations demonstrated the impact of the tails of
marginals at different time scales on queueing. We observed
that in non-Gaussian traffic scenarios the correlation structure
(short and long term) does not characterize the queueing be-
havior well.

There remain several open research problems that we have not
addressed in this paper. First, we have developed a multiscale
queueing analysis only for a single queue with constant service
rate. Our intuition suggests that a multiscale queueing paradigm
can help analyze more complex systems consisting of multiple
queues with arbitrary service disciplines.

Second, we have ignored the case of finite length queues
where packet drops occur. Our results thus are more useful in
predicting packet queueing delays rather than packet losses.

Third, our analysis is for open-loop traffic models while real
Internet traffic is mainly composed of closed-loop TCP traffic.
Closed-loop traffic reacts to changes in network conditions
unlike open-loop traffic [29]. For example, unlike open-loop
traffic, closed-loop traffic will reduce its offered load if a
bottleneck link speed is reduced. Thus, one must use open-loop
queueing results with caution in the Internet while ensuring
that one does not affect network properties (delay and loss)
which can influence the TCP traffic significantly. Possible
applications of open-loop models are for Internet backbone
provisioning (for very low delay/loss ISPs) [4], and obviously
in networks dominated by open-loop traffic like certain UDP
streaming applications.

APPENDIX

Proof of Theorem 1: We prove the theorem in three steps.
For the ease of notation we drop the superscript from ,
and .

Step 1: Determine for a fixed value .
From (27) we obtain

(56)

Thus, is minimized at where

(57)

In addition, is non-decreasing with as we move away
from . Clearly

(58)

Step 2: Find for fixed
where

(59)

and is the inverse of given by

(60)

From (59) and (60) observe that .
Consider

(61)
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Since is non-decreasing as we move away from
, we must have that

(62)

Step 3: Determine .
By elementary calculus we obtain that monoton-

ically increases with when . Also
monotonically decreases with increasing when .
If there exists such that , then

must attain its supremum over at this point (from (62)).
Indeed such an does exist. From (61) we obtain as

(63)

As a result, after simplification

(64)

Proof of Corollary 2: The proof relies on the following
claim.

Claim 10: increases with for all .
Proof of Claim 10: Note from (64) that equals

. It is thus sufficient to prove that increases
with . Without loss of generality we study how
changes by varying keeping fixed. Note that this is
equivalent to varying . We have from (63)

(65)

It is easily shown that the function equals
0 at and has a positive derivative for . Thus,

for all . Using this fact, the knowledge that
, and the fact that monotonically de-

creases for we see that decreases with
increasing , or equivalently it increases with increasing .
Claim 10 is thus proved.

From the fact that , (59) and (60) we have that
. Using this fact, (64), Claim 10, and exploiting the

continuity of [see (64)], we have

(66)

Proof of Theorem 3: From (30) .
Thus, .

Consider , such that . We can

write as a union of the following intervals: ,

, for some . Because ,
from Theorem 1 the ratio of supremum to infimum of each of

these intervals must be less than or equal to . Consider
for arbitrary . Clearly by definition can have at most one
element in each of the these intervals. Thus, (36) is proved. Con-
sider where . Clearly has no element in
the first set of the union mentioned above and at most one ele-
ment in the other sets of the union.

Proof of Theorem 4: Note that by the construction of
[see (25)], . Thus, from (9), (28)–(30), and (33) we
have

Proof of Theorem 5: The proof relies on the following two
claims.

Claim 11: .
Claim 12: .

From (50), (49), and Claim 11 we have (47). From (45) and
(57) note that

(67)

Thus, (4) and (8) yield

(68)

From (42), (47), (68), and (40), we have (46). Finally, Claim 12
combined with (47) gives (48).

We now prove the two claims. Recall the definition of
(see (27)). For the ease of notation we denote by .
From (58) and (67) we have

(69)

Proof of Claim 11: From (8), (13), (26), and (69) we have

(70)

and

(71)

We now prove that the maximum term, , dominates
the summation of (70). We note two properties of . First,
we have from (45) and (27)

(72)

where .
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Second, from (56) and (67) observe that monotonically
increases with increasing when and also with decreasing

when . We then have

(73)

Now is an increasing unbounded function of . From
(70), and using the following estimates of [30]

(74)

we have

(75)

From (73) and the fact that we have

(76)

which proves Claim 11.

Proof of Claim 12: From (74) observe that .

Set . From (28) and (58) we then
have

(77)

When we have which implies that

(78)

Claim 12 follows from (43), (77), and (78).
Proof of Lemma 6: Consider a queue with constant service

rate bits per unit time. Clearly

(79)

where . From (6) we see that
is identical to . Then (8), (13), and

(79) give (49). Note that (50) is equivalent to

(80)

for , , which is elementary.

Lemma 13: (from [31]) If events and
then . If and
then .

The following lemma helps us prove Theorem 7.
Lemma 14: [32, p. 6] Let and , , be sepa-

rable Gaussian random processes, where is a parameter set.
If the following relations hold for their covariance functions:

(81)

(82)

plus their expected values are the same : then for any

(83)

Proof of Theorem 7: For define indepen-
dent Gaussian random variables

and set . Label the ele-
ments of as . Using Lemma 13 with the events

and we
have

(84)

Then the fact that along with (83) and (84)
prove the theorem.

Lemma 15: Assume that the events are of the form
, where for

and where are independent, otherwise
arbitrary random variables. Then, for , we have

(85)

Proof: By and denote the probability density
function (p.d.f.) and cumulative distribution function (c.d.f.),
respectively, of a random variable . Furthermore, we de-
note by the c.d.f. of conditioned on knowing the
event . For convenience, let us write
for short, and let us introduce the auxiliary random variables

,

(86)

To prove the lemma, it is enough to show that

(87)

and and then set .
We prove (87) by induction. First note that .

Next, we assume that (87) holds for and show that it holds also
for . Bayes’ rule yields

(88)
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Note that , where is independent of
and hence of for . In short, is independent of
. This fact, (87) and (88) allow us to write

(89)

This proves the claim by induction.
Proof of Theorem 8: Let us first show that Lemma

15 applies to the WIG and the MWM for the events
. To this end we need only show

that these can be written in the appropriate form. Recall
that we have .

WIG: The WIG uses additive innovations arranged on
a tree as in Fig. 1. It is immediate from (18) that
becomes

(90)

It suffices, thus, to set , and
.

MWM: The MWM employs the same tree structure as the
WIG, however, with multiplicative innovations . Recalling
(20), becomes

(91)

Taking logarithms, we write the events in the required form
by setting , , and

. Using (85),

The following lemma helps prove Theorem 9.
Lemma 16: ([16, Theorem 5]) For a WIG model of fGn

with

(92)

for and for .

Proof of Theorem 9: Note that

(93)

From (24) we have that

(94)

Since the process is first-order stationary,
for all and . This fact along with Lemma 16, (93)

and (94) then give

(95)

, . We thus have

(96)

To complete the proof we show the following claim.
Claim 17: for , .

It is easy to show that the covariance of any two arbitrary
leaf nodes is positive for a WIG model of fGn with

, that is, . Because
it follows that is a linear com-

bination of covariances of leaf nodes with positive weights. This
proves Claim 17. Claim 17 and Theorem 7 give

(97)

Combining (96) and (97) proves the theorem.
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