
To appear in WISARD’09, a workshop in IEEE COMSNETS 2009

REEF : A Reliable and Energy Efficient
Framework for Wireless Sensor Networks

Arun Kumar K.S
Naval Physical and Oceanographic Laboratory

Kochi-682021, INDIA
Email: arunks1978@gmail.com

Vinay Joseph Ribeiro
Dept. of Computer Science and Engineering

IIT, ND-110016, INDIA
Email: vinay@cse.iitd.ernet.in

Abstract—This paper presents an efficient and scalable
framework called Reliable and Energy Efficient Frame-
work (REEF) for reliable data collection in Wireless Sensor
Networks. REEF employs a distributed scheme which
enables it to scale to large networks. It partitions the
network in to clusters where the node with highest residual
energy in a neighborhood become the cluster head. REEF
forms a virtual backbone connecting the cluster heads and
the sink by selecting some nodes from each cluster as
gateway nodes. Sensor nodes report sensed data to their
respective cluster heads which use an outlier detection
algorithm to detect faulty data. REEF significantly cuts
down on energy consumption by ensuring that a large
number of sensor nodes can go into a deep sleep mode, in
which the radio as well as CPU are switched off, for a major
part of their life time. Simulation results demonstrate that
REEF uses as low as 50% of the energy for the same
accuracy when compared to a recently proposed scheme
based on passive listening.

I. I NTRODUCTION

A Wireless Sensor Network typically consists of a
large number of nodes which are equipped with a low
end microprocessor, a radio for communication and a
number of sensors depending on the physical phenomena
that are to be measured [1]. These sensor nodes help to
monitor natural phenomena like temperature, humidity
etc. accurately in space and time or detects events of
interest [2]. A few special nodes calledsinks gathers
data collected by various nodes in the network. Sinks
normally are more powerful than the ordinary nodes
in terms of processing power, available storage and
available energy. A large number of ordinary (non-sink)
nodes collect data and send the collected data to these
sinks. A non-sink node can perform the following tasks -
collect and process data and use a radio to communicate
with other nodes. The processing capabilities of ordinary
nodes are limited and high end processing is carried out
at the sinks. Sinks can also act as gateways to other
networks like the Internet.

The sensor nodes are normally small in size and the
energy available for each node is limited. Each node,
once it is deployed, operates unattended till its battery

drains. Accessing a sensor node for battery replacement
may be impossible due to the hazardous nature of the
environment where the nodes are deployed.

Sensor nodes may be implemented using inexpensive
hardware and may not be highly reliable. This results in
erroneous readings reported by some of the sensor nodes.
The faulty values reported by the sensor nodes have to
be filtered out to improve integrity and reliability of the
sensor network. This is of utmost importance particularly
in the case of sensor networks which employ aggregation
techniques, because the result of an aggregation can
drastically change because of a fault that was present
in the data set used for aggregation.

This paper presents a framework called REEF (Reli-
able and Energy Efficient Framework) for improving the
reliability of wireless sensor networks by detecting faulty
values reported by sensor nodes without compromising
energy efficiency. REEF forms clusters and runs an
outlier detection algorithm on each cluster head to detect
faulty data in readings reported by member nodes. Each
member node can sleep for most of the time since it
need not passively listen to check if the sensed reading
matches with those reported by its neighbor nodes. Also,
the faulty readings are filtered out at the cluster head
level and no energy is spent in communicating the faulty
readings to the sink. Hence the energy consumption in
the network reduces significantly and network life time
and reliability increases.

The rest of the paper is organized as follows. In
Section II we give an overview of related work. After
describing REEF in detail in Section III we compare it
with another related scheme using simulations in Section
IV. We list our conclusions and suggest future work in
Section V.

II. RELATED WORK

A brief overview of the existing fault models, cluster-
ing algorithms and schemes for improving reliability in
Wireless Sensor Networks are provided in this section.

A. Fault Models

Faulty data reports from a sensor node may be either
due to fault in its sensor or due to the fact that the node
is captured by an adversary and reprogrammed to give
faulty data in order to make the network ineffective. This
paper deals with the case where faults are unintentional
and not due to any malicious nodes captured by adver-
saries.

The kinds of faults observed in real world sensor de-
ployments and the models for those faults are presented
in [3], [4], [5] and [6]. Let y be the true value of a
physical phenomenon. The value read by a non faulty
sensor is given by

x = y + ǫ

whereǫ ∼ N(0, σ2

m) is the measurement noise which is
Gaussian. When the sensor is faulty, the value read takes
the general form

x̃ = β0 + β1y + ǫf

This formula is the generalization of following specific
kinds of faults.

Short Fault or Spike Fault: Such a fault results
in a sharp change in the measured value between two
successive data points. The faulty reading is modeled as

x̃ = β0 + y + ǫ

Variance Degradation Fault: The variance degrada-
tion fault occurs when the sensors become less accurate
over course of time. If actual measurement variance is
σ2

m, the fault variance isσ2

f , whereσ2

f ≫ σ2

m . The
sensor noise isǫf ∼ N(0, σ2

f) . The value read by faulty
sensor will be

x̃ = y + ǫf

Stuck-At Fault: This fault represents the sensor
getting stuck at a particular value. Most often this value
is the lower or higher end of sensing range. This is the
most common type of fault observed in sensor nodes.

x̃ = β0

B. Clustering Algorithms

Clustering is widely used in Wireless Sensor Network
to reduce energy consumption as well as to increase
scalability. The nodes in the network are grouped in
clusters and a node from each cluster is selected as
the cluster head. Each node in the network will either
become a cluster head or join one of the clusters as a
member. Instead of sending data reports directly to the
sink, the member nodes transmit their data packets to
their respective cluster heads. Cluster heads are respon-
sible for in-network processing like data aggregation and
data fusion [7], [8]. A number of clustering algorithms

have been proposed in the literature and design of
efficient clustering algorithm has become a major topic
in wireless sensor network research.

Low Energy Adaptive Clustering Hierarchy (LEACH)
presented by Heinzelman et al. forms clusters by using
a distributed algorithm, where nodes make autonomous
decisions without any centralized control [9]. A node
decides to be a Cluster Head (CH) with a probabilityp
and a non-CH node determines its cluster by choosing
the CH that can be reached using the least communica-
tion energy.

Younis et al. present the Hybrid Energy Efficient
Distributed (HEED) protocol for clustering [10]. A node
is selected as a cluster head depending on whether other
cluster heads are its one hop neighbors and its own
residual energy. Cluster heads can communicate with
each other using more transmission power than that
used for intra-cluster communication. HEED integrated
with a multi-hop routing scheme provided in TinyOS is
described in [11] as iHEED.

Distributed Clustering Algorithm (DCA) for Ad Hoc
Networks is presented by Basagni et al. in [12]. The
cluster head is selected using a weight-based criteria
and a node decides its own role solely knowing the
information of its one hop neighbor. The main idea
behind DCA is that a node decides which role to assume
only when all its neighbors with bigger weights have
decided their own roles.

C. Schemes for Improving Reliability

A number of methods for improving reliability and
fault tolerance using outlier detection in Wireless Sensor
Networks have been proposed by researchers. A model
based error correction scheme which is based on the
temporal correlation of sensor data is presented by
Mukhopadhyay et al. in [13]. The model is built offline
and is used for on-line prediction and error correction of
sensor readings.

Zhang et al. gives a method to pinpoint exactly the
compromised nodes in a sensor network [14] . In this
method, each sensor node generates an alert when it
observes a neighbor reporting a reading that is incon-
sistent with its own reading. These alerts are received
by the base station which in turn build a trust graph and
assign each node faulty/non faulty status such that this
assignment doesn’t affect the consistency of the graph.

Chen et al. present a distributed algorithm which runs
in phases for fault detection [15]. In the first phase, each
sensor compares its value with reading of its neighbors
and declares itselflocally good if its value matches with
the majority of its neighbors. In the second phase, those
nodes which arelocally good and have a majority of
their matching neighbors alsolocally good are declared
globally good. In the last phase, neighbors ofglobally

good nodes which do not agree with those nodes are
markedfaulty.

Balzano et al. discuss the usage of a Beta Reputa-
tion System for improving reliability in wireless sen-
sor networks [16]. In this scheme, each sensor node
runs a watchdog module and reputation module. The
watchdog spies on neighboring nodes’ data reports and
then run some outlier detection methods to assign a
level of confidence for each of the neighbor nodes.
The reputation module takes the output of the watchdog
(direct reputation) as well as reputation tables transmitted
by neighboring nodes (indirect reputation) to calculate
reputation and trust values for each of the neighbors.
This scheme is distributed and scalable. But there is
overhead due to periodic exchange of reputation values
between the nodes and due to the continuous promiscu-
ous listening used by all the nodes.

Zhuang et al. presents a wavelet based scheme for in-
network outlier cleaning in Wireless Sensor Networks
[17]. The time series data from each sensor, consisting
of sensor readings over a given time period, is used by
the sink to determine similarities between time series
data sent by neighboring nodes.

A framework for secure aggregation using neighbor-
hood watch is presented by Rabinovich et al. in [18].
Several methods like mutual monitoring and constraint
validation, randomized delivery trees and redundancy
in data supplied by the network are used to make the
network resilient to attack. The Beta reputation system
to detect and exclude compromised nodes.

III. A RCHITECTURE OFREEF

REEF uses spatial correlation in the readings of sen-
sors deployed in a neighborhood to detect outliers (faulty
readings reported by sensor nodes). The deployed sensor
nodes are grouped in to clusters. A node in each cluster is
selected as a cluster head. The readings from each sensor
node in a cluster is transmitted to the cluster head. The
cluster head then uses an outlier detection algorithm to
detect outliers in the spatially correlated readings.

A. Clustering Algorithm

The algorithms discussed in Section II make assump-
tions which may not be always true for WSNs. LEACH
assumes that all nodes are within communication range
of each other and the base station. The authors of
LEACH suggest the use of multihop routing to relax
this constraint. They however do not present details of
such a routing protocol in the case where the majority of
the nodes are sleeping (in order to save energy) [9]. The
clusters formed are not well distributed in space and the
cluster head may not always be a one hop neighbor of
the member nodes if realistic range of communication is
assumed.

HEED selects cluster heads on the basis of residual
energy and uses an increased transmission power (four
times the power used for intra cluster communication)
for inter cluster communication [10]. But increased
transmission power may not always guarantee that all
neighboring cluster heads can be reached since there may
be physical obstacles to radio waves. The attenuation
of signal may not always follow the inverse square law
so that increasing power by four times does not always
make it possible to reach a node two hops away. Al-
though iHEED integrates HEED with a multihop routing
protocol, it doesn’t consider residual energy of nodes
while making the routing decision [11].

An assumption used in DCA is that a message sent
by a node is received correctly within a finite time by
all its neighbors which is not realistic assumption for the
wireless medium. It also doesn’t explain how to create
a virtual backbone connecting the cluster heads. None
of these algorithms takes in to account the existence of
asymmetric links which may be present in the wireless
networks. They assume that if a node A can hear
node B and that node A added node B to its neighbor
list, then node B must have also added node A to its
neighbor list. These algorithms also do not take care of
conditions when cluster control messages may be lost
due to collisions.

The algorithm used in REEF is an extension of the
Distributed Clustering Algorithm (DCA). It is based on
more realistic assumptions and take in to consideration
the asymmetric links and lossy links that may exist in
the real world deployment of wireless sensor networks. It
operates in phases and uses only local information about
one hop neighborhood at each node to decide if that node
should function as a cluster head, gateway node or an
ordinary cluster member. The time for which each node
will execute a particular phase is preprogrammed and
the transition of nodes from one phase to another take
place in a synchronized fashion.

TheHello Phase is used for neighbor discovery. In this
phase, the router of each node is configured to disable
routing and forwarding and the nodes periodically trans-
mit Hello packets. TheHello packet contains the residual
energy of a node, a list of neighbors already discovered
and a number of packets successfully received from each
of the neighbors. When a node receives aHello packet
from another node, it updates itsNeighbor Table with the
information available inHello packet. At the end of this
phase, each node has a list of neighbors, their residual
energy and the information about the fraction of total
packets successfully received from and sent across to
each neighbor stored in its neighbor table.

TheCluster Setup Phase follows the hello phase. The
neighbors with receive rate and send rate less than a
predefined threshold are removed fromNeighbor Table.

A node after entering the clustering phase selects itself as
a Cluster Head and periodically transmits aCluster Head
packet if it is the node having the highest residual energy
among its one hop neighbors. If a node receives aCluster
Head packet from a node having highest residual energy
in its neighborhood, it joins that cluster by sending a
Join packet. The details of clustering algorithm is given
in [12]. The Cluster Head packet and Join packet are
transmitted periodically by the cluster heads and member
nodes respectively till the clustering phase is over. At the
end of the clustering phase, if a node has not decided
which cluster it should join because it is waiting for the
status of some higher energy node in the neighborhood
or has not received any acknowledgment from the cluster
head (in the form of including its ID in the list of
members in theCluster Head packet), that node elects
itself as a Cluster Head.

All the nodes enter theScheduling Phase following the
Cluster Setup phase. This phase is used by Cluster Head
nodes to transmit a TDMA schedule for transmission
to the member nodes throughSchedule Packet. The
member nodes use this phase to inform the respective
cluster heads to function as gateway nodes. Those nodes
which have at least one node from another cluster as
neighbor are called boundary nodes. We require that
link between a boundary node and a neighbor node
in a different cluster should have a low packet error
probability in both the directions. This requirement is
ensured by the fact that two nodes list each other in their
Neighbor Tables only if the packet error probability in
both directions is low. TheGateway Candidature packet
is sent periodically by the boundary nodes.

TheSteady Phase follows the scheduling phase. In the
initial part of this phase, the cluster head nodes select
the gateway nodes in their clusters which can connect to
neighboring clusters. There can be 3 cases

• The cluster head node itself has a node belonging
to another cluster as a neighbor

• A node in the cluster has another cluster head as its
neighbor

• A node in the cluster has a non cluster head node
in another cluster as neighbor.

For each neighboring cluster, it selects the boundary
node with maximum residual energy among those that
can connect to the neighbor cluster to be a gateway node.
It should be noted that when the boundary node cannot
connect to a neighbor cluster head directly, minimum of
the residual energy of the boundary node and its neighbor
in the foreign cluster is used as a basis of selection.
The cluster head nodes transmit theGateway Selection
packet periodically for a small amount of time (which
is preprogrammed). A member node select itself as a
gateway if its ID is included in the list of gateways in
the Gateway Selection packet send by its cluster head

or it has at least one neighbor whose membership status
(whether a cluster head or cluster member) is unknown.

The router functionality in each of the cluster heads
and gateways are enabled. The nodes which are neither
cluster heads nor gateways switch off their radios, sen-
sors and CPU and enter deep sleep mode where only
a clock which can awake the CPU after a prescribed
time period is running. These nodes wake up periodically
(depending on their TDMA slot position obtained from
Schedule packet), sense the environment and sends the
data read to the respective cluster head. The gateways
also send data to their cluster head according to the
TDMA schedule received. But they never enter deep
sleep mode. Shallow sleep is executed by the cluster
heads and gateway nodes when the CPU is idle and no
radio signals are detected. Any radio activity switches
the nodes which are in shallow sleep mode to the active
mode. The cluster heads and gateway nodes actively
participate in routing and forms the virtual back bone
connecting all cluster heads to the sink. The cluster head
periodically perform outlier detection and data fusion on
the data received from member nodes and send the fused
data packet to the sink. Each cluster head also transmits
the data collected during each round of data collection to
the neighboring cluster heads through the gateway nodes
in the form of Cluster Head Data packet. This is done
so that more data is available at each cluster head for
doing outlier detection.

The Steady Phase is followed by Extended Steady
Phase in which the nodes which are neither cluster heads
nor gateways do not transmit any data packets. This
phase is included to guarantee that fused data packets
containing the data collected during the last round of data
collection in the steady phase reaches the sink before
all the nodes enters the hello phase. The absence of
this phase may result in some fused data packet getting
discarded en route to the sink because routing is disabled
in hello phase. All the nodes enters hello phase after the
extended steady phase. It may be noted that a node enters
hello phase if and only if its residual energy is greater
than a predefined threshold (a small percentage of the
initial energy). If the residual energy is low, the node will
not execute the hello, cluster setup and schedule phases
of clustering algorithm. In steady phase, it enables the
routing functionality and routes its data to the sink via
one of the neighboring cluster head or gateway nodes.

B. Outlier Detection

A number of schemes proposed in literature for outlier
detection and improving reliability were discussed in
Section II. Some of these schemes are model based [13].
Such schemes require a large quantity of measured data
to be available a priori for developing an accurate model
offline. Some others are centralized and do not scale up

well [14].
The Scheme using Beta Reputation System [16] re-

quires all nodes to be in promiscuous listening mode and
there is periodic exchange of reputation values between
the nodes. As a result, this scheme is not energy efficient.

REEF uses a distributed approach which is scalable
and energy efficient. Each cluster head runs an outlier
detection algorithm to detect outliers among readings
reported by its members.

A good outlier detection algorithm should detect most
of the faults and the number of false positives must
be small. REEF uses “Spatial Averaging Algorithm” for
outlier detection. This algorithm uses the median which
is statistically robust to outliers [19]. It is rule based and
hence doesn’t require a comparison with the estimated
standard deviations (which are affected by presence of
outliers) of readings to decide whether a value is an
outlier or not.

For each node in the cluster, the median of the
readings of neighbor nodes is calculated. If the reading
of the node differs from the median by more than a
threshold value, it is declared as an outlier. The algo-
rithms is displayed in listing 1. It is assumed that the
mean and standard deviation of the measurement error
(calibration error) of the sensor used on board is provided
by the manufacturer. The threshold is taken as twice the
maximum measurement error.
Algorithm 1 : Spatial Averaging Algorithm
Input : Readings of all the nodes in a cluster
Output : Outlier factor for each node
foreach node i do

Sort the readings of the neighbors ;
med = median of readings ;
if abs(reading-med) > threshold then

OFi = 1.0
else

OFi = 0.0
end

end

IV. SIMULATIONS AND RESULTS

The performance of REEF was compared with the
Reputation based Framework for Sensor Networks
(RFSN) presented in [16]. We choose RFSN for the
comparison because it is similar to REEF in many ways.
Like REEF, RFSN is not model-based, it exploits spatial
correlation in measured data, and it is distributed (and
hence scalable). In contrast to REEF, however, RFSN
employs promiscuous listening on all nodes in the sensor
network. We use the J-Sim simulator for simulating
REEF and RFSN.

In RFSN, each node runs a Local Outlier Factor
(LOF) outlier detection algorithm on the data gathered by
passive listening and subsequently calculates reputation

for each of its neighbors. Typically, it takes some time
before the reputation of a misbehaving node in RFSN
goes down. We found through simulations that this slow
tracking actually reduces performance particularly in
case of short faults. We hence use the output of the
LOF algorithm directly while comparing performance
of RFSN and REEF and leave out computation of
reputation. This also allows a more fair comparison with
REEF which is not reputation-based. We modified RFSN
so that the sink computes the outlier factor for a node
i from the LOF values assigned to that node by its
neighbors as follows.

OFi =
abs(LOFi − µLOF)

σLOF

(1)

whereµLOF and σLOF respectively are the arithmetic
mean and standard deviation of LOF values. The sink
considers a node faulty if the outlier factor is greater
than athreshold.

In REEF, the cluster heads transmit the outlier fac-
tor of each node to the sink along with the different
readings and corresponding time stamps.1 The outlier
factor received at the sink is used to determine if the
value reported by a node is reliable or not. REEF uses
the “Spatial Averaging” algorithm (see Algorithm 1) for
outlier detection. The outlier factor assigned for each
reading in this algorithm is either 0 or 1. The sink treats
a node as faulty if its outlier factor is 1.

We compare the number of detected faults and false
positives for both the algorithms for different topologies.
In addition the energy spent by the algorithms and the
network life are also compared.

A. Experimental Setup

In the simulations, the nodes are deployed in a field of
area 100m x 100m. The number of nodes in the network
was varied from 25 to 200. Topologies were generated
randomly. The sink was placed in the upper-left corner
of the sensor field. The data to be reported by each
node was stored in separate files. The data file for a
node contains the data values that are to be reported
and the time at which each data value is to be reported.
Spike Fault, Stuck-At Fault and Variance Degradation
faults were simulated. The simulation parameters and
their values are given in Table I.

Since it is important to use realistic values for the CPU
processing time during the simulation, both the algo-
rithms were implemented to run on java-based SunSPOT

1The sink can itself compute all the outlier factors because it has
access to data readings from all nodes. This centralized solution
is, however, less scalable than REEF’s distributed one. Note that
centralized solutions cannot be used for applications performing in-
network data aggregation. Although REEF is ideally suited for such
applications, we do not consider them in our simulations in order to
facilitate a fair comparison with RFSN which does not perform in-
network data aggregation.

Simulation Parameter Value
Number of nodes 25,50, 100 and 200
Size of the sensor field 100m x 100m
Battery Capacity 720 mAH
Battery Voltage 3.7 V
Initial Energy 9590 J
Radio Range 30m
Routing Algorithm AODV
MAC layer algorithm CSMA
Current drawn by Radio in Tx mode 18 mA
Current drawn by Radio in Rx mode 20 mA
Current drawn by Radio in idle mode 426 µA
Current drawn by Radio when Off 1 µA
Current drawn by CPU in Active Mode 80 mA
Current drawn by CPU in shallow sleep 31 mA
Current drawn by CPU in deep sleep 33 µA
Current drawn by Active Sensors 6mA
Current drawn by Sensors when Off 5 µA
Data reporting periodicity for RFSN 300 sec
Data reporting periodicity for REEF 300 sec
Periodicity of Setup packets in REEF Random : 1 to 30 sec
Duration of Setup phases in REEF 300 sec
Duration of Steady phase in REEF 3600 sec

TABLE I
SIMULATION PARAMETERS AND VALUES

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 2000 4000 6000 8000 10000 12000 14000 16000

E
ne

rg
y

S
pe

nt
 (

Jo
ul

es
)

Time (sec)

 Energy Consumed vs Time

RFSN
REEF

Fig. 1. Energy vs. Time for 100 nodes

motes and the processing time taken by different key
procedures in the algorithms were measured. For proce-
dures whose time of execution depends on the number
of neighbors or number of members, the number of
neighbors and number of members was assumed to
be 10. REEF and RFSN were simulated for different
topologies by varying the number of nodes and position
at which the nodes are placed. For a network of a given
size, ten different topologies and thirty different data sets
(ten data sets for each fault) were used. Simulation was
done for all topology-data set combinations. The results
of the simulation for a network of size 100 nodes are
given in following subsections. Results for networks with
size 25, 50 and 200 nodes were found to be similar.

1) Energy Spent in the Network vs. Time: Figure 1
shows the energy spent in a network of 100 nodes as
time advances. The energy spent by RFSN is more than

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2000 4000 6000 8000 10000 12000 14000 16000

D

at
a

P
kt

s
R

x
at

 S
in

k

Time (sec)

 Data Received At Sink vs Time

RFSN
REEF

Fig. 2. Data Received at Sink vs. Time for 100 nodes

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 500 1000 1500 2000 2500 3000 3500 4000

E
ne

rg
y

sp
en

t (
Jo

ul
es

)

Data Pkts Rx at Sink

 Energy Consumed vs Data Pkts Rx at Sink (after 14560 sec)

RFSN
REEF

Fig. 3. Energy Spent vs. Data Received at Sink for 100 nodes

that spent by REEF since in RFSN nodes use passive
listening and the never move to deep sleep state where
radio and CPU is switched off. In addition, all nodes
participate in routing. Observe that the energy spent
increases linearly with time.

In REEF, the nodes which are not gateways or cluster
heads can make use of deep sleep mode. They need to
wake up periodically to sense the environment and send
the data to cluster head. Only cluster heads and gateways
have their router functionality enabled. We note that the
energy spent in steady phase is less than the energy spent
in setup phases.

2) Data Received by the Sink vs. Time: A comparison
of the number of data packets received by the sink for a
network of 100 nodes is shown in Figure 2. The number
of data packets received at the sink increases linearly
with time for RFSN.

Recall that REEF has different phases. In REEF, data
is received only during the steady state. The packets
received in REEF are fused data packets and each packet
contains readings of all nodes in the network. Hence the
number of data packets received at the sink in REEF are
less than in RFSN. Note that the sink doesn’t get any
information from the nodes during the setup phases.

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000

N

od
es

 A
liv

e

Time (sec)

 Nodes Alive vs Time

RFSN
REEF

Fig. 4. Number of Nodes Alive vs. Time

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

25 Nodes 50 Nodes 100 Nodes 200 Nodes

E
ne

rg
y

G
ai

n
(J

ou
le

s)

Nodes

 Energy Gain for REEF (after 14560 sec)

Energy Gain

Fig. 5. Energy Gain for REEF vs. Network Size

3) Energy Spent vs. Data Received by the Sink :
Figure 3 depicts the energy spent per data packet re-
ceived for RFSN and REEF after 14560 seconds which
is equal to the time taken to finish three rounds of REEF.
As evident from the figure, the number of data packets
reaching the sink is very high in RFSN compared to
REEF. This is because REEF uses fused data packets and
data is transmitted during the steady phase only. Energy
spent in the network for the sink to receive fused data
packets in REEF is less than energy spent to receive data
packets in RFSN. Fused data packets of REEF contain
more information than a single data packet in RFSN.
As a result, the energy spent in the network for sink to
gather a unit of information is less in REEF.

4) Network Lifetime : The network life time is defined
as the time for which all the nodes in the network
are alive. As time progresses, the energy of nodes get
depleted and the nodes die. Figure 4 shows the number of
alive nodes as time advances for a network of 100 nodes.
In RFSN, the first node dies at 74060.75 seconds and
all the nodes are dead by 77022.0 seconds. In REEF, all
nodes are alive till 107420.25. Nodes started dying after
that and all the nodes are dead by 170802.25 seconds.
The network life time is extended in REEF because most

 0

 1

 2

 3

 4

 5

 6

REEF RFSN

 #
 F

al
se

 P
os

iti
ve

s
(a

s
%

 o
f t

ot
al

 s
am

pl
es

)

 # False Positives

 Threshold - σ
 Threshold - 2σ
 Threshold - 3σ

(a) False Positives

 0

 20

 40

 60

 80

 100

 120

 140

RFSNREEF

 #
 D

et
ec

te
d

F
au

lts
 (

as
 %

 o
f t

ot
al

 fa
ul

ts
)

 # Detected Faults

 Threshold - σ
 Threshold - 2σ
 Threshold - 3σ

(b) Faults Detected

Fig. 6. Performance of REEF and RFSN for short fault for network
size 50

of the nodes can go to deep sleep during the steady state.
5) Energy Gain vs. Network Size: Energy spent in

the network is less than energy spent by a framework
like RFSN which employs passive listening. It was also
observed that the Energy Gain by running REEF over
running RFSN increases as the network size increases.
It is because the energy spent in RFSN increases linearly
to the number of nodes. But in REEF, most of the nodes
are neither the cluster head nor the gateway and can use
deep sleep in steady state. So the energy spent in REEF
increase slower than linearly with number of nodes.

6) Fault Detection: Performance comparison of
REEF and RFSN in detecting shot faults, stuck-at faults
and variance degradation faults are given in Figure 6,
Figure 7 and Figure 8. The threshold value used for
REEF (used in algorithm 1) is always twice the standard
deviation of measurement error of the sensor onboard.
For RFSN, the threshold value (used as in equation 1)was
nσ wheresigma is the standard deviation of LOF values
and simulations were done withn taking the values1,2
and3. Faults detected by RFSN for each of the threshold

 0

 2

 4

 6

 8

 10

REEF RFSN

 #
 F

al
se

 P
os

iti
ve

s
(a

s
%

 o
f t

ot
al

 s
am

pl
es

)

 # False Positives

 Threshold - σ
 Threshold - 2σ
 Threshold - 3σ

(a) False Positives

 0

 20

 40

 60

 80

 100

 120

 140

RFSNREEF

 #
 D

et
ec

te
d

F
au

lts
 (

as
 %

 o
f t

ot
al

 fa
ul

ts
)

 # Detected Faults

 Threshold - σ
 Threshold - 2σ
 Threshold - 3σ

(b) Faults Detected

Fig. 7. Performance of REEF and RFSN for stuck-at fault for network
size 50

value was found out. These results are for the network
which contains 50 nodes. Results for network with size
25,100 and 200 nodes were found to be similar. For short
fault, the number of false positives reported by REEF
is more compared to RFSN. But the number of false
positives is less than 10 percentage of the total samples.
The number of faults correctly detected by REEF is
much higher than that detected by RFSN. For stuck-at
fault, the number of false positives reported by REEF
is more (though it is less than 10 percentage of total
samples) and the number of detected faults is less but
comparable to that detected by RFSN. In case of variance
degradation fault, more than half of the total samples
were faulty and RFSN was able to detect less than one
percentage of the faults. REEF detected more than 50
percentage of faults, but the number of false positives
reported was also high.

V. CONCLUSION

The total energy spent in the network while using
REEF was found to be less than that used by RFSN.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

REEF RFSN

 #
 F

al
se

 P
os

iti
ve

s
(a

s
%

 o
f t

ot
al

 s
am

pl
es

)

 # False Positives

 Threshold - σ
 Threshold - 2σ
 Threshold - 3σ

(a) False Positives

 0

 20

 40

 60

 80

 100

 120

 140

RFSNREEF

 #
 D

et
ec

te
d

F
au

lts
 (

as
 %

 o
f t

ot
al

 fa
ul

ts
)

 # Detected Faults

 Threshold - σ
 Threshold - 2σ
 Threshold - 3σ

(b) Faults Detected

Fig. 8. Performance of REEF and RFSN for variance fault for network
size 50

Consequently, network life time also got extended when
REEF was used. In addition, we observed that the
energy gain while using REEF increased with number
of nodes in the network. The performance of REEF was
comparable with that of RFSN in terms of detecting
Short faults and Stuck-At faults. REEF performed better
than RFSN in detecting variance degradation faults.

This work focused on sensor networks used for mon-
itoring natural phenomena. It can be extended to sensor
network used for surveillance with the help of few key
modifications. In this work, clustering was done based on
residual energy of the node. To apply this to a network
used for surveillance or event detection, the clustering
algorithm should take the coverage of the nodes in to
consideration so that the area is fully covered even when
a large number of nodes are sleeping.

Another possible extension is to improve the outlier
detection algorithm to perform better in detecting vari-
ance degradation fault.

REFERENCES

[1] C. Chong and S. Kumar, “Sensor networks: evolution, opportu-
nities, and challenges,”Proceedings of the IEEE, vol. 91, no. 8,
pp. 1247–1256, 2003.

[2] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Ander-
son, “Wireless sensor networks for habitat monitoring,”Proceed-
ings of the 1st ACM international workshop on Wireless sensor
networks and applications, pp. 88–97, 2002.

[3] L.Balzano, “Addressing fault and calibration in sensornetworks,”
Master’s thesis, Dept. of Computer Science, UCLA, 2007.

[4] A. Sharma, L. Golubchik, and R. Govindan, “On the Prevalence
of Sensor Faults in Real-World Deployments,”4th Annual IEEE
Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks, pp. 213–222, 2007.

[5] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner,K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gayet al., “A macro-
scope in the redwoods,”Proceedings of the 3rd international
conference on Embedded networked sensor systems, pp. 51–63,
2005.

[6] N. Ramanathan, L. Balzano, M. Burt, D. Estrin, T. Harmon,
C. Harvey, J. Jay, E. Kohler, S. Rothenberg, and M. Srivastava,
“Rapid deployment with confidence: Calibration and fault de-
tection in environmental sensor networks,”Center for Embedded
Networked Sensing, UCLA and Department of Civil and Environ-
mental Engineering, MIT, Tech. Rep. CENS Tech Report, vol. 62,
2006.

[7] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next
century challenges: Scalable Coordination in Sensor Networks,”
Proceedings of the 5th annual ACM/IEEE international confer-
ence on Mobile computing and networking, pp. 263–270, 1999.

[8] V. Mhatre and C. Rosenberg, “Design guidelines for wireless
sensor networks: Communication, Clustering and Aggregation,”
Ad Hoc Networks, vol. 2, no. 1, pp. 45–63, 2004.

[9] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient Communication Protocol for Wireless Microsensornet-
works,” System Sciences, 2000. Proceedings of the 33rd Annual
Hawaii International Conference on, p. 10, 2000.

[10] O.Younis and S.Fahmy, “HEED-a hybrid, energy efficient, dis-
tributed clustering approach for ad-hoc sensor networks,”IEEE
Transactions on Mobile Computing, Vol 3, Issue 4, Oct, 2004.

[11] ——, “An experimental study of routing and data aggregation in
sensor networks,”Proceedings of LOCAN, IEEE MASS, Novem-
ber, 2005.

[12] S. Basagni, “Distributed clustering for ad hoc networks,” Par-
allel Architectures, Algorithms, and Networks, 1999.(I-SPAN’99)
Proceedings. Fourth InternationalSymposium on, pp. 310–315,
1999.

[13] S.Mukhopadyay, D.Panigrahi, and S.Dey, “Model based error
correction for wireless sensor networks,”IEEE Wireless Com-
munications and Networking Conference, Atlanta, March, 2004.

[14] Q.Zhang, T.Yu, and P.Ning, “A framework for identifying com-
promised nodes in sensor networks,”Proceedings of 2nd IEEE
Communcation society / SecureComm2006, 2006.

[15] J.Chen, S.Kher, and A.Somani, “Distributed fault detection of
wireless sensor networks,”Proceedings of the 2006 workshop
on Dependability issues in wireless ad hoc networks and sensor
networks, 2006.

[16] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava, “Reputation-
based framework for high integrity sensor networks,”ACM Trans.
Sen. Netw., vol. 4, no. 3, pp. 1–37, 2008.

[17] Y. Zhuang and L. Chen, “In-network outlier cleaning fordata
collection in sensor networks,”CleanDB Workshop, pp. 41–48,
2006.

[18] P. Rabinovich and R. Simon, “Secure Aggregation in Sensor
Networks Using Neighborhood Watch,”Communications, 2007.
ICC’07. IEEE International Conference on, pp. 1484–1491,
2007.

[19] D. Wagner, “Resilient aggregation in sensor networks,” Proceed-
ings of the 2nd ACM workshop on Security of ad hoc and sensor
networks, pp. 78–87, 2004.

