
“What’s in a Name?”
Going Beyond Allocation Site Names in Heap Analysis

Vini Kanvar ∗ and Uday P. Khedker

Indian Institute of Technology Bombay, India

{vini,uday}@cse.iitb.ac.in

Abstract

A points-to analysis computes a sound abstraction of heap
memory conventionally using a name-based abstraction that
summarizes runtime memory by grouping locations using the
names of allocation sites: All concrete heap locations allocated by
the same statement are grouped together. The locations in the
same group are treated alike i.e., a pointer to any one location of
the group is assumed to point to every location in the group
leading to an over-approximation of points-to relations.

We propose an access-based abstraction that partitions each
name-based group of locations into equivalence classes at every
program point using an additional criterion of the sets of access
paths (chains of pointer indirections) reaching the locations in the
memory. The intuition is that the locations that are both allocated
and accessed alike should be grouped into the same equivalence
class. Since the access paths in the memory could reach different
locations at different program points, our groupings change flow
sensitively unlike the name-based groupings. This creates a more
precise view of the memory. Theoretically, it is strictly more
precise than the name-based abstraction except in some trivial
cases; practically it is far more precise.

Our empirical measurements show the benefits of our tool
Access-Based Heap Analyzer (ABHA) on SPEC CPU 2006 and
heap manipulating SV-COMP benchmarks. ABHA, which is
field-, flow-, and context-sensitive, scales to 20 kLoC and can
improve the precision even up to 99% (in terms of the number of
aliases). Additionally, ABHA allows any user-defined
summarization of an access path to be plugged in; we have
implemented and evaluated four summarization techniques.
ABHA can also act as a front-end to TVLA, a parametrized shape
analyzer, in order to automate its parametrization by generating
predicates that capture the program behaviour more accurately.

CCS Concepts •Theory of computation → Program analysis;
• Software and its engineering → Software verification

General Terms Design, Algorithms, Verification, Languages

Keywords access path, alias, allocation site, heap abstraction,
static points-to analysis, summarization

∗ Partially supported by a TCS fellowship.

1. Introduction

Pointers allow indirect manipulation of data and hence obscure
program understanding as well as the results of program analyses.
An accurate pointer analysis drives the precision, and
consequently, the effectiveness of many program optimizations,
reduces the number of false positives in program verification, and
also helps in constructing a precise control flow graph by
resolving the callees in indirect calls. Static heap analysis is also
useful for discovering heap memory bugs like memory leaks, null
dereferences, dangling pointers, multiple deallocation of the same
memory location, etc. It is also helpful in identifying inefficient
usages of heap like delayed deallocation, unnecessary use of heap
instead of stack, poor cache utilization, and others [10].

Pointer information in a program is discovered by constructing
abstractions of the concrete memory created by the pointer
assignments in the program. A popular abstraction of memory
views it as a set of interconnected chains of pointer indirections
naturally represented by a points-to graph [4] in which nodes
denote concrete memory locations and directed edges denote
concrete memory links representing the address of a target
location stored in a pointer location. Here onwards, we use
locations and links to mean concrete memory locations and links,
respectively. An alternative abstraction views memory as a set of
access paths [16]. Semantically, it is a static representation of
paths in the concrete memory created by a program. Syntactically,
an access path is a variable followed by a sequence of field
dereferences. Variables indicate both stack and global variables.

Formally, Σ⊆V×F∗ denotes a set of access paths where V and
F are the sets of variables and fields, respectively. For example,
access path x.f.f.f.g represents a memory location reachable from
variable x via 3 indirections of field f and then that of field g. In
the presence of dynamic allocations, the number of access paths
is potentially infinite and the length of access paths is unbounded.
Therefore, we need to summarize the access paths. We represent
summarized access paths by a regular expression, for example,
x.f(.f)∗.g is used as a shorthand for the following access paths:
x.f.g,x.f.f.g,x.f.f.f.g, Therefore, we can say x.f.g ∈ {x.f(.f)∗.g}.

A points-to analysis computes pointer information in terms of a
points-to graph whereas an alias analysis computes sets of aliased
access paths. Points-to analysis of heap manipulating programs is
typically based on a name-based abstraction in which all concrete
memory locations created by the same statement id or site (for
example, x = calloc(·)) are grouped together and are treated alike
i.e., a pointer to any one location of the group is over-approximated
with a pointer to every location in the group [4, 9, 24].

Let S denote the set of program statements (or sites). For a flow-
sensitive points-to analysis, we define Q= {in,out}×S, as the set
of program points. ins and outs denote program points before and
after statement s, where s ∈ S. The concrete memory and its name-

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of a national government. As such, the government retains a non-
exclusive, royalty-free right to publish or reproduce this article, or to allow others to do
so, for government purposes only.

ISMM’17, June 18, 2017, Barcelona, Spain
c© 2017 ACM. 978-1-4503-5044-0/17/06...$15.00

http://dx.doi.org/10.1145/3092255.3092267

92

1 x = calloc(·) 1
2 y = x 1

1

3 y->f = calloc(·) 1
4 y = y->f 1

1

5 assert(y->f==null) 5

Execution snapshots Figure 2a

Name-based graph at in5 Figure 2b

Access-based graphs Figures 2b, 4, 5

Mapping concrete Figure 2c
locations to abstract nodes

Figure 1: Our motivating example. Loop conditions in the program are not
analyzed and are not shown for simplicity. Different aspects of our analysis
and the figures that illustrate them are listed on the right.

based abstraction is modelled in terms of points-to graphs. Initially
we assume that only heap locations have fields and the variables
are not addressable. These assumptions are relaxed in Section 5.3.

Example 1. We use the program in Figure 1 as a running example
to illustrate flow-sensitive points-to analysis of heap using name-
based and access-based abstractions. The program creates a null-
terminated linked list rooted at variable x connected via field f. The
execution snapshots of the grounded lists created at in5 are shown
in Figure 2a in terms of heap locations from l1 to l14 where x and
y point to the head and the tail, respectively of the list. Variable y
is used to traverse the list and append a new node at the end of the
list. The assertion in statement 5 checks that the list must be null-
terminated. This holds because the fields of all nodes are initialized
to null by calloc(·). The concrete heap locations l1, l3, l6, l10 are
allocated at site 1 of the program. The remaining heap locations
like l2, l4, l5, l7 are allocated at site 3 of the program.

A name-based graph is a points-to graph where each heap node
(or name-based heap node, when needed for clarity) represents a
group of concrete heap locations that are allocated at the same site.
We show below the imprecision of the name-based abstraction.

Example 2. The result of a flow-sensitive points-to analysis using
name-based abstraction at in5 of our motivating example is shown
in Figure 2b. Node 1 represents locations l1, l3, l6, l10, which are
allocated at site 1 of the program. Node 3 represents the remaining
locations allocated at site 3 of the program thereby merging the
last node of the list shown in Figure 2a with other nodes resulting
in a self-loop over node 3. This suggests that y->f may be non-
null. Hence, the assertion in statement 5 of the program cannot be
verified using name-based abstraction although no execution of the
program would violate it.

We propose an access-based abstraction for nodes in a points-
to graph. It partitions the set of memory locations represented by
a name-based heap node s into equivalence classes based on the
set of access paths α reaching the locations in the memory. It
represents each equivalence class by an access-based node 〈s,α〉
or alternatively by s|i, where i uniquely identifies α.

Example 3. The result of a flow-sensitive points-to analysis using
access-based abstraction at in5 of our motivating example is
shown in Figure 2b. Observe that it discovers that the locations
representing the internal nodes of the linked list are not pointed to
by y; only the last node is pointed to by y suggesting that y->f is
null. Figure 2c shows how nodes 1|1 and 3|3 to 3|6 in the
access-based graph are created by partitioning the set of locations
represented by name-based nodes 1 and 3, respectively.
Access-based node 1|1 represents an equivalence class
{l1, l3, l6, l10} in a partition of the set of locations represented by
name-based node 1, and reachable by set of access paths {x}.
Access-based node 3|3 represents an equivalence class {l2} in a
partition of the set of locations represented by name-based node 3,
and reachable by set of access paths {x.f,y}. Similarly,

Program
execution 1

l1

x l9

y l9

l1

f l

l2

f l

Program
execution 2

l5

x l9

y l9

l3

f l

l4

f l

l5

f l

Program
execution 3

l10

x l9

y l9

l6

f l

l7

f l

l8

f l

l9

f l

Program
execution 4

l16

x l9

y l9

l10

f l

l11

f l

l12

f l

l13

f l

l14

f l

(a) Execution snapshots of the heap memory at in5 for up to four
iterations of the loop body. Gray boxes denote concrete locations
for variables x and y, white boxes (l1 to l14) denote concrete heap
locations, and f represents field.

Name-based graph at in5 Access-based graph at in5

x

y

1 3 x

y

1|21|1

3|3

3|4 3|6 3|5

(b) Name-based and access-based abstractions at in5. All out-edges of
heap nodes represent field f; their labels are omitted to avoid clutter.

Name-based Equivalence
heap node

Access-based heap node
class of concrete

s s|i 〈s,α〉 heap locations

1 (Site 1) 1|1 〈1,{x}〉 {l1, l3, l6, l10}

3 (Site 3)

3|3 〈3,{x.f,y}〉 {l2}

3|4 〈3,{x.f}〉 {l4, l7, l11}

3|5 〈3,{x.f(.f)∗,y}〉 {l5, l9, l14}

3|6 〈3,{x.f(.f)∗}〉 {l8, l12, l13}

(c) Name-based group s of locations is partitioned into access-based
group s|i of locations based on the access paths α reaching the
locations. Other partitions of locations are shown in Figures 4 and 5.

Figure 2: Analysis of the program in Figure 1.

access-based nodes 3|4,3|5,3|6 represent other equivalence classes
in a partition of the set of locations represented by name-based
node 3 based on the access paths reaching the locations. The
access-based graph has no out-edge from nodes 3|3 and 3|5, that
are pointed to by y. Thus, access-based abstraction is able to verify
the assertion because of increased precision.

Our main contributions are: (1) Our heuristic makes
distinctions between heap locations using access paths reaching
them (and not just their allocation sites or variables pointing to
them [29]). Thus, it avoids distinctions between the locations that
may not add value to a static analysis and makes those that may be
meaningful. (2) We present a novel way of using allocation sites to
summarize access paths more precisely. Besides, our tool

Access-Based Heap Analyzer (ABHA1) allows any user-defined

1 The word ABHA also means splendour in Sanskrit and derived languages.

93

summarization of access path to be plugged in. (3) ABHA
captures the program behaviour automatically and we show how it
can be used as a front-end for a parametric shape analyzer, TVLA.

Section 2 presents our key ideas which are formulated as a data
flow analysis in Section 3. Convergence of our analysis is ensured
in Section 4. Section 5 extends access-based abstraction to allow
strong updates, perform interprocedural analysis, and handle the
addressof operator and non-pointer fields. Section 6 shows how
ABHA can be used as a front-end for shape analysis.
Implementation and measurements are described in Section 7.
Section 8 presents the related work. Section 9 concludes the paper.

2. Access-Based Abstraction: Key Idea

Here we define our criterion of abstracting locations.

2.1 Concrete Semantics: Notations and Terminologies

Let Π denote the set of execution paths of a program. Each
execution path is a valid sequence of possibly repeating program
statements starting from the start statement. Let πq ∈ Π denote an
execution path that reaches program point q ∈ Q. Let Hcm and
Ecm denote sets of all possible heap nodes (or locations) and
edges (or links), respectively in the concrete memory. We define a
concrete memory graph at q created by an execution path πq,
denoted Gcm(πq) = 〈V∪Hcm(πq),E

cm(πq)〉, as a pair of sets of
nodes and edges. The node set V∪Hcm(πq) is a discriminated
union of the set of variables V, and the set of heap nodes
Hcm(πq)⊆Hcm at q. The edge set Ecm(πq)⊆ Ecm for
Ecm(πq) = EVcm(πq)∪EHcm(πq) at q is a discriminated union of

• EVcm(πq) : V→ Hcm(πq) is the set of edges of the kind v−→ l
with a variable as their source node, and

• EHcm(πq) : Hcm(πq)×F→ Hcm(πq) is the set of labelled

edges of the kind l
f
−→ l ′ with their source node in the heap.

Since we treat each execution as distinct, each execution path
reaching a program point uses unique heap memory locations:

(

πq 6= π
′
q ∧ l ∈Hcm(πq) ∧ l ′ ∈Hcm(π ′

q)
)

⇒ l 6= l ′ (1)

Definition 1. Allocation site of a location. Each heap location is
mapped to its allocation site by function HSTcm : Hcm → S.

Definition 2. Location reachable by an access path. Access path
σ ∈ Σ is said to reach location l ∈Hcm(πq), if l = Tgtcm(σ,πq)
where,

Tgtcm(σ,πq) =

l v ∈ V. (σ = v ∧ v−→ l ∈ EVcm(πq))

l f ∈ F. (σ = σ
′.f ∧ l ′ = Tgtcm(σ′,πq) ∧

l ′
f
−→ l ∈ EHcm(πq))

Tgtcm(·) is a partial function because it returns a location reachable
by σ only if all dereferences in σ reach a non-null location.

Definition 3. Access paths reaching a location. Function
HAPcm(l,πq) returns a set of access paths that reach location l at
program point q. Since these access paths reach the same location,
they are aliased to each other.

HAPcm(l,πq) = {σ | l = Tgtcm(σ,πq)}

The conventional name-based abstraction groups concrete heap
locations into abstract nodes using allocation sites (Section 2.2).
For our abstraction, we first explain how to group them using
accesses (Section 2.3), and then using both allocation sites and
accesses (Section 2.4). We follow a recent dichotomy of heap
abstraction [10] that views the grouping of concrete locations into
possibly infinite abstract nodes as heap modelling (Section 2), and
grouping of abstract nodes into a finite number of abstract nodes as
summarization (Section 4.1).

2.2 Grouping Locations Using Allocation Sites

The conventional name-based abstraction is formalized below.

Definition 4. Equivalence using allocation sites. Locations l and l ′

are equivalent at program point q based on allocation sites, denoted

l
st
≃q l ′, if they are allocated at the same site. Using Definition 1,

l
st
≃q l ′ ⇔

(

l ∈ Hcm(πq) ∧ l ′ ∈ Hcm(π ′
q) ∧

HSTcm(l) = HSTcm(l ′)
)

Relation
st
≃q is an equivalence relation because it is reflexive

(l
st
≃q l), symmetric (l

st
≃q l ′ ⇔ l ′

st
≃q l), and transitive

(l
st
≃q l ′, l ′

st
≃q l ′′ ⇒ l

st
≃q l ′′). Therefore, an equivalence class of

locations created using
st
≃q is uniquely identified by its allocation

site s and is represented by name-based node s.

2.3 Grouping Locations Using Accesses

Here, we introduce how to group locations that are accessed alike.

Definition 5. Equivalence using accesses. Locations l and l ′ are

equivalent at program point q based on accesses, denoted l
ac
≃q l ′, if:

Whenever l is accessed using access path σ along some execution
path reaching q, l ′ is also accessed using σ along some execution
path also reaching q, and vice-versa. Using Definition 2,

l
ac
≃q l ′ ⇔

(

l ∈ Hcm(πq) ∧ l ′ ∈Hcm(π ′
q) ∧

(

∀σ ∈ Σ.
(

l = Tgtcm(σ,πq)⇔ l ′ = Tgtcm(σ,π ′
q)
)))

There may be over-approximation in the equivalence relation
because of summarization of access paths σ ∈ Σ (Section 4.1)
which over-approximates the access paths.

Example 4. Assume that only four heap locations l1, l2, l3, and
l4 are created along execution paths reaching program point q.
Further assume that these locations are reachable by only three

access paths σ1, σ2, and σ3 such that Tgtcm(σ1,π
1
q) = l1, and

Tgtcm(σ1,π
2
q) = l2 (i.e. at q, σ1 reaches l1 for execution path π

1
q

and l2 for execution path π
2
q). Similarly, let access path σ2 reach

locations l1, l2, l3, l4 at q, and let σ3 reach location l3 at q for their
respective execution paths. In order to identify locations that could
possibly be accessed by a statement immediately after program
point q, consider the access paths that the statement could traverse
in the memory:

• If it traverses σ1, it could reach locations l1 and l2.
• If it traverses σ2, it could reach locations l1, l2, l3, and l4.
• If it traverses σ3, it will reach location l3.

This covers all possible ways of accessing a memory at q. Observe
that l1 and l2 either appear together or neither of them appears in the
possibly accessed locations. Therefore, the effect of the statement
at q on l1 and l2 is identical.

The relation
ac
≃q is an equivalence relation because it is

reflexive (l
ac
≃q l), symmetric (l

ac
≃q l ′ ⇔ l ′

ac
≃q l), and transitive

(l
ac
≃q l ′, l ′

ac
≃q l ′′ ⇒ l

ac
≃q l ′′). For Example 4, the equivalence

classes created by
ac
≃q at q are: {l1, l2}, {l3}, and {l4}.

Observe that the above equivalence is not easy to compute since
it requires enumerating all heap locations. A more amenable way of
creating equivalence classes of locations (subject to summarization
of access paths) is as follows.

94

Definition 6. Equivalence using accesses. The equivalence

relation
ac
≃q at program point q is alternatively defined below using

Definitions 3 and 5.

l
ac
≃q l ′ ⇔

(

l ∈Hcm(πq) ∧ l ′ ∈Hcm(π ′
q) ∧

HAPcm(l,πq) = HAPcm(l ′,π ′
q)
)

Locations that are accessed alike at program point q are
statically indistinguishable at q based on the set of access paths
reaching them in the memory at q.

Example 5. The access paths for locations at q in Example 4 are:

HAPcm(l1,π
1
q) = {σ1,σ2} HAPcm(l2,π

2
q) = {σ1,σ2}

HAPcm(l3,π
3
q) = {σ2,σ3} HAPcm(l4,π

4
q) = {σ2}

The equivalence classes {l1, l2}, {l3}, and {l4} are uniquely
identified by the set of access paths reaching them viz., {σ1,σ2},
{σ2,σ3}, and {σ2}, respectively.

2.4 Grouping Locations Using Allocation Sites and Accesses

The criteria based on which locations are grouped and therefore
treated alike in access-based abstraction is formalized below.

Definition 7. Equivalence using allocation sites and accesses.
Locations l and l ′ are equivalent at program point q under access-
based abstraction, denoted l≃ql ′, if they are equivalent based on
both allocation sites and accesses. Using Definitions 4 and 6,

l≃ql ′ ⇔ l
st
≃q l ′∧ l

ac
≃q l ′

Since both
st
≃q and

ac
≃q are equivalence relations, their

intersection ≃q is also an equivalence relation. Each equivalence
class of locations created using ≃q is uniquely identified by an
allocation site s ∈ S and a set of access paths α ⊆ Σ of the
locations. We represent each equivalence class by an access-based
node 〈s,α〉 or alternatively by s|i, where i uniquely identifies the
set of access paths α. Our key idea (Definition 7) using the role of
accesses and the conventional role of allocation sites is as follows:

Access-based abstraction at program point q groups the
following locations together: the locations that have been
allocated at the same site and are being accessed alike at q.

Example 6. Figure 2a shows heap locations l1 through l14 created
at in5. Using Definition 7, the equivalence classes of locations, their
associated access-based nodes, allocation sites s ∈ S, and sets of
access paths α ⊆ Σ are shown in Figure 2c. Although access paths
x.f.f and x.f.f.f reach l12 and l13, respectively (Figure 2a), these
are summarized to x.f(.f)∗. Thus, l12 and l13 are put in the same
equivalence class represented by access-based node 3|6 at in5.

Grouping locations reduces the amount of information while
keeping locations in different equivalence classes preserves
precision. We attempt to avoid partitions that may not add value to
a static analysis and make those that may be meaningful.

Although it is possible to group the locations based on accesses
alone, we also use allocation sites for summarization (Section 4.1).

3. Computing Access-Based Abstraction

Here we compute the abstraction using data flow analysis as per
Definition 7. We use the following basic pointer assignments in C:
x = &y, x = y, x = ∗y, ∗y = x, x = y->f, x->f = y, x = &(y->f), x =
y.f, x.f = y, x =&(y.f), x = null, and x = calloc(·). For simplicity of
exposition, in this section, we exclude the addressof operator “&”
and non-pointer fields. Besides, we model the indirection operator
“∗” as another field. Section 5.3 handles the features excluded here.

Stmt s Lptrs Lfields Rptes

x = null {x} /0 /0

x = calloc(·) {x} /0 {s|0}

x->f = calloc(·) Ts(x) {f} {s|0}

x = y {x} /0 Ts(y)

x = y->f {x} /0

⋃

n∈Ts(y)

Ts(n, f)

x->f = y Ts(x) {f} Ts(y)

Ts(v) = {n | v−→n ∈ Eins} Ts(m,g) = {n | m
g
−→n ∈ Eins}

Figure 3: Extractor functions for statement s. Lptrs and Rptes denote
l-value and r-value of s. Other C statements are handled in Section 5.3.

3.1 Abstract Semantics: Notations and Terminologies

Recall that the concrete memory created by an execution path
πq is a graph Gcm(πq) = 〈V∪Hcm(πq),E

cm(πq)〉. Let H and E

denote the sets of all possible access-based heap nodes and edges.
Analogously, we define an access-based graph at program point q,
denoted Gq = 〈V∪Hq,Eq〉, as a pair of sets of nodes and edges
(called access-based nodes and edges, when needed for clarity) as
follows. The node set V∪Hq is a discriminated union of the set of
variables V and the set of heap nodes Hq ⊆H. The edge set Eq ⊆E,
where Eq = EVq ∪EHq is a discriminated union of:

• EVq ⊆ V×Hq is the set of edges of the kind v−→n with a
variable as their source node, and

• EHq ⊆Hq×F×Hq is the set of labelled edges of the kind m
f
−→n

with their source node in the heap.

Recall that Σ represents the set of all access paths. We
construct program-point specific restriction of Σ denoted Σq ⊆ Σ

for a program point q which contains summarized access paths
discovered in the static analysis at q. Overall, we construct Hq, Eq,
and Σq on a need basis to incorporate the effect of a statement at
program point q during the analysis, and do not compute the full
range of values in the sets H, E, and Σ.

Hq,Eq,Σq at program point q ∈ Q are denoted as
Hins,Eins,Σins and Houts,Eouts,Σouts at q = ins and q = outs,
respectively.

Recall that HSTcm(·) and HAPcm(·) (Definitions 1 and 3) are
extractor functions for a location. HST and HAP in Definitions 8
and 9 below are extractor functions for an access-based node.

Definition 8. Allocation site of an access-based node. Each access-
based heap node is mapped to its allocation site. HST : H→ S.

Definition 9. Access paths reaching an access-based node.
HAP(n,E) returns a set of summarized access paths for
access-based node n using the sequences of edges reaching n in

edge set E ⊆ E. A helper function EAP(m
f
−→n,E) returns a set of

summarized access paths computed by appending f to each
summarized access path σ that reaches m in E. For summarization,
the allocation site of n (HST(n)) is passed as an argument to
function Summ(·) which is defined in Section 4.1.

HAP(n,E) ={σ | σ ∈ EAP(m
f
−→n,E),m

f
−→n ∈ E} ∪

{σ | σ ∈ EAP(v−→n,E),v−→n ∈ E}

EAP(v−→n,E) ={v}

EAP(m
f
−→n,E) ={Summ(σ, f,HST(n)) | σ ∈HAP(m,E)}

95

Stmt s
Eins

X= Eouts ∪ (Eins −Kills)∪Gens

Iteration Edge Set X Eouts =Normalize(X)

Stmt 3
y->f = calloc

Iteration 2

x

y
1|1

1|2

3|3

x

y
1|1

1|2

3|3

3|7

3|0

x

y
1|1

1|2

3|3

3|7

3|8

Stmt 4
y = y->f

Iteration 2

x

y
1|1

1|2

3|3

3|7

3|8

x

y
1|1

1|2

3|3

3|7

3|8

x

y

1|1

3|3

3|4 3|5

Node 〈s,α〉

1|0 〈1, /0〉

1|1 〈1,{x}〉

1|2 〈1,{x,y}〉

3|0 〈3, /0〉

3|3 〈3,{x.f,y}〉

Node 〈s,α〉

3|4 〈3,{x.f}〉

3|5 〈3,{x.f(.f)∗,y}〉

3|6 〈3,{x.f(.f)∗}〉

3|7 〈3,{x.f,y.f}〉

3|8 〈3,{x.f(.f)∗,y.f}〉

x

y

1|21|1

3|3

3|4 3|6 3|5

Fixpoint at out4 and in5 (Figure 2b)

Figure 4: Iteration 2 and fixed point computation at in5 of access-based analysis for the program in Figure 1. Iteration 1 of the analysis is in Figure 5. Double
lined and dotted edges in temporary edge set X denote Gens and Kills edges, respectively.

3.2 Node Properties Based on Allocation Sites and Accesses

Each access-based node n is uniquely identified by an allocation
site s ∈ S and a set of access paths α ⊆ Σ. By abuse of notation,
we use n ∈ Eq to mean that some access-based edge in Eq involves
access-based node n as the source or the target. For all q ∈Q, each
access-based node n ∈ Eq is uniquely identified by 〈s,α〉 denoted
as node s|i for brevity i.e., n ≡ s|i. Using Definitions 8 and 9,
s =HST(n), α =HAP(n,Eq), and i uniquely identifies α. In other
words, the set of access paths α identified by n at q is equal to the
set of access paths computed using sequences of edges in Eq that
reach n at q. As a special case, α = /0 is identified by i = 0.

Example 7. Ein5 denotes a set of access-based edges at program
point in5 (Figure 2b). The allocation sites and access paths of its
nodes are tabulated in Figure 2c. HST(1|1) is 1 and HST(3|4) is
3. HAP(1|1,Ein5) = {x} since EAP(x−→1|1,Ein5) is {x}.

HAP(3|4,Ein5) = {x.f} since EAP(1|1
f
−→3|4,Ein5) is {x.f}.

3.3 Access-Based Heap Analysis

Our data flow analysis computes access-based graphs in terms of
edge sets Eins and Eouts at ins and outs. The node sets at ins

and outs are V∪Hins and V∪Houts, respectively where Hins and
Houts are derived from the corresponding edge sets as follows:
∀q ∈Q.(n ∈ Eq)⇒ n ∈ V∪Hq. The solution of our analysis is the
set of access-based edges in the least fixed point computation of the
data flow equations 2 and 3 below where start denotes the starting
statement of the program, Pred(s) returns the set of control flow
predecessors of statement s in the control flow graph, and Eins and
Eouts are initialized to /0.

Eins =

/0 s = start⋃

k∈Pred(s)

Eoutk otherwise (2)

Eouts = Normalize
(

Eouts ∪ (Eins−Kills)∪Gens

)

(3)

The accumulation of Eouts in the right hand side of Equation 3
is explained in Section 4.2. Normalize(·) is defined in Equation 6.

SetsKills and Gens are defined below in Equations 4 and 5 using
extractor functions Lptrs and Rptes (Figure 3), which denote the
l-value and the r-value of statement s. In Figure 3, access-based
node s|0 is used when statement s uses calloc(·). Node s|0 denotes
free heap locations unreachable from any access path and allocated
at site s. Set Kills performs weak updates by removing edges only
from the nodes in V (Section 5.1 performs strong updates on the

Stmt s
Eins

X= Eouts ∪ (Eins −Kills)∪Gens

Iteration Edge Set X Eouts=Normalize(X)

Stmt 1

x = calloc

Iteration 1

x 1|0 x 1|1

Stmt 2

y = x

Iteration 1

x 1|1
x

y

1|1 x

y

1|2

Stmt 3

y->f = calloc

Iteration 1

x

y

1|2 x

y

1|2 3|0 x

y

1|2 3|7

Stmt 4

y = y->f

Iteration 1

x

y

1|2 3|7 x

y

1|2 3|7 x

y

1|1 3|3

Figure 5: Iteration 1 of access-based analysis for the program in Figure 1.
Iteration 2 and fixed point at in5 is in Figure 4. Double lined and dotted
edges in the intermediate edge set X denote Gens and Kills edges.

heap). Set Gens contains edges originating either from a variable
or in heap depending on the kind of statement.

Kills = {v−→n | v−→n ∈ Eins,v ∈ Lptrs} (4)

Gens =

{

Lptrs ×Rptes Lfields = /0

Lptrs ×Lfields ×Rptes otherwise
(5)

Example 8. The row for Stmt 1 in Figure 5 shows that when
statement 1 : x = calloc(·) is visited in iteration 1, edge x−→1|0
(shown with a double lined edge in the column titled “Edge Set X”)
is generated implying that variable x points to a free heap node for
computing Eout1. The row for Stmt 4 shows that when 4: y=y->f
is visited in iteration 1, edge y−→3|7 is generated and edge y−→1|2
(shown with a dotted line in the column titled “Edge Set X”) is
killed from Ein4 to compute Eout4.

Whenever an edge is killed or generated, the access paths for
all nodes reachable from the edge may change thereby requiring
an update of the access-based nodes. Normalize(X), for X ⊆ E,

96

updates each node n ∈ X with n′ where n′ uniquely identifies
allocation site HST(n) and updated set of access paths HAP(n,X).

Normalize (X) = {m′ f
−→n′ | m

f
−→n ∈ X,

m′ = 〈HST(m),HAP(m,X)〉,n′ = 〈HST(n),HAP(n,X)〉}

∪{v−→n′ | v−→n ∈ X,n′ = 〈HST(n),HAP(n,X)〉}

(6)

Note that access-based nodes are newly created on a need basis
by function Normalize(·). Therefore, in Equation 3, when Eouts is
defined, any node that is newly created is added to Houts and its
summarized access paths are added to Σouts.

Example 9. As shown in the row for Stmt 4 in Figure 5, when
statement 4 : y = y->f is visited in iteration 1, Normalize(X) is

called for X = {x−→1|2,y−→3|7,1|2
f
−→3|7} shown in the column

titled “Edge Set X”. Since HST(1|2) = 1, HAP(1|2,X) = {x} and
1|1 ≡ 〈1,{x}〉, Normalize(X) updates node 1|2 of the column
titled “Edge Set X” to 1|1 in the column for Eouts. Also, since
HST(3|7) = 3, HAP(3|7,X) = {x.f,y} and 3|3 ≡ 〈3,{x.f,y}〉,
Normalize(X) updates node 3|7 of the column titled “Edge Set X”
to 3|3 in the column for Eouts.

3.4 Soundness and Precision

Assume that all the functions and sets used for access-based
abstraction exist for name-based abstraction, and denoted using
nm in superscript. Let nodes l, l′ ∈ Hcm

,a,a′ ∈ H,n,n′ ∈ Hnm.

Functions N c2a(l) and N a2n(a) below respectively map l and a
to their corresponding set of access-based and name-based nodes.

N c2a(l) ={a | HSTcm(l) = HST(a)∧HAPcm(l)⊆ HAP(a)}

N a2n(a) ={n | HST(a) =HSTnm(n)∧HAP(a)⊆ HAPnm(n)}

For program point q = outs, let Gencm(πq),Gens,Gen
nm
s and

Killcm(πq),Kills,Kill
nm
s denote sets of generated and killed edges.

Theorem 1. Soundness. Consider concrete memory edge ecm =

v−→ l or ecm = l
f
−→ l′, and access-based edge e = v−→a or e =

a
f
−→a′, respectively, such that a ∈ N c2a(l) and a′ ∈ N c2a(l′). For

q = outs, access-based abstraction is sound because generation is
over-approximated and killing is under-approximated compared to
that in the concrete memory.

∀πq. E
cm(πq)

s
 Eq ⇔ (ecm ∈ Gencm(πq)⇒ e ∈ Gens) ∧

(e ∈ Kills ⇒ ecm ∈ Killcm(πq))

Theorem 2. Precision. Consider access-based edge e = v−→a or

e = a
f
−→a′, and name-based edge enm = v−→n or enm = n

f
−→n′,

respectively, such that n ∈ N a2n(a) and n′ ∈ N a2n(a′). For
q = outs, access-based abstraction under-approximates generation
and over-approximates killing as compared to the name-based
abstraction and hence is more precise.

Eq
p
 Enm

q ⇔ (e ∈ Gens ⇒ enm ∈ Gennms) ∧

(enm ∈ Killnms ⇒ e ∈ Kills)

4. Ensuring Convergence

In the presence of loops, we need to handle the following two issues
for guaranteeing termination: Bound the potentially infinite access-
based nodes into a finite set (Section 4.1) and handle the higher
periodicity of flow functions of access-based analysis (Section 4.2).

4.1 Summarization of Access Paths

In the presence of loops, the number of access paths may be
infinite in an access-based abstraction. Since an access-based node
is identified using sets of access paths, the number of access-based

x l
l1

f l

l2

f l

l3

f l

l4

f l
y l

l5

f l

l6

g l

Assuming allocation site of l1 is 1, of l2, l3, l4, l6 is 3, and of l5 is 2.

(a) Concrete memory.

x

y

1 3

2

x

y

1|1 3|1 3|2

2|1 3|3

Name-based graph Access-based graph

Node 〈s,α〉

1|1 〈1,{x}〉

2|1 〈2,{y}〉

3|1 〈3,{x.f}〉

3|2 〈3,{x.f(.f)+}〉

3|3 〈3,{y.f}〉

(b) Summarized access paths for locations allocated at site 3 in name-
based graph: x.f(.f)∗, y.f(.f)∗. Summarized access paths for locations
allocated at site 3 in access-based graph: x.f, x.f(.f)+, y.f.

Figure 6: Contrasting the use of allocation sites for summarization in name-
based abstraction and in access-based abstraction.

nodes may be infinite. Access-based abstraction uses allocation
sites to summarize access paths. This automatically creates a finite
number of nodes. We use allocation sites in a novel way for a
more precise summarization of access paths as follows: we merge
repeating fields in the same access path that point to locations
allocated at the same site. In contrast, name-based abstraction
groups locations allocated at the same site irrespective of the field
and irrespective of the access path.

Example 10. Figure 6 shows that access-based abstraction
identifies that access path y.f has no repeating field. On the other
hand, name-based abstraction over-approximates y.f to y.f(.f)∗

because allocation site 3 of the location reachable by y.f is
repeating along another access path, x.f.f.

Here (as also in our motivating example in Figure 2), the
potentially infinite number of access paths, x.f.f, x.f.f.f, and so on
with repeated occurrences of the same field, are summarized in
access-based abstraction as x.f(.f)+ since they all hold the
addresses of locations allocated at site 3. The allocation sites are
saved in the access paths as follows: x.f3.f3, x.f3.f3.f3, and so on;
therefore, summarized as x.f3(.f3)

+.
An arbitrary access path, w.g2.g3.g2, is summarized as

w.g2(.g3.g2)
+. Here w.g2.g3 denotes that w.g and w.g.g point to

locations allocated at sites 2 and 3, respectively. Summarized
access path w.g2(.g3.g2)

+ is obtained by representing w.g2.g3.g2
as a finite automata and merging the two occurrences of g2.

It can be seen that the definition of set of access paths Σ ⊆
V×F∗ (Section 1) is updated to Σ ⊆ V× (F×S)∗ to identify the
allocation sites of the locations pointed to by the corresponding
field. Function Summ(·) summarizes each access path as described
in the examples above. Its use in Definition 9 is illustrated below.

Example 11. The column for Eouts in the row for Stmt 3 of
Figure 4 shows that node 3|8 ∈ Eout3 is reachable by summarized
access path, x.f(.f)∗. It is obtained when Normalize(X) updates
node 3|0 ∈ X of the column titled “Edge Set X” to 3|8 ∈ Eout3 in

the column for Eouts due to the generated edges 1|2
f
−→3|0 in X

and 3|3
f
−→3|0 in X of the column titled “Edge Set X”. From

Definition 9, set of summarized access paths computed using

EAP(1|2
f
−→3|0,X) is {Summ(x, f,3)} ∪ {Summ(y, f,3)}

= {x.f3,y.f3}, and that computed using EAP(3|3
f
−→3|0,X) is

{Summ(x.f3, f,3)} ∪ {Summ(y, f,3)} = {x.f3(.f3)
+
,y.f3} in the

column for “Edge Set X”. Union of the EAP(·) values gives

97

HAP(3|0,X) = {x.f3(.f3)
∗,y.f3}. These access paths are identified

by 3|8 ≡ 〈3,{x.f3(.f3)
∗,y.f3}〉 in the column for Eouts.

Depending on the precision and efficiency requirements, any
user-defined summarization of an access path can be plugged in
as the definition of function Summ(·). We have implemented and
evaluated four summarization techniques; their descriptions and
our empirical observations can be found in Section 7.

4.2 Handling Higher Periodicity of Flow Functions

Most flow functions have a fixed point which is a periodic point2

with period k = 1. However, some functions have a periodic point
with period k > 1 [12]. For such a periodic point, the values
computed by the function can be equal only with a periodicity of
k. Hence detecting convergence requires comparing the values of
iteration i with iteration i − k, i > k; a comparison between
successive iterations may lead to non-termination and the value of
k may not be known.

For convergence, our analysis needs to maintain a subgraph
relationship over the access-based graphs computed at a program
point in successive iterations. If this relationship is defined as a
subset relationship of node and edge sets where each node is treated
as distinct, the graphs in the successive iterations may be found
incomparable (Example 12), and may have a periodic point with
period k > 1 (Example 13). We overcome this problem in the
following manner: instead of replacing the data flow value Eouts

with a new computation every time, we accumulate the values in
each iteration at the program point. Equation 3 shows that Eouts is
computed by taking a union with Eouts of the previous iteration in
the analysis. Since incomparable graphs are now ruled out, our data
flow equations have a fixed point rather than a periodic point with
period k > 1. This simplifies detecting convergence.

Example 12. Assume that we do not accumulate the values over
iterations i.e., node 3|7 in Eout3 of iteration 1 (in the column
for Eouts of the row for Stmt 3 in Figure 5) is not carried over
to Eout3 of iteration 2 (in the column for “Edge Set X” of the
row for Stmt 3 in Figure 4). Observe that 3|7 is not generated in
iteration 2. This is because 3|0 in the column titled “Edge Set X”
which is updated to 3|7 in the column for Eouts in iteration 1, is
updated to 3|8 (and not 3|7) in the column for Eouts in iteration
2. Semantically, 3|7 ≡ 〈3,{x.f,y.f}〉 of iteration 1 is subsumed in
3|8 ≡ 〈3,{x.f(.f)∗,y.f}〉 of iteration 2 because their sets of access
paths have a subset relation. However, node id 3|7 in the column
for Eouts of iteration 1 is not found in the column for Eouts of
iteration 2 which makes the graphs incomparable.

By accumulating 3|7 from iteration 1 to iteration 2, the graph of
iteration 1 is found to be subsumed in the graph of iteration 2.

Example 13. Appendix A provides an example and its data flow
value for the overall flow function with period k = 2 when data flow
values are not accumulated over iterations.

5. Extensions of Access-Based Abstraction

In this section, we describe how we allow strong updates
(Section 5.1), perform interprocedural analysis (Section 5.2), and
handle address expressions and non-pointer fields (Section 5.3).

5.1 Strong Updates

Equation 4 performs killing of access-based edges when a variable
is redefined. Here we handle strong updates of access-based edges

2 For a function f , let f 0(x) = x and f i+1(x) = f (f i(x)). A periodic point of

f is a value x such that for some k, f k(x) = x and f j(x) 6= x for 0 < j < k.

It has a period k because for all i ≥ 0, f i·k(x) = x. A fixed point is a value x

such that f (x) = x. Hence a fixed point is a periodic point with period k = 1.

1 void main (){
2 struct abc *x,*y;
3 x=calloc (...);
4 x->f=calloc (...);
5 if ...
6 y=x;
7 else
8 y=calloc (...) ;
9 bar(x);

10 }

11 struct abc *w;
12 void bar(struct abc *z){
13 w=z;
14 }

Stmt s Eins Eouts

Stmt 9

bar(x)

x

y

3|1 4|5

8|9

w

x

y

3|4 4|8

8|9

Stmt 13

w = z

z 3|2 4|6 w

z

3|3 4|7

Node 〈s,α〉

3|1 〈3,{x,y}〉

3|2 〈3,{z}〉

3|3 〈3,{w,z}〉

3|4 〈3,{x,y,w}〉

4|5 〈4,{x.f,y.f}〉

4|6 〈4,{z.f}〉

4|7 〈4,{w.f,z.f}〉

4|8 〈4,{x.f,y.f,w.f}〉

8|9 〈8,{y}〉

Figure 7: Interprocedural analysis using reachability based localization.

when x->f is defined. A strong update on access-based field edge
f can be performed by statement s defining x->f if both of the
following conditions hold at program point q = ins:

• x should neither point to a summary node nor hold a null or
undefined value [14]. We identify a node as a summary node if
its set of access paths contains a summarized access path.

• All access paths that are aliases of x, should be must aliases of
x. An access path σ is must-aliased to x if whenever an access-
based node contains x in its set of access paths, it also contains
σ and vice versa.

∀n ∈ Eq,∀σ ∈ Σq.(x ∈ HAP(n,Eq)⇔ σ ∈HAP(n,Eq))

5.2 Interprocedural Analysis

We perform a value-based context-sensitive analysis [13, 26],
which records the context of a call by a pair of input-output data
flow values generated on a need basis by traversing the call graph
top-down. Since we summarize access paths, our data flow values,
and hence the number of contexts of a procedure, is finite. This
enables full context-sensitivity even in the presence of recursion.
We perform a reachability-based localization [28] for efficiency
which bypasses the information that is not reachable from global
variables and callee’s parameters. Basically, we use the intuition
of separation logic [6] without using their formalizations. The
main challenge in our method is that when unreachable
information is bypassed, there is a change in the access paths for
the nodes passed to the callee. After the call, the bypassed
information in the caller needs to be connected with the
computation of the callee. For this, we need to map the nodes in
the input data flow value of the callee with their corresponding
updated nodes in the output data flow value of the callee. This
mapping may be different for different calls of the same function.
This is different from any other analysis where the mapping of
data flow values before and after a call is straightforward.

Example 14. Figure 7 illustrates this bypassing. In the column
for Eins of the row for Stmt 9 i.e., before the function call bar(x),
nodes, x, y, and 8|9—unreachable from the formal parameter z—are
bypassed. In other words, they are disconnected from nodes that are
reachable from z viz., 3|1 and 4|5 to obtain the graph in the column

98

Smallest set of access paths for nodes for s
Statements

lt′ lt rt rt′

s : x = y {x.&} {y.&.⋆} {x.&.⋆, y.&.⋆}

s : x = &y {x.&} {y.&} {x.&.⋆, y.&}

s : x.f = &y {x.&} {x.&.f} {y.&} {x.&.f.⋆, y.&}

s : x.f = y {x.&} {x.&.f} {y.&.⋆} {x.&.f.⋆, y.&.⋆}

s : x = &(y.f) {x.&} {y.&.f} {x.&.⋆, y.&.f}

s : x = y.f {x.&} {y.&.f.⋆} {x.&.⋆, y.&.f.⋆}

x = &y

s : z = &(x->f)
{z.&}

{x.&.⋆.f,

y.&.f }

{x.&.⋆.f, y.&.f,

z.&.⋆ }

x = calloc(·)

s : z = &(x->f)
{z.&} {x.&.⋆.f} {x.&.⋆.f, z.&.⋆}

Figure 8: Examples of access-based nodes lt′, lt,rt, and rt′ for handling the

addressof operator & and structure fields. For each statement s, lt
⋆
−→rt ∈

Gens and lt
⋆
−→rt′ ∈ Eouts, where rt′ identifies updated access paths for rt.

for Eins of the row for Stmt 13. At the end of function bar(·), since
nodes 3|1 and 4|5 have been updated to 3|3 and 4|7, respectively in
the column for Eouts of the row for Stmt 13, the bypassed nodes
need to be reconnected to the latter nodes. This reconnection after
the call i.e., at out9 produces Eout9 in the row for Stmt 9.

5.3 Address Expressions and Non-Pointer Fields

We extend our principle of partitioning heap locations based on
access paths to partitioning locations of address escaped variables
across execution paths. This allows us to precisely compute that
variables x and y are not aliased at the end of the code:
if(·) x = &z; else y = &z;. This is because the access paths
reaching location z are different along the two control flow paths
in the code. Address escaped variables are modeled as heap. Thus,
strong updates are performed in the lines of heap (Section 5.1).

Access-based abstraction of locations of the same variable
requires us to handle the addresses accessed by the addressof
operator “&” and accesses such as x.f.g where x and f are not
pointers (g may or may not be a pointer). Practical C code (e.g.
SPEC benchmarks) is replete with address expressions such as
&(x.f.g). These two features are related and handled as follows:

1. For every variable x, we create an access-based node reachable
by a special access path x.&.

2. For every field f, we create a field node representing the location
reached by adding the offset of f to the corresponding base
location represented by n ∈ Eq. The field node is identified by
the set of access paths, {σ.f | σ ∈HAP(n,Eq)}.

3. For every address expression &(e), we create an access-based
node identifying access paths corresponding to expression e.

4. The access-based edges (Section 3.1) at program point q are
generalized to Eq = Nq ×F×Nq. Here Nq represents a set of
access-based nodes and Eq represents:

• Field edges: Each field node can be reached from the node,
representing the base of the corresponding location, via a
field edge labelled with the field offset. Field edges are
represented by Nq ×F×Nq.

• Points-to edges: A node can hold the address of other nodes.
Such edges are represented by Nq ×{⋆}×Nq, where ⋆ ∈ F

models the indirection operator “∗” or “->” (because x->f
is equivalent to (∗x).f).

Example 15. For each statement s in Figure 8, we create access-
based nodes lt (for the l-value) and rt (for the r-value) and generate

C Program

GCC Gimple

NBHA

ABHA

Analysis Result
NB

Analysis Result
AB

Access Paths Access Paths

C2TVP AP2TVP AP2TVP

CFG
+

Standard
Predicates

+
Associated

Transfer
Functions

Program
Dependent
Predicates

+
Associated

Transfer
Functions

Program
Dependent
Predicates

+
Associated

Transfer
Functions

TVLA

TVLA

TVLA
Analysis Result

AB′

Analysis Result
NB′

Analysis Result
TVL

S
ec

ti
o
n

6

ABHA: Access-Based Heap Analyzer
NBHA: Name-Based Heap Analyzer
TVLA: Three-Valued Logic Analyzer

.Figure 9: Using tools, ABHA and NBHA, both independently and also as
front-ends to TVLA for automatically generating inputs required by TVLA.
The circular nodes denote tools, the rectangular nodes denote information,
and the edges denote flow of information. Our tool C2TVP converts Gimple
(of a C program) to TVP (Three-Valued Program). Our tool AP2TVP
constructs predicates and transfer functions (of TVP) from access paths.

lt
⋆
−→rt. This changes the access paths for rt. Normalize(·) creates a

new node rt′ and adds lt
⋆
−→rt′ in Eouts. x.f = &y adds lt′

f
−→ lt also

in Eouts where lt′ denotes a node with the access path x.&. In each
case, since lt, lt′, rt, and rt′ nodes may be reachable by additional
access paths, we could have multiple choices for these nodes.

At the end of the code, if(·) x = &z; else y = &z;, access-based
nodes are uniquely identified by the following set of access paths:
{x.&},{y.&},{x.&.⋆,z.&}, and {y.&.⋆,z.&} which are precise—x
and y are not marked as aliases.

6. ABHA as a Front-end to TVLA

ABHA (Access-Based Heap Analyzer) can also act as front-end
to a well known tool, TVLA (Three-Valued Logic Analyzer) [29]
which is a parametric shape analyzer. ABHA can export its analysis
predicates to TVLA in order to automatically parametrize it with
predicates that capture the program behaviour more accurately.
Here we also translate C to TVP or Three Valued Program, which
includes the control flow graph, predicates, and transfer functions
(called predicate update formulae [29]).

TVLA is parameterized by predicates viz. (i) core predicates,
and (ii) instrumentation predicates (derived from the core
predicates) like “reachable from a variable via a field name” and
“is a shared node”. Many routinely used core and instrumentation
predicates, which we call standard predicates, do not capture the
program behaviour as accurately as would be desired in some
applications (see Section 1). Unfortunately, TVLA cannot itself
infer predicates. However, it allows a user to write better
instrumentation predicates for program dependent and domain
specific results. We call such instrumentation predicates as
program-dependent predicates. However, for every different

99

program and also for every different set of properties that are
desired to be captured, a user needs to rewrite or fine tune these
predicates. For example, for writing program-dependent predicates
like those based on access paths, a user needs to know all patterns
of sequences of field names that could be created by the given
program. Further, the user needs to define a transfer function for
each such predicate on each type of statement of the program
which is non-trivial specially for real world programs with several
thousand lines of code. This impedes the applicability of TVLA.

In contrast to TVLA, ABHA covers the entire spectrum of
programs and unravels the program behaviour by automatically
generating access paths created by the given program.

As a TVLA front-end, ABHA generates a set of access paths
created by the program. Our tool AP2TVP (Figure 9) creates a
predicate and a transfer function for each such access path without
user intervention. Therefore, the use of ABHA as a front-end to
TVLA facilitates an automation of TVLA. In a similar way, as
shown in the figure, classical NBHA (name-based heap analyzer)
can also be set up as a front-end to TVLA. Overall, the figure shows
that for large real world programs, the results of ABHA (or NBHA)
can be directly used (denoted as AB (or NB) in the figure). For
small programs fitting the TVLA limit, either (i) TVLA could be
used with standard predicates which may not capture the program
behaviour accurately (denoted as TVL), or (ii) the results of ABHA
(or NBHA) could be exported to TVLA to obtain more precise
results automatically (denoted as AB′ (or NB′)) thereby reducing
the human effort in using TVLA productively.

7. Implementation and Measurements

We have implemented fully flow- and context-sensitive ABHA with
different summarization techniques and classical NBHA using the
LTO framework of GCC 4.7.2 using 32 bit Ubuntu 12.04 on a single
Intel Core(TM) i7-3770 CPU at 3.40GHz and 8 GiB RAM. ABHA
scales up to 20 kLoC and we have performed measurements for all
C based SPEC CPU 2006 benchmarks up to 20.6 kLoC that use
heap. Rest of the benchmarks in SPEC CPU 2006 are larger, do
not use heap, or include Fortran/C++ files. We have also performed
measurements for all heap related SV-COMP benchmarks.

7.1 Language Features

NBHA and ABHA handle the advanced features of C in the usual
manner: Pointees of function pointers are computed on-the-fly to
identify indirect calls. An array is treated as a single variable
without distinguishing between its indices. This allows us to
ignore pointer arithmetic on arrays. Pointer arithmetic on structure
fields will be handled when we strengthen our implementation.

7.2 Efficient Representation and Analysis Algorithms

Other than reachability based localization (see Section 5.2), we
have used the following optimizations for efficiency.

• Only the set of access-based nodes are saved at each program
point; edges are saved globally. The graph at each program
point is a vertex induced graph. Thus, our fixpoint identification
and join operation are simple operations on sets of nodes rather
than complex operations of graphs. Saving edges globally helps
in merging common subgraphs across program points as is also
achieved by the use of isomorphism [22] in TVLA which is a
complex operation and applied only at join program points.

• Optimized Normalize(·) (Section 3.3) updates only the portion
of the graph affected by a flow function i.e., it operates in a
local way like separation logic [5] whereas TVLA operates in a
global way by updating predicates of all nodes in a graph [5].

• Points-to information is computed only for live pointers [14].

Benchmark details
SPEC

kLoC Funcs Blocks Stmts Allocs Vars

lbm 0.9 19 229 326 1 311

mcf 1.6 23 461 457 3 231

libquantum 2.6 76 917 139 7 386

bzip2 5.7 83 2417 1379 5 637

milc 9.5 184 3677 1330 39 1343

sjeng* 10.5 121 5106 372 11 608

hmmer 20.6 254 6730 4880 11 3386

Figure 10: The table shows the number of lines of code, functions, blocks,
pointer assignments, allocs, and variables in SPEC CPU 2006 benchmarks.

7.3 Variants Implemented

Our baseline analyzer is NBHA in which all concrete memory
locations created by the same allocation site are represented by a
unique node. We compare NBHA with variants of ABHA that use
allocation sites and different definitions of Summ(·) (Section 4.1)
to summarize access paths in terms of (i) finite automata (abfa),
(ii) limiting repeating fields (abrf), (iii) names of the variables
(abnv), and (iv) k length prefix (abkp) for 0 < k ≤ 4. Performing
a sound strong update in NBHA is not straightforward. For a fair
comparison, we do not perform strong updates in ABHA as well.

We have developed C2TVP that converts Java like statements
of C to TVP (Section 6). A more detailed comparison with TVLA
awaits a bug fix in handling function calls in TVLA. Our
experiments reveal that the interprocedural example available with
TVLA suite [21] currently gives an unsound result which has been
confirmed by its authors. Since our interest is in real life large
programs, this bug is a show stopper for a comparison with TVLA.

7.4 Metric for Precision

Since variables have compile time names, the number of points-
to pairs is a fair measure of precision. However, heap locations do
not have (natural) compile-time names and are accessed in terms of
access paths. Therefore, the precision of a sound points-to analysis
for heap memory can be measured in terms of the number of aliased
access paths—for a sound analysis, the smaller this number, the
more precise is the analysis.

Since different variants summarize access paths differently, a
fair comparison of the invariants requires retrieving access paths of
the same length from a given summarization—we have chosen to
retrieve access paths of length 4 (variable followed by up to 3 field
names); longer access paths did not lead to any new observation.

We record the following three measures of aliases: unique
number of pairs of aliased access paths across the program
(unique), total number of pairs of all the aliased access paths at
each program point (total), and total number of pairs of aliases of
dereferenced access paths (deref) at each dereferencing statement.

7.5 Empirical Observations

We compare precision and efficiency of ABHA with baseline
NBHA on SPEC CPU 2006 benchmarks (Figures 10 and 11) and
heap manipulating SV-COMP benchmarks (Figure 12).

Since all variants of ABHA (Section 7.3) use allocation site
also for representing heap nodes, they are at least as precise as
NBHA. Figure 11 shows the improved precision on SPEC CPU
2006 in terms of the number of deref aliases. Benchmarks bzip2
(5.7 kLoC) and hmmer (20.6 kLoC) perform heavy heap
manipulating operations and reflect a significant precision
improvement of 70% and 99.66%, respectively using abfa
summarization technique of ABHA. The variant abfa gives the
most precise results on all benchmarks except on sjeng, on which
abkp variant with k = 3 and k = 4 give better precision within
comparable time. The variant abnv gives comparable or lower
precision on all benchmarks as compared to all other access-based

100

.

Figure 11: The two bar charts, respectively, depict a comparison of precision (in terms of number of deref aliases) and analysis time (in seconds) of baseline
NBHA and 7 variants of ABHA on SPEC CPU 2006 benchmarks. Summarization techniques used in ABHA: (i) finite automata (abfa), (ii) limiting repeating
fields (abrf), (iii) names of the variables (abnv), and (iv) k length prefix (abkp) for 0 < k ≤ 4. *In benchmark sjeng, without changing the semantics, we have
replaced an array with a calloc because we want to compare heap manipulations rather than array manipulations.

.

Figure 12: The bar charts depict percentage improvement in precision over
NBHA calculated in terms of unique, total, and deref aliases for abfa
summarization technique in ABHA on 61 SV-COMP benchmarks.

summarization techniques. However, it also takes less time on all
benchmarks except hmmer. It is interesting to note that increased
precision may not always come at the cost of efficiency. For
example, abfa variant is both more precise and more efficient as
compared to abrf, abnv, and abkp (k = 1,2) variants on hmmer.
This is because the memory allocation in hmmer is confined to 11
allocation sites and hence the locations are used in the program
through long access paths. Thus, the impact on time of an
imprecise summarization of access paths (like abrf, abnv, and
abkp (k = 1,2) variants) is worse in hmmer as compared to that in
other benchmarks. In Normalize(·) (Section 3.3), the number of
nodes affected per program point by each flow function is as large
as 13.22 using abrf, 50.62 using abnv, and only 7.60 using abfa.
Thus, the analysis time using abrf is 61 seconds, abnv is 78
seconds, and abfa is lesser i.e., 50 seconds.

Figure 12 shows the improved precision using abfa variant in
percentages for 61 heap-manipulating SV-COMP benchmarks of
27–153 LoC. We have created 6 buckets of percentage

improvements (e.g. 0–10%, 10–20%, etc.). The benchmarks are
assigned to these buckets based on their percentage improvement.
For measures unique and total, the improvement for majority of
benchmarks is less than 20%. However, for the deref measure, we
record higher improvement in the range of 20%–40%.

Although ABHA is inefficient compared to NBHA (Figure 11),
it is certainly far more efficient than other methods such as TVLA
(Section 8) that do not scale beyond a thousand lines whereas our
implementation scales to 20 kLoC.

8. Related Work

We present the directly relevant literature here; a detailed survey of
heap abstractions in static analysis can be found elsewhere [10].

Name-based abstraction is the most commonly used classical
technique of bounding heap memory for static
analysis [4, 7, 9, 24]. The names resulting from the same
allocation site in a procedure when it is called from different
calling contexts, can be distinguished using call chains reaching
the procedure or by using creation sites of the receiver
objects [18, 24, 30]. This requires special machinery. According to
us, this distinction becomes unnecessary in an access-based
abstraction at program point u because a statement associated with
u will have the same effect if two locations allocated similarly are
also accessed alike in every execution instance of u.

Access paths have been used in past [17, 23, 31] for variables [8]
and for heap locations by randomly choosing one of the access
paths reaching the location [17] by summarizing access paths using
k-limiting. k-limiting has been found to be inefficient for large
values of k [29]. We summarize only an unbounded number of
repetitions of a field similar to access graphs [11] and not a bounded

101

repetition of a field [23]. Sets of access paths have been used
to perform must-points-to analysis [31]. Unlike our may-points-to
analysis, it is scalable because it involves an intersection of data
flow values across control flow paths (the data flow values cannot
grow without bound). This creates shorter bounded access paths
that do not need summarization.

Empirical measurements of TVLA implementations (using
simple instrumentation predicates for trees and singly linked
lists [2, 19, 20, 27, 28]) show that they do not scale to real world
programs, even after applying optimizations specialized for trees
and singly linked lists. These techniques require times varying
from a few seconds to up to ten hours on small programs of less
than hundred lines of code. Variants of TVLA using core
predicates and additional counting quantifiers and even without
performing materialization [1] require time in orders of seconds
on small handwritten programs. Further the TVLA tool requires
human intervention in defining predicates and transfer functions.

Interprocedural implementations of heap abstractions [6, 32]
which apply separation logic using TVLA’s instrumentation
predicates take some seconds to some hours on handwritten
programs and small examples of less than thousand lines of code.

The use of higher order logics [3, 15, 25] is highly precise but
requires human intervention for deriving non-trivial properties.

In contrast, our tool ABHA scales to programs as large as 20
kLoC without human intervention.

9. Conclusions and Future Work

Starting from a runtime ideal of keeping all concrete locations
distinct, we optimize the distinctions that need to be made at
compile time without much loss of precision—some loss is
inevitable due to summarization. Our heuristic attempts to strike a
balance between the two by (i) avoiding distinctions that a
program cannot make based on the accesses in its statements
because these distinctions do not add value to a static analysis, and
(ii) making those distinctions that may be meaningful for the
precision of a static analysis. Hence, our access-based abstraction
groups concrete memory locations at program point q if and only
if they have been allocated at the same site and are accessed alike
at q via summarized access paths. The if condition combines
similarly accessed memory locations thereby reducing the amount
of information. The only if condition preserves precision by
distinguishing between differently accessed locations.

Provably, our tool ABHA is strictly more precise than classical
NBHA except in some trivial cases, and practically can improve
the precision even up to 99% (in terms of the number of aliases),
and scales to 20 kLoC. In terms of efficiency, as expected, the
increased precision of ABHA results in being slower than classical
NBHA; however, it scales much better than TVLA [29]. Further, we
can use ABHA as a front-end to TVLA in order to automatically
parametrize it with predicates that capture the program behaviour
more accurately. A more detailed comparison with TVLA for real
world programs awaits a bug fix (confirmed by its authors) in the
current TVLA suite [21].

A. Higher Periodicity of Flow Functions in

Access-Based Analysis

Here we illustrate the existence of higher periodicity of functions
in access-based analysis. They warrant accumulation of access-
based graphs at a program point across iterations for detecting
convergence (Section 4.2).

Example 16. The overall function computing the fixed point
solution of the program in Figure 13 has a period k = 2. The
access-based graph Eout12 of iteration 1 of the analysis

1 z = calloc(. . .) 1
2 y = calloc(. . .) 1
3 y->f = z 1
4 z->f = y 1
5 x = calloc(. . .) 1
6 w = x 1

1

7 w->f = z 1
8 if (y!=null) 1

1

9 w = w->f 2

10 w = null 10
10 x = null 11
10 z = null 12

1

13 y = y->f 13

14 y = null 14

15 y = null 2

.
Figure 13: Example to illustrate an overall function for fixed point
computation with period k = 2 in access-based analysis when values are not
accumulated over iterations. We do not analyze any condition statement.

Eout12, Iteration 1 Eout13, Iteration 1 Eout12, Iteration 2

y

2|1 1|2

y

1|1 2|2 y

2|5 1|3

.

Eout13, Iterations 2i, i ≥ 2 Eout13, Iterations 2i+1, i ≥ 2

y

2|5 1|3

2|1 1|2

1|4 2|6

y

1|1 2|2

2|5 1|3 1|4 2|6

.
Access-based nodes for site 2 Access-based nodes for site 1

2|1 〈2,{y.(f.f)∗}〉 1|1 〈1,{y.(f.f)∗}〉

2|2 〈2,{y.f.(f.f)∗}〉 1|2 〈1,{y.f.(f.f)∗}〉

2|5 〈2,{y.(f.(f)∗.f)∗}〉 1|3 〈1,{y.f.f∗, y.f.(f∗.f.f)∗}〉

2|6 〈2,{y.f∗.f, y.f.(f.(f)∗.f)∗}〉 1|4 〈1,{y.f∗, y.(f.f.(f)∗)∗}〉

Figure 14: Access-based graphs for the program in Figure 13 in access-
based analysis without accumulating data flow values over iterations.

(Figure 14) reaches the start of the loop on statement 13 because
of the complex program structure before the loop (Figure 13). In
iteration 2, this graph does not reach out12. Instead, the
access-based graph Eout12 of iteration 2 of the analysis
(Figure 14) reaches the start of the loop of statement 13. Each
iteration of the analysis over the loop on statement 13 advances
the pointer y by field f in the graph. This changes the access paths
and requires creation of new access-based nodes. Node 2|1 is
created for the access paths obtained by replacing y.f by y in the
access paths for node 2|2. Similarly node 1|1 is created for the
access paths obtained by replacing y.f by y in the access paths for
node 1|2. Node 2|5 is created for the access paths obtained by
replacing y.f by y in the access paths for node 2|6.

As the analysis proceeds, no two successive iterations have
identical values. We overcome this problem by accumulating the
access-based graphs. When this is done, the larger graph with all
eight nodes becomes the fixed point of the analysis.

102

Acknowledgments

Supratik Chakraborty gave us valuable insights into TVLA and
suggested the use of ABHA as a front-end for TVLA. Alan Mycroft
helped us to make our key idea more accessible. The profiling
tool developed by Amey Karkare and Prasanna Kumar helped us
to improve the efficiency of our implementation dramatically. We
thank the anonymous referees for their valuable suggestions for
improving the paper.

References

[1] G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated
storage. In Proceedings of the 13th International Conference on Static

Analysis, SAS’06, pages 221–239, Berlin, Heidelberg, 2006. Springer-
Verlag.

[2] I. Bogudlov, T. Lev-Ami, T. Reps, and M. Sagiv. Revamping tvla:
Making parametric shape analysis competitive. In Proceedings of

the 19th International Conference on Computer Aided Verification,
CAV’07, pages 221–225, Berlin, Heidelberg, 2007. Springer-Verlag.

[3] M. Bozga, R. Iosif, and Y. Lakhnech. Static Analysis: 11th

International Symposium, SAS 2004, Verona, Italy, August 26-28,
2004. Proceedings, chapter On Logics of Aliasing, pages 344–360.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[4] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and
structures. In Proceedings of the ACM SIGPLAN 1990 Conference on
Programming Language Design and Implementation, PLDI ’90, pages
296–310, New York, NY, USA, 1990. ACM.

[5] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In Proceedings of the 12th International
Conference on Tools and Algorithms for the Construction and Analysis

of Systems, TACAS’06, pages 287–302, Berlin, Heidelberg, 2006.
Springer-Verlag.

[6] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape
analysis with separated heap abstractions. In Proceedings of the 13th
International Conference on Static Analysis, SAS’06, pages 240–260,
Berlin, Heidelberg, 2006. Springer-Verlag.

[7] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for millions
of lines of code. In Proceedings of the 9th Annual IEEE/ACM
International Symposium on Code Generation and Optimization,
CGO ’11, pages 289–298, Washington, DC, USA, 2011. IEEE
Computer Society.

[8] M. Hind, M. Burke, P. Carini, and J.-D. Choi. Interprocedural pointer
alias analysis. ACM Trans. Program. Lang. Syst., 21(4):848–894, July
1999.

[9] M. Hirzel, A. Diwan, and J. Henkel. On the usefulness of type and
liveness accuracy for garbage collection and leak detection. ACM

Trans. Program. Lang. Syst., 24(6):593–624, Nov. 2002.

[10] V. Kanvar and U. P. Khedker. Heap abstractions for static analysis.
ACM Comput. Surv., 49(2):29:1–29:47, June 2016.

[11] U. Khedker, A. Sanyal, and A. Karkare. Heap reference analysis using
access graphs. ACM Trans. Program. Lang. Syst., 30(1), Nov. 2007.

[12] U. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory

and Practice. CRC Press, Inc., Boca Raton, USA, 1st edition, 2009.

[13] U. P. Khedker and B. Karkare. Efficiency, precision, simplicity,
and generality in interprocedural data flow analysis: Resurrecting the
classical call strings method. In Proceedings of the Joint European

Conferences on Theory and Practice of Software 17th International
Conference on Compiler Construction, CC’08/ETAPS’08, pages 213–
228, Berlin, Heidelberg, 2008. Springer-Verlag.

[14] U. P. Khedker, A. Mycroft, and P. S. Rawat. Liveness-based pointer
analysis. In Proceedings of the 19th International Conference on

Static Analysis, SAS’12, pages 265–282, Deauville, France, 2012.
Springer-Verlag.

[15] V. Kuncak, P. Lam, K. Zee, and M. C. Rinard. Modular pluggable
analyses for data structure consistency. IEEE Trans. Softw. Eng., 32
(12):988–1005, Dec. 2006.

[16] W. Landi and B. G. Ryder. A safe approximate algorithm for
interprocedural aliasing. In Proceedings of the ACM SIGPLAN 1992

Conference on Programming Language Design and Implementation,
PLDI ’92, pages 235–248, New York, NY, USA, 1992. ACM.

[17] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure
accesses. In Proceedings of the ACM SIGPLAN 1988 Conference on

Programming Language Design and Implementation, PLDI ’88, pages
24–31, New York, NY, USA, 1988. ACM.

[18] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In
Proceedings of the 2007 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’07, pages 278–289,
New York, NY, USA, 2007. ACM.

[19] T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for shape
analysis with fast and precise transformers. In Proceedings of the 18th

International Conference on Computer Aided Verification, CAV’06,
pages 547–561, Berlin, Heidelberg, 2006. Springer-Verlag.

[20] A. Loginov, T. Reps, and M. Sagiv. Automated verification of the
deutsch-schorr-waite tree-traversal algorithm. In Proceedings of the

13th International Conference on Static Analysis, SAS’06, pages 261–
279, Berlin, Heidelberg, 2006. Springer-Verlag.

[21] R. Manevich. Tvla: 3-valued logic analysis engine, tvla3+hedec, June
2011. URL http://www.cs.tau.ac.il/ tvla/tvla-3.tar.gz.

[22] R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially

Disjunctive Heap Abstraction, pages 265–279. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[23] I. Matosevic and T. S. Abdelrahman. Efficient bottom-up
heap analysis for symbolic path-based data access summaries.
In Proceedings of the Tenth International Symposium on Code

Generation and Optimization, CGO ’12, pages 252–263, New York,
NY, USA, 2012. ACM.

[24] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for java. SIGSOFT
Softw. Eng. Notes, 27(4):1–11, July 2002.

[25] A. Møller and M. I. Schwartzbach. The pointer assertion logic
engine. In Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, PLDI ’01, pages
221–231, New York, NY, USA, 2001. ACM.

[26] R. Padhye and U. P. Khedker. Interprocedural data flow analysis in
soot using value contexts. In Proceedings of the 2Nd ACM SIGPLAN
International Workshop on State Of the Art in Java Program Analysis,
SOAP ’13, pages 31–36, New York, NY, USA, 2013. ACM.

[27] J. Reineke. Shape analysis of sets. Master’s thesis, Universität des
Saarlandes, Germany, June 2005.

[28] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis
for cutpoint-free programs. In Proceedings of the 12th International
Conference on Static Analysis, SAS’05, pages 284–302, Berlin,
Heidelberg, 2005. Springer-Verlag.

[29] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’99,
pages 105–118, New York, NY, USA, 1999. ACM.

[30] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts
well: Understanding object-sensitivity. In Proceedings of the

38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, POPL ’11, pages 17–30, New York, NY,
USA, 2011. ACM.

[31] M. Sridharan, S. Chandra, J. Dolby, S. J. Fink, and E. Yahav.
Aliasing in object-oriented programming. In D. Clarke, J. Noble,
and T. Wrigstad, editors, Alias Analysis for Object-oriented Programs,
pages 196–232. Springer-Verlag, Berlin, Heidelberg, 2013.

[32] E. Yahav and G. Ramalingam. Verifying safety properties using
separation and heterogeneous abstractions. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and

Implementation, PLDI ’04, pages 25–34, NY, USA, 2004. ACM.

103

