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Abstract—Recent worldwide cybersecurity attacks caused by
Cryptographic Ransomware infected systems across countries
and organizations with millions of dollars lost in paying extortion
amounts. This form of malicious software takes user files hostage
by encrypting them and demands a large ransom payment for
providing the decryption key. Signature-based methods employed
by Antivirus Software are insufficient to evade Ransomware
attacks due to code obfuscation techniques and creation of new
polymorphic variants everyday. Generic Malware Attack vectors
are also not robust enough for detection as they do not completely
track the specific behavioral patterns shown by Cryptographic
Ransomware families.

This work based on analysis of an extensive dataset of Ran-
somware families presents RansomWall, a layered defense system
for protection against Cryptographic Ransomware. It follows a
Hybrid approach of combined Static and Dynamic analysis to
generate a novel compact set of features that characterizes the
Ransomware behavior. Presence of a Strong Trap Layer helps
in early detection. It uses Machine Learning for unearthing
zero-day intrusions. When initial layers of RansomWall tag
a process for suspicious Ransomware behavior, files modified
by the process are backed up for preserving user data until
it is classified as Ransomware or Benign. We implemented
RansomWall for Microsoft Windows operating system (the most
attacked OS by Cryptographic Ransomware) and evaluated it
against 574 samples from 12 Cryptographic Ransomware families
in real-world user environments. The testing of RansomWall
with various Machine Learning algorithms evaluated to 98.25%
detection rate and near-zero false positives with Gradient Tree
Boosting Algorithm. It also successfully detected 30 zero-day
intrusion samples (having less than 10% detection rate with 60
Security Engines linked to VirusTotal).

I. INTRODUCTION

In today’s digitally connected world, organizations across
the globe are witnessing a massive growth in cybercrime.
The increased dependency on digital technologies has helped
economies transform the world of business but also lead to
escalation in the number of cyberattacks. Individual users and
corporates keep their important documents, photos, reports
and organizational data in digital form. Recently, massive-
scale attacks were carried out using a kind of malware known
as Ransomware [1] that denies access to user data files and
demands a ransom for restoring it. In a very short period
of time, Ransomware has grown exponentially to become
the most dangerous and aggressive malware of recent times.
The attacks have been carried out on various sectors [2]

including finance, insurance, banking, real estate, medical,
public administration to name a few.

Scareware [3] is an early form of Ransomware which
leverages false fear in the victim that his system is infected
with a large number of viruses, spyware and security issues.
The user is tricked to buy a fake antivirus product and hence
pay a ransom for removing infections. User awareness and
improved security software have drastically reduced threat
posed by this kind of malware. Locker Ransomware (e.g.
Reveton [4]) denies access to computing resources by locking
system’s user interface. It employs social engineering methods
for threatening the user to pay ransom. Effective tools and
techniques are provided by various security vendors which are
able to restore the blocked user interface for most variants.

Cryptographic Ransomware [5] targets user data files with
specific extensions that varies with each family. Access to user
data is blocked by encrypting files with advanced encryption
algorithms. A Ransom-note is displayed to the user containing
threatening message to delete hostage files permanently in
case of non-payment. Ransom is requested through Bitcoin
cryptocurrency. System files are not encrypted to keep the
operating system working. Even after payment it is not guar-
anteed that the user receives the decryption key to restore
encrypted files.

Modern-day Cryptographic Ransomware variants use a
combination of Symmetric (AES, Triple DES) and Asymmetric
(RSA, ECC) Key Cryptographic algorithms for encryption.
User files are encrypted using Symmetric Key generated in
the victim’s system. The Symmetric Key is encrypted using
Asymmetric Public Key provided by the attacker whereas
corresponding Asymmetric Private Key is kept secret at Com-
mand & Control server [6]. Cyberattackers create a new
Bitcoin wallet for each infection and send its identifier to
the victim for ransom payment. Anonymity is provided by
passing Bitcoins through multiple mixers which shuffles them
among different users. Tor networks are used for hidden
communication with Command & Control server.

Cryptographic Ransomware is the major variant of Ran-
somware families that has caused devastation worldwide as
compared to the other two variants - Scareware and Locker
Ransomware. Microsoft Windows operating system has be-
come the most attacked OS by Cryptographic Ransomware



in recent times with huge cyberattacks primarily targeting
its vulnerabilities for entering into the victim’s system [7].
Widespread use of this operating system in various platforms
across globe is the main reason for emerging as the prime
target of these attacks.

Due to huge extortion amounts involved, new Cryptographic
Ransomware variants are created everyday. Most of the ex-
isting Ransomware detection techniques are effective against
known and already analyzed samples but very weak against
polymorphic, obfuscated and zero-day attacks which are ex-
tensively used by modern-day Cryptographic Ransomware.
Indicators used for tracking are large in number and similar
to generic malware, but they do not completely capture the
specific behaviors shown by Ransomware families.

This paper presents RansomWall, a layered defense system
for protection against Cryptographic Ransomware. Each Ran-
somWall layer is based on a specific functionality. The layers
are organized in computation order of the features that are
generated during the sample’s execution. It is implemented
for Microsoft Windows operating system. Contributions of this
work are as follows:

• Identify a novel compact set of features that char-
acterizes the Cryptographic Ransomware behavior:
Based on analysis of an extensive dataset of Ransomware
families, a novel compact feature set is identified which
capture patterns common across different Cryptographic
Ransomware variants. The Layered Architecture of Ran-
somWall follows a Hybrid approach of combined Static
and Dynamic analysis to compute values of the selected
feature set.

• Create a Strong Trap Layer that helps in early de-
tection: This layer tracks malicious activities performed
by Cryptographic Ransomware to break defenses of the
victim’s system and monitors file operations performed
extensively for encrypting user data files. These activities
are essential components of a Cryptographic Ransomware
attack.

• Use Machine Learning for unearthing zero-day in-
trusions: Cryptographic Ransomware extensively use
polymorphic, metamorphic and obfuscation techniques to
evade signature-based detection mechanisms employed
by Antivirus Software. Most successful intrusions are
zero-day attacks. Machine Learning is used to develop
a generalized model for the compact feature set that is
able to detect zero-day samples. Performance of follow-
ing supervised learning algorithms is evaluated: Logistic
Regression, Support Vector Machines (Gaussian-Kernel),
Artificial Neural Networks, Random Forests and Gradient
Tree Boosting.

• Develop a Backup mechanism for preserving user data
during detection process: The computation and analysis
of compact feature set values by RansomWall layers and
classification decision by Machine Learning Engine takes
some time, while Ransomware is already encrypting the
user data files. Therefore, there is a need to tag a process

as suspicious based on initial features of Static, Dynamic
and Trap layers. The files modified by the suspicious
process are backed up in a separate folder to preserve
user data until the process is classified as Ransomware
or Benign by Machine Learning Layer.

• Evaluate RansomWall against 574 samples from 12
Cryptographic Ransomware families and 442 samples
of Benign Software in real-world user environments:
The Performance Metrices of Machine Learning Layer
show best results with Gradient Tree Boosting Algorithm.
With this learning model, RansomWall attains a detection
rate (TPR) of 98.25% with near-zero false positives.

• Compare RansomWall’s capability to detect zero-day
intrusion samples with 60 Security Engines linked to
VirusTotal: 30 zero-day intrusion samples having less
than 10% detection rate by 60 Security Engines linked
to VirusTotal [8] are collected. RansomWall successfully
detected all the samples in real-time.

Rest of the paper is organized as follows. Section II de-
scribes literature review and related work. Section III presents
the system design and layered architecture of RansomWall. It
also describes the selected compact feature set based on exper-
imental analysis of Ransomware families. The implementation
details and development environment are presented in Section
IV. In Section V results obtained with various Supervised
Machine Learning algorithms along with Evaluation Metrices
are described. Finally, Section VI concludes the paper.

II. RELATED WORK

The related works can be broadly classified into two cate-
gories: a) Approaches that treat Ransomware as a subset of
the overall malware community and apply generic malware
indicators for their detection. b) Methods designed specifically
for Ransomware based on their characteristic properties.

Antivirus Signature Based Detection Techniques [9] are
effective against known threats whose signatures are already
present in their databases but weak against polymorphic and
zero-day attacks. Group Policies and Application Whitelisting
[10] are mostly used within restricted corporate networks
but are not suitable for individuals and public organizations.
There is a dependency on correct maintenance of whitelisted
applications list. Moreover, it is still possible for malware to
exploit vulnerabilities in whitelisted software. Static Analysis
Detection Techniques based on Control Flow Graphs [11],
Data Flow Graphs [12] and System API Calls [13] are prone to
code obfuscation, polymorphic and metamorphic techniques.

Real-Time Virtual Environment Analysis based on tracking
information flow [14] has the limitation that many Ran-
somware variants wait for a long time based on timers, count
of system restarts etc. before starting malicious activity. Hence,
it is not always feasible to isolate the sample and run it in
a virtual environment during real-time execution. Network-
Based Intrusion Detection Systems [15] find anomalies in
network patterns. Ransomware exchange limited number of
encrypted messages with Command & Control server which
are difficult to differentiate from normal traffic.



Kharraz et al. [16] performed evolution-based study of
Locker and Cryptographic Ransomware. They suggested tech-
niques based on monitoring of Master File Table and file-
system activities but these methods were not evaluated by
the authors. Andronio et al. [17] developed a technique
for detecting Android mobile Ransomware using analysis of
threatening ransom messages. Detection of ransom-note on
Windows platform once it is displayed to the victim is not
useful in real-time analysis as user data is already encrypted
at this stage.

Kharraz et al. [18] implemented techniques incorporating
structural similarity of screenshots before and after sample
execution for detecting Locker Ransomware and monitoring
of file-system activities for Cryptographic variants. These
methods do not track malicious operations, executed by Ran-
somware to break system defenses, for early detection nor
provide any backup mechanism for preserving user data files
during analysis process. Mercaldo et al. [19] utilized formal
methods for detecting Android Ransomware using Bytecode
representations.

III. SYSTEM DESIGN

This section presents system design and layered architecture
of RansomWall.

A. Analysis of Cryptographic Ransomware Attack stages

• Stage 1 - Propagation and Infection: Cyberattackers
use wide range of mechanisms - spam emails, drive-
by-downloads, malvertisement, botnets, self-propagation,
malicious applications, removable drives, Ransomware-
as-a-Service, compromised logins on servers etc. Hence,
there is a lot of variation in attack vectors.

• Stage 2 - Communication with Command & Control
server: A few small messages are exchanged between
Ransomware client on the victim’s system and Command
& Control server, which are extremely difficult to dif-
ferentiate from normal traffic. In advanced Ransomware
the messages are encrypted and Tor networks are used
making sniffing and tracing ineffective. Also, using this
communication as a detection method is not feasible
as many variants encrypt user data before contacting
Command & Control server resulting in late detection.

• Stage 3 - Encryption of User Data: Ransomware per-
forms malicious activities to break defenses of the vic-
tim’s system and encrypt user data. These activities
are characteristic behavior of Cryptographic Ransomware
and common across all variants. The attack and infection
vectors in first stage are large in number with new soft-
ware vulnerabilities exploited every day, whereas encryp-
tion and malicious activities to break defenses are vectors
that cannot be avoided by Cryptographic Ransomware.

• Stage 4 - Extortion: The final stage of displaying
Ransom-note to the victim and ransom payment via
Bitcoins is too late for detection as user data is already en-
crypted. Moreover, cybercriminals use Bitcoin cryptocur-
rency and Tor networks for anonymity and untraceability.

Fig. 1. RansomWall Layered Defense Architecture

Thus, detecting Cryptographic Ransomware based on its
characteristic behavior of malicious activities for breaking
system’s defense mechanism and massive encryption, in early
phase of Stage 3 is a suitable solution.

B. RansomWall Layered Defense Architecture

Each RansomWall layer is based on a specific functionality.
The layers are organized in computation order of the features
that are generated during the sample’s execution as shown
in Fig. 1. Successful tracking of suspicious Ransomware
behavior by an early defense layer results in faster detection.
The various layers present in RansomWall Architecture are
described below.

1) Static Analysis Engine: It provides useful information
from binary code of the sample. This is the first layer of
RansomWall Architecture as features required for analysis
can be obtained before executing the sample. Static features
considered during the experimental analysis for finding their
effectiveness against Ransomware families are: PE (Portable
Executable) header details, embedded resources, detection
of packers/cryptors, sample’s Entropy, PE Digital Signature,
embedded strings and fuzzy hashes.

2) Honey Files & Trap Layer: The behavioral patterns
characteristic of Cryptographic Ransomware involve perform-
ing malicious activities to break defenses of the victim’s
system and encrypting user data files. This layer sets trap
by tracking occurrence of these malicious activities. Crypto-
graphic Ransomware perform encryption of user data files with
specific extensions. Honey Files (with user data file extensions
mostly attacked by Ransomware) and Honey Directories are
deployed in critical user data folders. These are trap files/di-
rectories which are not expected to be modified by the user
during normal operation. Modification of these files/directories
by a process provides an indication of suspicious behavior.

3) Dynamic Analysis Engine: Static features alone are not
sufficient due to code obfuscation, packing and encryption
techniques used by Ransomware. Dynamic analysis monitors



behavior of the sample during actual execution. Cryptographic
Ransomware performs extensive encryption of user data files.
This layer monitors file system operations and entropy modi-
fications for tracking massive encryption activities.

4) File Backup Layer: The computation and analysis of
features collected during the sample’s execution and clas-
sification decision by Machine Learning layer takes some
time, while Ransomware is already encrypting user data files.
Therefore, there is a need to tag a process as suspicious
based on initial features of Static, Dynamic and Trap layers.
Files modified by the suspicious process are backed up in
a separate folder to preserve user data until the process is
classified as Ransomware or Benign by Machine Learning
layer. RansomWall maintains list of files that are backed up
along with their original locations and Process ID of the
suspicious process. If Machine Learning layer classifies as
Ransomware, then the process is killed and files modified by
it are restored to their original locations. If it is classified as
Benign then these files are deleted from the backup folder.

5) Machine Learning Engine: This layer builds a gener-
alized model which is effective against zero-day Ransomware
attacks. It takes feature values collected by Static, Dynamic
and Trap layers as input and classifies the executable as
Ransomware or Benign. The Machine Learning Engine is
trained offline using Supervised algorithms. Training data
consists of feature values with Ransomware and Benign labels.
Trained Machine Learning Engine use the learned model to
classify executables in real-time based on input feature val-
ues. Performance of following Supervised Machine Learning
algorithms is evaluated: Logistic Regression, Support Vector
Machines (Gaussian-Kernel), Artificial Neural Networks, Ran-
dom Forests and Gradient Tree Boosting.

C. Experimental Setup

We perform an extensive experimental analysis of samples
collected from various Cryptographic Ransomware families to
derive a compact set of relevant features for Static, Dynamic
and Trap Layers of RansomWall. The experiments are exe-
cuted in following stages:

• Stage 1 - Sample Collection: Cryptographic Ransomware
samples across various families are collected from
VirusShare [20].

• Stage 2 - Static Reverse Engineering: The collected
samples are reverse engineered to perform initial analysis
from binary code. IDA (Interactive Disassembler) tool
[21] is used.

• Stage 3 - Execution in Controlled Sandbox Environment:
We use Cuckoo Sandbox [22] for generating the exper-
imental setup. The Guest Virtual Machines consist of
Windows 7 and Windows 8.1 as the operating systems.
User data environment of around 500 directories and
8000 files with varied data extensions and file sizes
is created. The setup includes common utility software
along with other processes running to create a realistic
user environment. We execute multiple anti-emulation

scripts to simulate mouse movements and clicking, key-
board strokes, process executions, system restarts; file
access, creation and deletion. IP address range and MAC
addresses of the VMs are changed to avoid virtual setup
detection. To create a secure testing environment network
traffic is controlled by using firewall, only allowing
limited HTTP and DNS traffic to access Command &
Control server and restricting network bandwidth. We
use the best practices for creating malware execution
environments described in the paper [23]. Wireshark tool
[24] is used for monitoring messages exchanged between
Ransomware client on the victim’s system and Command
& Control server. We allow each sample to execute for
60 minutes or until it gets terminated automatically. After
every sample execution, state of the test environment is
reset by restoring the original snapshot.

D. Compact Feature Set for Static, Dynamic and Trap Layers

Based on the experimental analysis of behavioral patterns
demonstrated by various Cryptographic Ransomware families,
following set of features are selected for RansomWall layers.

1) Static Analysis Engine:
a) PE Digital Signature Verification: Ascertains that certifi-

cate which is used to sign the sample, chains up to a root
certificate located in the Windows Trusted Root Certificate
Store. This implies that identity of the publisher is verified by
a Certification Authority. Microsoft Windows WinVerifyTrust
API [25] is used for the verification purpose.

b) Presence of Packers/Cryptors: Windows PEiD tool [26]
is used to detect the presence of Packers/Cryptors. Detection
may not happen if customized versions of Packers/Cryptors
are used. But even in this case the sample has a high Entropy
which is verified.

c) Suspicious Embedded Strings: Presence of strings related
to: Ransom, Bitcoin, Encrypt and Crypto. An open source
tool FLOSS [27] is used for extracting embedded strings from
obfuscated Ransomware binary.

2) Honey Files & Trap Layer:
a) Honey Files/Directories modification: They are placed

such that Ransomware attacks them earlier than the critical
files. From Ransomware analysis it is observed that many
variants use Depth First Search while enlisting files for en-
cryption. Write, Rename and Delete operations on Honey
Files/Directories are tracked for malicious activities.

b) Suspicious Windows Cryptographic API usage: From
analysis of Ransomware families it is observed that most vari-
ants use standard Windows Cryptographic APIs for encryption.
Massive use of these APIs can be considered suspicious. Win-
dows Crypto APIs tracked are stored in: rsaenh.dll, cryptsp.dll,
cryptbase.dll, bcrypt.dll, crypt32.dll, cryptdll.dll, cryptsvc.dll
and dssenh.dll.

c) Disabling safe-mode boot options: Ransomware disables
safe-mode boot options to prevent recovery of the victim’s
system by booting in safe mode and taking corrective action.



It is a common behavior across Ransomware variants and
bcdedit.exe is used for this purpose.

d) Deletion of Volume Shadow copies: Ransomware deletes
Windows Volume Shadow copies so that the user is not able
to recover data from the backup. Integrity of these copies
is tracked. vssadmin.exe and WMIC.exe are used for issuing
commands to delete them.

e) Suspicious Registry modifications: Analysis of Crypto-
graphic Ransomware families have shown that they execute
Registry modifications to perform malicious activities at boot
time in order to maintain persistence. Some Ransomware
variants store list of encrypted files in Registries. These
Registry modifications to maintain persistence across reboots
are tracked.

3) Dynamic Analysis Engine:
a) Directory Info Queries: To perform encryption, Ran-

somware first constructs list of user data files having exten-
sions targeted by its family. To form the list it generates a
large number of Directory Listing Queries to get info regarding
contents of each directory. Large number of Directory Listing
operations by a process is tracked as a suspicious behavior.

b) File Read Operations: Contents of user data files are read
before encrypting them. Massive encryption generates exten-
sive read operations on user data files with target extensions
that are tracked.

c) File Write Operations: Encrypted user data is written
back to the file generating huge write operations which are
monitored.

d) Data to Non-Data File Rename Operations: Most Ran-
somware variants rename files to an extension (non-data)
which is characteristic of their family after encrypting them.
This results in massive file rename operations from data to
non-data file extensions.

e) File Delete Operations: Some Ransomware families
delete original files after creating new encrypted files. Ex-
tensive deletion operations performed on user data files with
target extensions are monitored.

f) File Fingerprinting: Most Ransomware variants encrypt
entire file contents including file signature in header which
uniquely identifies its extension. Modification of file signature
in header of a user data file to a new signature which does not
match its extension in a write operation indicates suspicious
behavior. In normal operation a file rename should result in file
signature modification instead of a write operation. Moreover,
in normal write operation file signature should match its
extension.

g) Shannon’s Entropy of File Writes: Entropy of data buffer
in memory modified during file write operation to a value
around 8 indicates encryption possibility. Massive write oper-
ations on user data files with high Entropy suggest suspicious
behavior to be tracked.

IV. IMPLEMENTATION

This section describes implementation of RansomWall.

Fig. 2. RansomWall Logical Workflow

A. RansomWall Logical Workflow

The RansomWall Logical Workflow is depicted in Fig. 2.
The Compact Feature Set extraction is performed by Static,
Dynamic and Trap Layers. Feature values are forwarded to
Feature Collector which accumulates them for each process.
File System activities are monitored by analyzing IRPs (I/O
Request Packets) which are generated for each file operation.
IRP Filter registers with File System I/O Manager during
RansomWall initialization for receiving IRP messages. During
file operations, I/O Manager forwards generated IRP messages
to the registered IRP Filter. The IRP Filter forwards IRP mes-
sages, which are created for file operations on only user data
files, to Dynamic and Trap Layers for feature computation.

If the Feature Collector observes presence of 6 or more
feature indicators in the Compact Feature Set, then the process
is tagged as suspicious. For suspicious processes File Backup
and Machine Learning Layers are triggered. Filtered IRPs
are forwarded to File Backup Layer. If it observes a file
modification request by the suspicious process, then the file
is backed up in a backup folder. For the suspicious process,
Feature Collector sends feature values to Machine Learning
Engine on regular intervals. The Machine Learning Engine
performs moving average sliding window on the received
feature values to get smoothed average numbers. These are fed
to the Learned Model (from Offline Training) to classify the
sample as Ransomware or Benign. The classification output is
sent to File Backup layer. If the suspicious process is classified
as Ransomware then it is killed and File Backup layer search
for the files backed up in its list by Process ID value and
restore the files back to their original locations. Otherwise, if it
is marked as Benign then files backed up due to the suspicious
process are deleted.

B. RansomWall File System Filter Driver

RansomWall implements a File System Filter Driver as
shown in Fig. 3. It is a kernel level driver that filters I/O oper-
ations performed on one or more file systems. For Microsoft
Windows operating system modern File System Filter Drivers



Fig. 3. RansomWall File System Filter Driver

are known as minifilter drivers [28]. Filter Manager forwards
I/O Request Packets generated by file system operations to the
registered filter drivers. Pre-operation, post-operation or both
callback routines can be registered for desired IRPs depending
on whether monitoring is required before or after the file
operation.

C. Machine Learning Layer Implementation

To distinguish complex benign activities involving large
number of file system operations from behavioral patterns
demonstrated by Cryptographic Ransomware, feature values
within the Compact Feature Set are required to build decision
boundaries for classification. This functionality is provided by
the Machine Learning Layer.

The Machine Learning Layer is based on Sequential Super-
vised Learning with Moving Average Sliding Window. As the
output required is either Ransomware or Benign, hence binary
classification is used. Feature value data with Ransomware
and Benign labels are provided for offline training, therefore
Supervised Machine Learning Algorithms are used. Feature
values of Compact Feature Set for each process are continu-
ously computed by Static, Dynamic and Trap Layers. Feature
Collector fetch the values at regular time-intervals known as
Buckets. In the implementation, Bucket Size is selected as
1 second. If a process is tagged as suspicious, then Feature
Collector sends feature values of the process to Machine
Learning Layer. These feature values are treated as sequential
data. For avoiding false detections due to small glitches in
process behavior, the feature values are smoothed by taking av-
erage over 3 time-intervals (1 Current and 2 Previous). Hence,
input represents a moving average sliding window scenario.
The Machine Learning Layer outputs a suspicious process as
Ransomware or Benign if the classification result is same for
3 contiguous time-intervals, to reduce false detections.

The Machine Learning Layer is implemented using APIs
provided by scikit-learn [29]. Following Supervised Machine
Learning Algorithms are evaluated for RansomWall: Logistic
Regression, Support Vector Machines (Gaussian-Kernel), Ar-
tificial Neural Networks, Random Forests and Gradient Tree
Boosting.

TABLE I
SAMPLE-SET DISTRIBUTION ACROSS RANSOMWARE FAMILIES

S.No. Cryptographic
Ransomware Family

# Samples

1 CryptoWall 68
2 TeslaCrypt 56
3 Cerber 112
4 CTB-Locker 26
5 Jigsaw 42
6 TorrentLocker 51
7 Locky 64
8 CryptoLocker 32
9 CryptoDefense 36
10 Hidden Tear 32
11 CryptoFortress 28
12 CrypVault 27

Total 574

D. Development Environment and Debugging Tools
Development Environment for implementing RansomWall:
- Microsoft Visual Studio 2015.
- Microsoft Windows SDK 10.
- Microsoft Windows Driver Kit 10.
- C Programming Language.
Debugging Tools used during RansomWall implementation:
- Windows WinDbg: Offline debugging of Kernel crashes.
- Windows Debug-View: Displays Kernel Mode Traces.
- Windows Sysinternals Process Explorer: Active processes.

V. EVALUATION AND RESULTS

This section describes the evaluation process and results
obtained with RansomWall testing.

A. Evaluation Sample-Set
Cryptographic Ransomware used for testing RansomWall

are collected from VirusShare [20]. The Sample-Set consists
of 574 samples from 12 Cryptographic Ransomware families
as described in Table I. It also contains 442 samples of Benign
Software.

B. Evaluation Setup
The setup used for testing RansomWall consists of:
a) Execution in Controlled Sandbox Environment as used

in the experimental analysis of Ransomware variants.
b) Selective samples from each Ransomware family are

evaluated on Real Testbed with Windows 8.1 as operating
system, all common utility software installed and user data
environment similar to the experimental setup.

C. Feature Vector Plots (Ransomware and Benign Samples)
To evaluate effectiveness of the Compact Feature Set

in distinguishing behavioral patterns between Cryptographic
Ransomware and Benign Software, Feature Vectors obtained
from execution of the samples are collected through debug
traces and plotted. Feature Vector Plots shown in Fig. 4
(Ransomware) and Fig. 5 (Benign Software) demonstrate pres-
ence of common behavioral characteristics across Ransomware
families which are different from Benign Software.



Fig. 4. Feature Vector Plots (Cryptographic Ransomware)

D. Evaluation Process

Cryptographic Ransomware and Benign Software samples
are executed in the Evaluation setup. RansomWall computes
feature values at regular time-intervals and these are collected
through debug traces. The collected feature values of Compact
Feature Set are labeled as Ransomware/Benign and fed to the
Machine Learning Layer for offline training.

12-Fold Cross Validation is performed on the Ransomware
Sample-Set. In each test run, Machine Learning Layer is
trained on all samples from 11 out of 12 Cryptographic
Ransomware families and 221 out of 442 samples from Benign
Software. The learned model is tested against all samples from
the last Ransomware family and remaining Benign samples on
the Evaluation Setup. This process of evaluation is selected
since most of the successful Ransomware Attacks are zero-
day intrusions with samples from an entirely new Ransomware
family or its upgraded variant. The generalization capabilities
of various Supervised Machine Learning Algorithms are tested
for RansomWall.

During evaluation, functionality of the File Backup Layer
is also verified to check if the files are correctly backed up
for suspicious processes and restored/deleted after receiving
classification output from the Machine Learning Layer.

E. Evaluation Results

Performance Metrices of evaluated Supervised Machine
Learning algorithms are presented in Table II. The computed
Metrices show best results with Gradient Tree Boosting Al-
gorithm. With this Learning Model, RansomWall attains a
detection rate (True Positive Rate) of 98.25% with near-zero
false positives. The advantages of Gradient Tree Boosting
Algorithm [29] - efficient handling of heterogeneous data
(numerical, categorical and features with different scale in the

Fig. 5. Feature Vector Plots (Benign Software)

Compact Feature Set), high predictive power and robustness
to outliers result in high performance.

Analysis of False Negatives show that two Ransomware
samples abruptly terminated after encrypting only a few files.
Since, resulting file system activity is limited hence samples
are not detected. Another Ransomware sample encrypted only
.vcf files. Number of such files on the user system is low
hence limited file system activity is generated leading to
false negative. Rest of the misclassification is due to decision
boundary errors.

F. Comparison of RansomWall with 60 Security Engines
linked to VirusTotal

30 zero-day Cryptographic Ransomware samples (collected
from VirusTotal [8] which are not included in the Evaluation
Sample-Set and having very low detection rate, less than
10%, with 60 Security Engines linked to VirusTotal) are also
evaluated on Real Testbed with Windows 8.1 as operating
system and all common utility software installed and running.
RansomWall (with Gradient Tree Boosting Algorithm) suc-
cessfully detected all the samples in real-time and backed up
user files are restored to their original locations.

G. System Overhead

Feature values computation and collection for normal pro-
cesses i.e. without triggering File Backup and Machine Learn-
ing Layers add less than 1% CPU Load. Ransomware/Sus-
picious processes i.e. with triggering of File Backup and
Machine Learning Layers lead to around 2% CPU Usage.

VI. CONCLUSION

Recent worldwide cybersecurity attacks caused by Crypto-
graphic Ransomware massively crippled organizations across
the globe. Based on the analysis of an extensive Ransomware



TABLE II
TRUE POSITIVE RATE AND FALSE POSITIVE RATE :: LOGISTIC REGRESSION, SUPPORT VECTOR MACHINE, ARTIFICIAL NEURAL NETWORK, RANDOM

FOREST AND GRADIENT TREE BOOSTING

S.No. Ransomware Family # Samples LR SVM ANN RF GTB
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

1 CryptoWall 68 0.8529 0.0407 0.8823 0.0497 0.9411 0.0090 0.9558 0.0045 0.9852 0.0045
2 TeslaCrypt 56 0.8928 0.0497 0.9285 0.0316 0.9107 0.0090 0.9821 0.0045 0.9821 0.0045
3 Cerber 112 0.8750 0.0361 0.9017 0.0135 0.9107 0.0316 0.9642 0.0090 0.9910 0.0045
4 CTB-Locker 26 0.8461 0.0542 0.8076 0.0542 0.9230 0.0135 0.9230 0.0135 0.9615 0.0090
5 Jigsaw 42 0.9047 0.0497 0.9047 0.0090 0.9523 0.0226 0.9285 0.0045 0.9761 0.0045
6 TorrentLocker 51 0.8823 0.0407 0.9411 0.0135 0.9411 0.0180 0.9607 0.0135 1.0000 0.0090
7 Locky 64 0.8750 0.0316 0.8125 0.0226 0.9062 0.0316 0.9687 0.0090 1.0000 0.0045
8 CryptoLocker 32 0.8125 0.0271 0.9062 0.0316 0.9062 0.0135 0.9687 0.0090 0.9375 0.0045
9 CryptoDefense 36 0.8055 0.0497 0.8333 0.0226 0.9444 0.0045 0.9444 0.0045 0.9722 0.0045
10 Hidden Tear 32 0.8125 0.0542 0.8750 0.0452 0.8750 0.0226 0.9062 0.0135 1.0000 0.0090
11 CryptoFortress 28 0.7857 0.0316 0.8571 0.0542 0.8928 0.0407 0.8928 0.0045 0.9642 0.0045
12 CrypVault 27 0.8148 0.0407 0.8888 0.0407 0.8888 0.0045 0.9259 0.0045 0.9629 0.0045

Weighted Average 574 0.8571 0.0422 0.8832 0.0324 0.9180 0.0184 0.9511 0.0079 0.9825 0.0056

dataset, this paper presents a layered defense mechanism with
monitoring of a novel compact feature set that characterizes
Ransomware behavior. Strong Trap layer (early detection),
Machine Learning layer (zero-day intrusions) and File Backup
layer (preserving user data) helps RansomWall to attain a
detection rate of 98.25% with near-zero false positives using
Gradient Tree Boosting Algorithm. We will be evaluating
RansomWall on large-scale real setups as a future work.
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