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Abstract—In this paper, we demonstrate that anomalies in
Internet traces can have a significant impact on semi-experiments
that are designed to determine the causes of scaling behavior
of traffic. A semi-experiment involves artificially modifying a
specific aspect of a trace and studying the resulting change
in scaling behavior. We demonstrate using MAWI traces that
semi-experiments performed without addressing the presence of
anomalies give insights that contradict widely accepted theories
regarding Internet traffic scaling behavior. For example, a direct
semi-experimental analysis seems to suggest that removing large
flows does not result in the removal of LRD behavior and
that the scaling behavior of MAWI traces is the same before
and after the removal of the large flows. This observation
hence challenges the well-known hypothesis that the heavy-tailed
distribution of flow sizes is the primary factor causing correlation
at large time-scales. To mitigate the impact of anomalies, we
couple the semi-experiments with a recently proposed sketch-
based procedure for robust estimation of scaling behavior. We
term these “robust semi-experiments”. Our analysis shows that
using a robust estimation procedure enables a meaningful semi-
experimental analysis and that the conclusions drawn from
the robust semi-experiments agree with well-established theories
regarding Internet traffic scaling behavior.

I. INTRODUCTION

Over the past two decades, research has revealed that several

aspects that pertain to the scaling of traffic are invariant over

time. For example, it is known that Internet traffic displays two

scaling regimes with a transition occurring in the 100ms to 1s

time range [2], [8]. Prior research has shown that when Internet

traffic is aggregated to large-time scales (≥1s), traffic appears

quite bursty and is well-modeled using long-range dependent

(LRD) processes [12], [13]. The scaling parameter (H) at large

time-scales is typically in the (0.8,1) range which is indicative

of highly correlated packet arrivals [2], [12], [13]. Prior work

has also shown that the scaling parameter (h) at small time-

scales (1-100ms) is typically in the (0.55,0.75) range which is

indicative of tiny to moderately correlated packet arrivals [6],

[19].

Recently, Borgnat et al. [2] showed that the presence of

anomalies can interfere with the identification of scaling be-

havior in traffic. They found that LRD was not observed using

standard estimation techniques in many anomalous MAWI

traces [1], thus giving the (incorrect) impression that LRD

is not a traffic invariant. They next developed a sketch-based

procedure to mitigate the effect of anomalies. After mitigating

the effect of anomalies in the traces with the help of the

proposed sketch-based procedure, LRD was again observed

using the same estimation techniques. Our recent work [6]

further re-emphasized the importance of this sketch-based

procedure for robust estimation of scaling behavior by carrying

out a longitudinal study of small-time scaling behavior of

MAWI traces.

In the past, semi-experiments have often been used to

determine the causes of scaling behavior of traffic. In a semi-

experiment one artificially modifies a specific aspect of a trace

and studies the resulting change in scaling behavior. The term

was coined by Hohn et al. [8] and is an extension of the

idea of block-wise shuffling introduced by Erramilli et al. [5].

Among the numerous insights derived from semi-experiments

[3], [6]–[12], [15]–[17], [19], we focus on the following four

in this paper:

• P1: The process of flow arrivals is not responsible for the

biscaling structure observed at the IP level. Further, for

modeling purposes, the flow arrivals can be assumed to

be Poisson distributed.

• P2: The scaling at small time-scales has its origin in the

packet patterns within flows; the LRD structure at large

time-scales is not influenced by them.

• P3: The LRD at large time-scales is driven by the heavy

tailed nature of flow durations (or sizes).

• P4: Dense flows are the correlation causing factors at

small time-scales.

Note that all the semi-experiments conducted in the past gave

scant attention to the possible presence of anomalies in traces.

In this paper, using MAWI traces, we demonstrate that

anomalies in traffic traces can have a significant impact

on inferences drawn from semi-experiments. In fact, semi-

experiments for all the above mentioned characteristics (P1-

P4) conducted without taking special care of anomalies,

lead to inferences that challenge the conventional wisdom

regarding Internet traffic scaling behavior and characteristics.

To mitigate the impact of anomalies on semi-experiments,

we design robust semi-experiments by combining the sketch-

based procedure proposed by Borgnat et al. [2] with semi-

experiments.

Our analysis shows that a semi-experiment runs the risk of

drawing two types of incorrect inferences due to the presence

of anomalies. We classify such errors as Type A and Type

B errors. Type A errors refer to the cases where anomalies

interfere with scaling behavior in a different manner before and

after the modification of data. In such cases, any comparison

of scaling behaviors, before and after the data modification, is

meaningless and any insight derived from such comparisons
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is void. Type B errors refer to the cases where anomalies

interfere in a similar manner before and after the modification

of data. In such cases any insights derived by comparing

scaling behaviors, before and after the modification, may be

correct. One, however, definitely gets an incorrect picture of

the scaling behavior of the data being analyzed. A robust semi-

experiment gets rid of both these types of errors.

The rest of this paper is organized as follows. Section II

presents the background information relevant to the paper.

It summarizes the wavelet method for estimating the scaling

parameter as well as the sketch-based procedure for the robust

estimation of scaling parameter. Section III summarizes the

traces used in this paper, their anomalous nature and the

methodology we use to study the traces. Sections IV, V,

VI and VII carry out a semi-experimental and a robust

semi-experimental analysis of properties P1, P2, P3 and P4,

respectively and compare the obtained results. The paper then

concludes with a summary of the key results.

II. BACKGROUND

In this section we present the technical background that is

necessary to understand the work presented in this paper. More

details can be found in [2], [6], [12], [18], [19].

A. Long Range Dependence

Let X(t) be a stochastic process defined for t = (0, 1, 2, ...)
with mean µ and variance σ2. X(t) may represent traffic

volume measured in packets, bytes or sessions at time instance

t. For X(t), the autocorrelation function r(k) is defined as

follows:

r(k) = E[(X(t) − µ)(X(t + k) − µ)]. (1)

Process X(t) is called long range dependent (LRD) if its auto-

correlation function is non-summable, i.e.,
∑∞

k=−∞ r(k) = ∞.

B. Scaling Analysis

The analysis of the scaling behavior of a process helps to

characterize the way the process will aggregate over different

time intervals. We say a process X scales with a scaling

parameter h if

V ar(X(m)) ≈ m2h−2V ar(X) (2)

where X(m) is the aggregated process of X and is defined as

X(m)(k) =
1

m

i=km∑

i=km−m+1

X(i); k = 1, 2, ...∞. (3)

The scaling parameter h measures the strength of the

correlations present in the data. A value of 0.5 represents the

absence of correlations. For example, a Poisson process dis-

plays a scaling parameter value of 0.5. The larger the value of

h, the stronger the correlations. We interpret scaling parameter

values lying within the ranges [0.5, 0.6), [0.6, 0.7), [0.7, 0.8)

and [0.8,1] as tiny, small, moderate and large correlations,

respectively. Internet traffic usually displays large correlations

at large time-scales and the corresponding scaling parameter

hence lies within the range (0.8,1) [2]. We use a wavelet-

based method [18] to carry out the scaling analysis. We refer

the reader to Veitch et al. [18] for a detailed description of

this method. A concise summary of this method follows.

C. Wavelet Estimator of Scaling Parameters

We illustrate how this estimator works using Haar wavelets.

Consider a reference time-scale T0 and let Tj = 2jT0 for j =
1, 2, ... be increasingly coarse time-scales. To form the process

at scale j, we partition the trace into consecutive and non-

overlapping time intervals of size Tj and count the numbers

of bytes (or packets) in these intervals. If t
j
i is the ith time

interval at scale j > 0 then t
j
i consists of the intervals t

j−1
2i

and t
j−1
2i+1. Let X

j
i be the amount of traffic in t

j
i , with X

j
i =

X
j−1
2i + X

j−1
2i+1. The Haar wavelet coefficients d

j
i at scale j

are defined as:

d
j
i = 2−j/2(Xj−1

2i − X
j−1
2i+1); i = 1, ..., Nj (4)

where Nj is the number of wavelet coefficients at scale j. The

energy ξj at scale j is defined as:

ξj = E[(dj
i )

2] ≈

∑
i(d

j
i )

2

Nj
. (5)

Plotting the logarithm of energy ξj as a function of time-

scale j gives us a logscale diagram (LD). The magnitude of

ξj increases with the variability of the traffic process Xj−1

at scale j − 1. The variation of energy ξj with j captures the

scaling behavior of the process. The slope of this energy plot

α estimates the scaling parameter h through α=2h-1. If the

slope of the energy plot is roughly constant over a range of

time-scales j to j + k, we say that the traffic process exhibits

local scaling in the time-scales Tj to Tj+k.

D. Robust Estimation Technique

Borgnat et al. [2] recently showed that anomalies (e.g.,

attacks, congestions etc.), if present in traffic traces, can

radically affect the observed scaling behavior. By looking at

such a trace, one can draw misleading inferences regarding

the scaling behavior of Internet traffic. For example, one may

incorrectly attribute changes in scaling behavior to certain

network mechanisms rather than to the network anomalies.

Hence, it is important to mitigate the effect of anomalies so

that the impact of network mechanisms on scaling can be

precisely studied. This is especially important if our goal is to

disentangle smooth long-term evolution features from day-to-

day fluctuations. Borgnat et al. [2] developed a sketch-based

procedure for mitigating the impact of network anomalies

when studying the scaling of network traffic. This robust

estimation technique is discussed next.

Let f denote a hash table of size M . We split the original

collection of packets into M sub-collections, each of them

consisting of all packets with identical sketch output f(A)
where the hashing key A is chosen as one of the packet

attributes (e.g., Source IP, Destination IP). This amounts to

performing random projections, preserving flow structures,

since packets belonging to a given flow are assigned to the
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Fig. 1. Sketch based Robust Estimation

same sub-collection. A flow is defined as a set of packets with

unique 5-tuple (Protocol, Source IP, Destination IP, Source

Port, Destination Port) and interarrival times less than 64

seconds. Each sub-collection is aggregated at different time-

scales and the scaling parameter computed. We obtain a robust

estimate of the scaling parameter by computing the median

over the values of scaling parameter estimated from individual

sketch outputs [2]. We denote these median estimates of the

scaling parameter at large and small time-scales by Hm and

hm, respectively. We use Hg and hg to represent the scaling

parameters obtained at large and small time-scales from the

entire trace and term these the global estimates.

Statistically, one can obtain a robust estimate of a parameter

by averaging estimates from independent copies of equivalent

data. Finding equivalent Internet data traces is, however, non-

trivial. Random projection using sketches is one crude way to

obtain independent copies of equivalent traces. In the presence

of anomalies, sketching the original packet stream reduces

their impact, possibly restricting them to only some of the sub-

collections. The correlation structure of the traffic in the sub-

collections containing anomalies will likely differ from normal

traffic as well as traffic in other sub-collections. The median

of scaling parameter estimates over independent sketches most

likely belongs to a sub-collection without anomalies and hence

eliminates outliers caused due to anomalies [2].

We next present some representative examples used in

prior studies to motivate the importance of robust estimation.

Figure 1(a) shows the LD (upper circled plot) for an anomaly-

free MAWI trace. This trace was collected on July 11, 2005

and the LD is drawn for direction UStoJp (cf. Section III-B).

The anomaly-free nature of this trace was established through

careful manual inspection and application of an anomaly

identification algorithm [2]. The series byte-count every mil-

lisecond is used to construct the LD. The scaling parameter

is estimated to be 0.94 and 0.65 at large and small time-

scales, respectively. This trace hence clearly exhibits strong

correlations at large time-scales and small correlations at small

time-scales.

Next, we estimate the scaling parameter using the sketch-

based robust estimation method [2]. We hash the trace into 8

parts using destination IP as the hash-key, and estimate the

scaling parameter for each subtrace. Then the median of these

8 estimates of scaling parameter give us a robust estimate.

Figure 1(a) plots all the subtrace LDs as well. All sketched

subtrace LDs are found to be approximately parallel to the

original LD. This hence indicates a similar scaling behavior

to the original trace, both at small and large time-scales.

Figure 1(b) depicts the LD for a trace collected during

a congestion period (June 03, 2003; direction UStoJp). The

LD for this trace shows that LRD no longer exists at coarse

time-scales. However the distribution of flow packet counts

is still heavy-tailed and hence raises doubts regarding the

apparent disappearance of LRD [2]. Next we estimate the

LRD parameter H using the sketch-based robust estimator.

Figure 1(b) also shows LDs for all sketched sub-traces. We

find that each sub-trace now shows significant variability

resulting in LRD, although the original trace had none. The

median value of LRD parameter is 0.8 while the global value

is 0.41. This indicates that the trace is characterized by a clear

LRD and that the trace showing absence of LRD is an artifact

of network anomalies [2].

Figure 1(c) shows the LD (upper circled plot) for an-

other anomalous trace (Oct 11, 2005; JptoUS). This trace is

known to contain a low-intensity long-lasting spoofed flooding

anomaly [4]. The anomaly consists of source IP addresses

being spoofed (source IP is identical to destination IP) and

destination port being 0 (which is not normally used) [4]. The

global scaling estimate hg is 0.40 which indicates the presence

of a small negative correlation. This trace hence displays a

small-time scaling parameter value which deviates from the

usual range of (0.5,0.75) [19].

We next estimate the robust (median) value of the scaling

parameter. Figure 1(c) also shows the LDs for all the sketched

subtraces. Except for one LD, possibly containing an anomaly,

all other LDs of subtraces now display tiny positive corre-

lations (h ≈ 0.55). Note that the scaling behavior of these

sketches is markedly different from the scaling behavior shown

by the original trace. As a result, the median estimate hm

over 8 sketches, is found to be 0.55 while the global estimate

hg was 0.40. This shows that hg being 0.40 is an artifact of

network anomalies; otherwise all sketched LDs should have

had a similar value of scaling parameter [6].

From these two examples it is clear that network anomalies

can interfere with the correct identification of scaling behavior
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and the sketch-based robust estimation procedure is able to

mitigate their impact. It should be noted here that an anomaly

does not necessarily imply the presence of illegitimate traffic.

For example, congestion normally occurs on network links and

as shown above (see Figure 1(b)) and can affect the scaling

behavior. Hence if one observes an unusual value of scaling

parameter, one should double-check that this deviation from

normal scaling behavior is not due to any unusual event, e.g.,

the presence of congestion or illegitimate traffic such as a

DDoS attack. Taking a median over the estimates obtained

from individual sketch outputs either mitigates or subdues the

effect of anomalies present in the data. This robust estimation

procedure hence helps in ascertaining whether any observed

change in the scaling behavior of Internet traffic is due to a

change in any fundamental property of Internet traffic or not.

III. DATASET AND METHODOLOGY

A. MAWI Dataset

We use publicly available traces from the MAWI reposi-

tory [1]. This repository provides traces collected from a trans-

Pacific backbone. A 15-minute long trace is made public for

download every day. We use the traces captured at collection

points B and F. The link corresponding to B (100 Mbps) was

replaced by F (100 Mbps) in July 2006, and was subsequently

upgraded to 150 Mbps in June 2007. Individual directions are

referred to as UStoJp and JptoUS.

Overall, the traces exhibit substantial variability during

the time period we consider. For example, a significant in-

crease in throughput is observed in 2009 vis-a-vis 2001.

Several long lasting congestion periods are also observed

(e.g., UStoJp:2003/04 to 2004/10, UStoJp:2005/09 to 2006/06,

JptoUS:2005/09 to 2006/06) [2]. Strong fluctuations in packet

number are observed on UStoJp from 2004/07 to 2005/04 due

to massive activities of the Sasser worm. Many anomalies such

as ping floods and SYN scans have also been observed [2],

[4]. We refer the reader to [2], [4] for a detailed statistical

characterization of traces available from the MAWI repository.

B. Methodology

To showcase the importance of the robust semi-experimental

methodology we carry out our analysis on multiple MAWI

traces spanning eight years (2001-2009). We select the traces

collected on 1st and 15th of every month (if available) from

January 2001 to December 2008. This gives us a set of 180

traces spanning eight years. Overall, this suite of 180, 15-

minute, packet traces is uniformly spread across eight years,

and hence likely captures various variations and anomalies one

expects to see in Internet traffic traces. Each trace is partitioned

into two subtraces, one for traffic flowing in each direction.

As the traffic is asymmetric, i.e. many flows can be observed

only in one direction, we analyze each subtrace separately.

The objective of using multiple traces spanning eight years

is to show that a robust semi-experimental analysis is able

to disentangle actual long term evolutions from time-localized

events such as illegitimate traffic, congestions etc. whereas

a (non-robust) semi-experimental analysis fails to do so. A

robust analysis hence increases the confidence in the results

obtained.

The rest of this paper follows the following conventions:

(a) For all the experiments, the scaling analysis is carried out

by constructing the series of byte-count every millisecond and

the robust analysis is carried out by sketching every trace into

8 parts by using destination IP as the hashing key. (b) We give

a name to every semi-experimental manipulation of the packet

arrival process and we add these names as super-scripts to all

scaling parameter estimates. For example, HA−Perm
m refers to

the median estimate of the scaling parameter after the data

manipulation A-Perm. (c) All the longitudinal analysis plots

for semi-experimental methodology are titled “SE” while all

the plots for robust semi-experimental methodology are titled

“Robust SE”. Labels for x and y axis for all such plots are to

be read as “year” and “scaling parameter”, respectively. Cap-

tions for these plots indicate the name of semi-experimental

manipulation, whether the scaling analysis is carried out for

small or large time-scales and the directional information of

MAWI traces (JptoUS or UStoJp). (c) Subscripts g and m

denote global and median values, respectively. (d) The phrase

“correct result” is meant to imply that the result is consistent

with widely accepted theories regarding Internet traffic scaling

behavior.

IV. SCALING BEHAVIOR IS INDEPENDENT OF FLOW

ARRIVAL PROCESS

This section revisits the semi-experimental analysis of prop-

erty P1 i.e., the process of flow arrivals is not responsi-

ble for the biscaling structure at the IP level. This section

highlights the differences between the results obtained from

semi-experimental analysis vis-a-vis robust semi-experimental

analysis. The robust analysis shows that this property is found

to be invariant across the entire MAWI trace-suite.

Hohn et al. [8] first established this property and we

make use of the same semi-experimental analysis that they

employed. Specifically, we modify the packet arrival process

in the following two ways.

1) A-Perm: The flow arrival process is permuted around the

original arrival points and packet structure within each

flow is preserved.

2) A-Pord: The original flow order is retained. However,

the arrival times are re-positioned according to a Poisson

process with the same rate.

We study and compare the scaling behaviors of the original

and modified process, with and without robust estimation. An

identical scaling behavior before and after the manipulation

A-Perm implies that the actual order in which the flows arrive

does not impact the scaling behavior. An identical behavior

before and after the manipulation A-Pord implies that for

modeling purposes flow arrivals can be assumed to be Poisson

distributed.

A. Representative Examples

Figures 2(a) and 2(b) show a representative example (June

3rd, 2003; UStoJp) motivating the robust semi-experimental
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Fig. 2. Semi-experimental vs. Robust Semi-experimental methodology: Representative Examples

methodology. This trace is the same as was used in Fig-

ure 1(b). Figure 2(a) shows global LDs drawn from traces

before and after the manipulation A-Perm. These LDs show

markedly different behaviors. The LD before the manipulation

A-Perm (titled LDg) suggests that LRD has disappeared while

a clear LRD can be seen in the LD after the manipulation

A-Perm (titled LDA−Perm
g ). The LD before the manipulation

A-Perm (LDg) is found to be flat at small time-scales, thereby

indicating the presence of uncorrelated small-time scaling

behavior. However, the LD after the manipulation A-Perm

(LDA−Perm
g ) indicates the presence of tiny correlations. A

comparison of these two LDs hence suggests that scaling

behavior is affected by the flow arrival process. However, as

suggested in Section II-D, the scaling behavior can be affected

by the presence of anomalies and hence, we need to carry out

a robust analysis.

Figure 2(b) shows median LDs (titled LDm and

LDA−Perm
m ) drawn from traces, before and after the manip-

ulation A-Perm. Both median LDs show an identical scaling

behavior, both at small and large time-scales. LRD can be

clearly seen both before and after the manipulation A-Perm.

A median based robust analysis hence suggests that scaling

behavior is not impacted by flow arrival process. This trace,

hence, is an example of a trace displaying type-A errors (cf.

Section I) where an anomaly interferes in a different manner

before and after the manipulation of the data.

Figure 2(c) plots LDs for a trace (15th July, 2003, JptoUS)

showing a type-B error (cf. Section I). LDs are shown only

for small time-scales. The upper two plots are global LDs,

before and after the manipulation A-Perm, while lower two

plots are median LDs. The small-time scaling behavior is

identical, before and after the manipulation A-Perm, for both

global and median LDs. While global values of small-time

scaling parameter (hg, hA−Perm
g ) are found to be 0.84, median

values (hm, hA−Perm
m ) are 0.64. Further analysis reveals that

only one of the sketch outputs contains a scaling parameter

value greater than 0.8, both for LDm and LDA−Perm
m , thereby

indicating that the anomaly is part of this sub-trace. In the

absence of a robust estimation procedure, we would have

correctly suggested the independence of scaling behavior from

the flow arrival process. We would have, however, wrongly

predicted the nature of small-time scaling behavior for this

trace (strong short-range correlations instead of weak ones).

These two examples hence clearly bring out the importance

of robust semi-experimental methodology. Next we carry out

this analysis for all 180 traces in the MAWI trace-suite.

B. Longitudinal Analysis of MAWI traces for the manipulation

A-Perm

Figure 3 compares the results of semi-experimental and

robust semi-experimental methodology on small-time scaling

behavior for the direction JptoUS. Figure 3(a) displays global

values of small-time scaling parameter, before and after the

manipulation A-Perm while Figure 3(b) displays median val-

ues. The global values hg and hA−Perm
g do not match for the

period 2004 to 2007 thereby suggesting that the flow arrival

process affects the small-time scaling behavior of these traces.

However the median values hm and hA−Perm
m are found to

be almost identical. The 2004-2007 traces are hence examples

of traces showing type A errors. Coupling a semi-experiment

with a robust estimation procedure removes the impact of

anomalies and thereby enables a meaningful comparison of

scaling behavior before and after the manipulation.

Secondly as discussed in Gupta et al. [6], many traces for

the period 2004-07 display a scaling parameter hg less than

0.5, often close to 0.4, which indicates the presence of small

negative correlations. Moreover few traces display a scaling

parameter hg close to 0.8 which indicates the presence of

large correlations. These observations are in contrast with our

current understanding [19] that Internet traffic displays tiny to

small correlations at small time-scales with scaling parameter

value lying in the range (0.5,0.75). Median values of small-

time scaling parameter, however, are found to be in the usual

range of (0.5-0.75) for all the traces, thereby clearly indicating

the effect of anomalies.

Figure 3 shows that few traces contain large small-time

correlations (hg close to 0.8) and the global values of small-

time scaling parameter are found to be identical before and

after the manipulation A-Perm. These traces are examples of

traces showing type B errors where the anomalies interfere in

the same way before and after the manipulation. An identical

small-time scaling parameter here correctly suggests that the

small-time scaling behavior is independent of flow arrival pro-

cess, however the value of scaling parameter is overestimated
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thereby giving an incorrect inference of small-time scaling

behavior. Median values of small-time scaling parameter are

found to be in the usual range of (0.5-0.75) as well as identical

before and after the manipulation A-Perm. These observations

show that a consistent picture across the entire trace-suite is

obtained only by the robust semi-experimental methodology.

Figure 4 compares the results for semi-experimental and

robust semi-experimental methodologies on large-time scaling

behavior for direction UStoJp. Figure 4(a) displays global

values of the LRD parameters Hg and HA−Perm
g , before and

after the manipulation A-Perm, while Figure 4(b) displays

median values. Many traces for period 2003-2007 show a

large-time scaling parameter Hg less than 0.6 which indicates

the absence of LRD behavior. Borgnat et al. [2] discuss that

this is an artifact of network anomalies. A robust analysis

shows that these do possess LRD and the median values of

scaling parameter Hm are more than 0.8. For these traces, a

semi-experimental analysis hence compares scaling parameter

values which are not true indicators of large-time scaling

behavior of Internet traffic. These traces hence show a different

value of global LRD parameter H , before and after the

manipulation A-Perm. This hence indicates that flow arrival

process affects LRD behavior. However median values of

LRD parameter, Hm and HA−Perm
m , are found to be almost

identical across the entire 8 years. An absence of robust

estimation procedure hence will wrongly suggest that the

property P1 is not an invariant. An analysis of the small-time

scaling and LRD behavior for directions UStoJp and JptoUS,

respectively, shows similar observations. Plots for these two

cases are not shown for the lack of space.

C. Longitudinal Analysis of MAWI traces for the manipulation

A-Pord

We next analyze the behavior of MAWI traces for the

manipulation A-Pord. Hohn et al. [8] showed that Internet

traces display identical scaling behavior, before and after

the manipulation A-Pord. A-Pord keeps the original order of

flows but randomizes flow arrivals according to a Poisson

distribution of the same rate as the original arrival process.

An identical scaling behavior of Internet traffic, before and

after A-Pord, forms the basis of cluster process models where

flow arrivals are modeled as Poisson and packets for each flow

are modeled using a Gamma distribution [9].

Figure 5 shows the comparison of the semi-experimental

and robust semi-experimental methodologies. Here we use

scatter plots to show the comparison. Figures 5(a) and 5(b)

compare small-time scaling behavior for direction JptoUS.

Figures 5(c) and 5(d) compare large-time scaling behavior for

direction UStoJp. A comparison of global and median values

of scaling parameter before and after the manipulation A-Pord,

again highlights the importance of robust analysis.

Figure 5(a) shows that many data points stray from the 45◦

line. This indicates that for many traces the global values

of small-time scaling parameter, hg and hA−Pord
g , do not

match. This hence suggests that property P1 is not an invariant.

However robust semi-experiments present a different picture.

All the values of hm and hA−Pord
m across 8 years are found to

be nicely distributed along the 45◦ line (Figure 5(b)) thereby

clearly indicating that the scaling behavior is not altered

after the manipulation A-Pord and property P1 is indeed an

invariant. Moreover all the median values of small-time scaling

parameter, before and after the manipulation A-Pord, are found

to lie within the usual range of (0.5-0.75) consistent with prior

studies [19].

Similar trends are observed in Figures 5(c) and 5(d).

Figure 5(c) shows a large dispersion. Many data points deviate

from the 45 degree line and hence indicate a significant

difference in the values of LRD parameter Hg and HA−Pord
g ,

before and after the manipulation A-Pord. Global estimates of

the LRD parameters, Hg and HA−Pord
g , span a wide range

of values. For many traces the value of Hg is less than 0.6

thereby indicating the absence of LRD [2]. However median

values of the LRD parameter, Hm and HA−Pord
m , are found
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Fig. 5. Semi-experimental vs. Robust Semi-experimental methodology: A-
Pord

to be nicely clustered along the 45◦ line, which clearly shows

that the large dispersion in Figure 5(c) is due to the presence

of anomalies. The scaling behavior indeed remains identical,

before and after the manipulation A-Pord, which in turn shows

that property P1 is an invariant.

D. Discussion

Since prior studies did not use robust methods, we may

wonder regarding the accuracy of the conclusions drawn

therein. Are the traces used in prior studies anomaly-free or

are they all instances of traces showing type-B errors? In an

informal contribution Ricciato et al. [14] also raise similar

concerns. They term the anomalous flows as pseudo-flows

and wonder whether the prior studies recognized the presence

of pseudo-flows and how they handled it. Ricciato et al.

further ask whether future work should separate the legitimate

flows from pseudo-flows and analyze them independently. Our

analysis throws light on some of these concerns.

Our analysis is carried out on a large number of traces

spanning eight years. To the best of our knowledge, ours is the

first semi-experimental study to do so. Some of these traces

are heavily impacted by time-localized events like congestions,

illegitimate traffic etc. When one compares the results of a

semi-experimental analysis across all traces spanning multiple

years (or links), one is likely to see that the conclusions derived

are not identical throughout the dataset due to the impact

of time/space-localized events on a subset of the traces. As

argued by Borgnat et al. [2], a robust estimation procedure

disentangles the long term evolutions from time-localized

events, and not surprisingly, the conclusions derived by a

robust semi-experimental analysis are found to be consistent

across the entire data-set. The principal argument made in this

paper is that consistent results across the entire MAWI data-set

are obtained only by a robust semi-experimental analysis.

As prior studies carried out their analysis only on few
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Fig. 6. P-Pois, Small Time-Scales, JptoUS

traces spanning only 2-3 years, they might not have had the

opportunity to study the impact of anomalies in as much detail

as we have. Also, even if anomalies were present, they might

not have been strong enough to impact the scaling behavior.

Dewaele et al. [4] find that almost all MAWI traces contain

some sort of anomaly. However, our study finds that anomalies

impact the semi-experimental analysis of only a subset of

traces. For most of the remaining cases, the semi-experimental

analysis without a robust estimation procedure gives expected

results.

V. PACKET PATTERNS WITHIN FLOWS IMPACT SCALING

BEHAVIOR

In this section we analyze a semi-experiment which modi-

fies the packet structure within individual flows. Specifically,

we use the manipulation P-Pois, originally introduced by Hohn

et al. [8], which is defined as follows:

• P-Pois: Flow arrival times, flow duration etc. are retained

in full. Within each flow, packet arrival times are replaced

by a Poisson process of the same rate.

Hohn et al. [8] observed that the effect of randomizing

the packet patterns within flows, i.e. manipulation P-Pois, is

restricted to small time-scales only. The manipulation P-Pois

results in the disappearance of any correlations at small time-

scales and the LDs at small time-scales become flat. On the

other hand large scale behavior remains unaffected. Based on

these observations Hohn et al. [8] concluded that the scaling

structure at small time-scales has its origin in the packet

patterns within flows and the LRD structure at large time-

scales is not influenced by the packet level structure within

flows. In this section we revisit these observations in the

context of robust analysis.

Figure 6 shows the small-time scaling behavior of MAWI

traces, for direction JptoUS, after the manipulation P-Pois.

Figure 6(a) compares the global values of small-time scaling

parameter (hg and hP−Pois
g ) while Figure 6(b) compares
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the median values of small-time scaling parameter (hm and

hP−Pois
m ). Figure 6(a) shows that the manipulation P-Pois, re-

sults in the disappearance of short range correlations through-

out the MAWI trace-suite. The small-time scaling parameter

is consistently found to be close to 0.5 thereby validating the

observations by Hohn et al. [8].

Figure 6(a) hence shows that a semi-experimental method-

ology correctly infers that the manipulation P-Pois results in

the disappearance of short-range correlations. However the

problem with this semi-experimental analysis is that it fails

to capture the correct small-time scaling behavior before the

manipulation P-Pois. As discussed in Section IV, many traces

have negative short range correlations and few traces display

large short range correlations. Figure 6(b) presents the overall

consistent picture, both internally and when compared with

prior studies. It shows that MAWI traces spanning 8 years

consistently show tiny to moderate short range correlations

with small-time scaling parameter lying within the range

(0.5-0.75) and that randomizing the packet arrivals, i.e. the

manipulation P-Pois, strips all the traces of any short range

correlations they possess.

Figure 7 presents the effect of the manipulation P-Pois on

large-time scaling behavior of MAWI traces. Figure 7(a) com-

pares the global values of LRD parameter, Hg and HP−Pois
g ,

obtained from the semi-experimental analysis and Figure 7(b)

compares the median values, Hm and HP−Pois
m , obtained from

the robust semi-experiments. Once again a semi-experimental

methodology raises similar issues. For many 2003-2007 traces,

the LRD parameter does not match before and after the

manipulation P-Pois. A deviation for these traces is observed

because LRD parameter of these traces does not correctly

reflect the large-time scaling behavior of the Internet traffic,

as discussed in Section IV and in Borgnat et al. [2]. The LRD

parameter for these traces is less than 0.6 thereby implying

disappearance of LRD. A semi-experimental methodology

hence incorrectly suggests that the LRD behavior of these
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Fig. 8. Semi-experimental vs. Robust Semi-experimental methodology: S-
Byte

traces does not remain the same after the manipulation P-Pois.

However as shown in Figure 7(b), robust semi-experiments

get rid of these discrepancies. A robust estimation procedure

estimates the values of LRD parameter in the range of (0.8-

1). LRD behavior, before and after the manipulation P-Pois,

is hence consistently found to be same throughout the eight

years.

VI. LRD IS DRIVEN BY HEAVY TAILED FLOW SIZES

We next study the manipulation S-Byte, defined as follows:

• S-Byte: All flows above the 70% percentile in terms of

byte-counts are removed from the trace.

It is a well-known fact that LRD is caused by the heavy

tailed nature of flow sizes (or durations) [3], [8], [12]. This

manipulation removes the large flows thereby truncating the

heavy tail of distribution of flow sizes. Hohn et al. [8] showed

that this manipulation results in the disappearance of LRD

behavior.

Figure 8 shows the scaling behavior of MAWI traces,

before and after the manipulation S-Byte. We use scatter plots

to show the comparison. Figure 8(a) compares the global

values of scaling parameter (Hg , HS−Byte
g ) while Figure 8(b)

compares the median values (Hm, HS−Byte
m ). A comparison

of Figure 8(a) and 8(b) again sheds light on the importance

of a robust estimation methodology.

From Figure 8(a) we do not observe a clear reduction in

the scaling parameter values after the removal of the largest

30% flows. For many traces, the scaling parameter values

before and after the manipulation S-Byte, lie along the 45◦

line which indicates that the values Hg and HS−Byte
g are

almost the same for these traces. For many traces, the value of

scaling parameter HS−Byte
g is more than 0.8 which indicates

that these traces show large correlations even after large flows

have been removed. Moreover, many data points lie above 45◦

line which indicates that the strength of correlations at large
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time-scales has increased after the removal of large flows for

the corresponding traces. These observations hence suggest

that large flows are not the primary correlations causing factors

at large time-scales. We also observe that the global scaling

parameter values (Hg) for many traces are less than 0.8,

thereby indicating the absence of strong correlations at large

time-scales for these traces. Moreover, many traces display a

global scaling parameter value less than 0.6 which suggests

that LRD is not a ubiquitous phenomenon.

Figure 8(b) compares the median estimates and presents a

consistent and expected picture. Most of the scaling parameter

values for the original trace (Hm) are between the usual

range (0.8,1). Almost all data-points lie below 45◦ line. This

indicates that removing the largest 30% flows, results in a clear

decrease of scaling parameter across the entire MAWI trace-

suite. Except for few traces, the value of scaling parameter post

S-Byte manipulation is less than 0.8 and often less than 0.7.

This indicates that the removal of large flows has removed the

strong correlations present in the original traces. This semi-

experiment hence shows that LRD behavior is driven by the

heavy tailed nature of flow sizes and this conclusion, across

the entire MAWI trace-suite, is correctly reached by a robust

semi-experimental analysis.

Figure 8(c) and 8(d) show the same analysis for direc-

tion UStoJp. Once again the global values of the scaling

parameter, Hg and HS−Byte
g , are close for many traces ,

thereby challenging the theory that large flows are the primary

correlation causing factors at large time-scales. Median esti-

mates (Figure 8(b)), however, clearly show that the removal of

large flows removes the strong correlations and hence affects

the LRD behavior. These observations hence clearly show

that the presence of anomalies can significantly cloud the

insights obtained from a semi-experimental analysis and a

robust analysis hence is necessary to mitigate such effects.

VII. DENSE FLOWS DRIVE SMALL-TIME SCALING

BEHAVIOR

Hohn et al. [8] showed that packet patterns within individual

flows influence small-time scaling behavior. Zhang et al. [19]

later showed that small-time scaling behavior is driven by

the packet patterns within dense flows. This section revisits

the semi-experimental methodology carried out by Zhang et

al. [19] to show the impact of dense flows on small-time

scaling behavior of Internet traffic.

Zhang et al. [19] defined a dense flow as a flow which has at

least 50% packet interarrival times less than a certain threshold

T . A flow otherwise is called a sparse flow. Intuitively, a dense

flow has bursts of densely clustered packet arrivals. Zhang et

al. [19] next partitioned the network traces in two compo-

nents, dense and sparse. The aggregate of dense and sparse

flows form the dense and sparse components, respectively.

The study then showed that the aggregate of sparse flows

has a much smaller scaling parameter at small time-scales,

h ≤ 0.6. This hence shows that dense flows are the correlation

causing factors at small time-scales. The semi-experiment

of this section involves comparing the scaling behavior of
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Fig. 9. T-Sparse, Small Time-Scales, JptoUS

original trace vis-a-vis its sparse component. Specifically, the

manipulation studied in this section, T-Sparse is defined as

follows:

1) T-Sparse: All flows with 50% packet interarrival times

less than a threshold T are identified and removed from

the original trace.

Figure 9 compares the results from the semi-experimental

and robust semi-experimental methodologies for the manipu-

lation T-sparse. Threshold T is taken to be 2ms. Figure 9(a)

plots the values of small-time scaling parameter, before and

after the manipulation T-Sparse, across the MAWI trace-suite.

There are couple of problems with the results obtained by the

semi-experimental methodology. First, as previously seen in

Sections IV and V, the nature of small-time scaling behavior

is misinterpreted for the 2004-07 traces. Hence a proper

comparison of scaling parameter values, before and after the

manipulation T-Sparse, cannot be carried out. Second, a close

look reveals that for many traces the value of small-time

scaling parameter of the sparse component is found to be more

than 0.6, with few traces even showing a value more than 0.7.

This indicates the presence of small to moderate correlations

in the sparse component, which is counter-intuitive. As dense

flows have already been removed, this begs the question: what

is causing the correlations in the sparse component of these

traces? The presence of correlations in the sparse component

of these traces hence suggests that dense flows are not the

primary correlation causing factors at small time-scales for

these traces.

Figure 9(b) compares the median estimate of the small-

time scaling parameter. Robust semi-experiments once again

present a consistent picture. The scaling parameter hm for

2004-07 lies in range (0.5-0.75) and the scaling parameter

for sparse component hT−Sparse
m is consistently less than 0.6

for all the traces thereby alleviating the doubts raised by the

semi-experimental methodology. The 2007-09 traces display

small or moderate correlations (0.6<hm<0.7) and hence, a
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clear difference can be seen in the scaling parameter values

of original traces and their sparse component. The 2001-03

traces mostly have a scaling parameter close to 0.6 and hence

only a small dip is observed in the scaling parameter values

(hT−Sparse
m ) of the sparse components. The 2004-07 traces

have a scaling parameter value close to 0.55 which indicates

almost uncorrelated scaling and hence no difference is found

in the scaling parameter values of the original and sparse

components. The results obtained are consistent with the

results shown in Section V where a complete randomization of

the packet arrivals results in the removal of short range correla-

tions altogether. Both the manipulations, P-Pois and T-Sparse,

are different ways of removing bursts of densely clustered

packets. The manipulation P-Pois, completely randomizes the

packet arrival process for all the flows and hence the resulting

trace is found to be uncorrelated.

Figure 10 shows the results of robust analysis for the ma-

nipulation T-sparse, for direction UStoJp. The scaling param-

eter values for sparse component hT−Sparse
m are consistently

found to be less than 0.6 throughout the 8 years. As traces

in direction UStoJp consistently display small to moderate

short range correlations (0.6<hm<0.75), a clear difference

between the scaling parameter values of aggregate and sparse

component (hm and hT−Sparse
m ) is observed across the entire

MAWI trace-suite.

There are also few examples of traces showing type B er-

rors. Figure 10 shows that the global scaling parameter values

(hg) for few 2006-08 traces exceed the usual range. Scaling

parameter values for these traces are found to be greater

than 0.75 which represents large short range correlations.

However the scaling parameter values of the sparse component

hT−Sparse
m for these traces are found to be less than 0.6 which

implies that the removal of dense flows causes a significant

decrease in the value of small-time scaling parameter. This

semi-experiment hence correctly validates the status of dense

flows as the primary correlation causing factors at small time-

scales. It, however, incorrectly infers the small-time scaling

behavior of these traces.

VIII. CONCLUSIONS

This paper presented a case for coupling semi-experiments

with a robust estimation procedure. We argued, using traces

that span a period of eight years, that in the presence of

anomalies, a semi-experimental methodology may result in

incorrect inferences regarding Internet traffic scaling behavior.

We revisited the semi-experimental analysis of few well-

known characteristics of Internet traffic and showed that in

the presence of anomalies, the inferences derived from a

semi-experimental analysis challenge conventional theories

regarding the scaling of Internet traffic. We demonstrated that a

robust estimation procedure mitigates the impact of anomalies

and hence increases the confidence in the results obtained from

semi-experiments.
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