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Abstract: Wireless mesh networks in general, and WiFi
mesh networks in particular, offer a cost-effective optionto
provide broadband connectivity in sparse regions. Effective
support for real-time as well as high throughput applications
requires a TDMA-based approach. However,multi-hop TDMA
implementations in wireless have been few and far-between,
and for good reasons. These present significant issues in
terms of time synchronization, TDMA schedule dissemination,
multi-channel support, routing integration, spatial reuse, etc.
And achieving these efficiently, in the face of wireless channel
losses presents a formidable challenge.

In this work, we present an implementation of LiT MAC,
a full-fledged multi-hop TDMA MAC, on commodity WiFi
platforms. We undertake extensive evaluations using micro-
benchmarks as well as application level performance, using
outdoor as well as indoor testbeds. We also present an integra-
tion of LiT MAC with various routing metrics, and a routing
stability study of recently proposed routing metrics (ROMA,
SLIQ). Our results show that we can achieveµs granularity
time synchronization across several hops, and TDMA slot
size as small as 2ms. These imply low control overheads.
Experiments over several days, on our 9-node outdoor testbed
shows that LiT MAC’s soft-state based approach is effective
in robust operation even in the presence of significant external
interference.
Index Terms: Wireless Mesh Networks, TDMA MAC Proto-
col, TDMA Mesh Networks

I. I NTRODUCTION

It is well known that in the context of wireless mesh
networks, a random access based MAC protocol such as
CSMA/CA cannot provide QoS for applications such as real
time voice, video streaming, etc. [1]. A TDMA-based ap-
proach is necessary for good throughput as well as low jitter
& delay.

However a look at the history of wireless data standards
reveals that more often than not, multi-hop TDMA has only
been part of the standard on paper, without any implementation
based evaluation. A classic example is that of Bluetooth,
with scatternets never seeing the light of day. Even with
the more recent WiMAX standard, we are not aware of any
implementation based evaluation of the multi-hop mesh mode.
A notable exception to this pattern is the case of 802.15.4 mesh
networks [2]. However, this is intended only for low data rate
sensing applications.

What makes multi-hop TDMA in wireless tough? The
first is the issue of fine-grainedtime synchronization across
multiple hops. This must be achieved and maintained in
the face of wireless packet losses. Second, to achieve high
performance, it must provide support forspatial reuse as well
asmultiple channels. Third, nodes in the network must agree
upon a schedule of transmission. In the context of centrally
determined time-slot schedules, this translates toschedule
dissemination, from the central node to other nodes. This too
must be done in face of wireless losses, as well as dynamic
arrival and departure of network flows. And finally, the TDMA
MAC must integrate easily with a routing mechanism.

It is this set of formidable challenges that have made
most wireless data standards shy away from taking multi-hop
TDMA to practice. Even recent research based efforts have
only been piece-meal in nature. For instance, the multi-hop
TDMA implementations in [3], [4] deal primarily with time
synchronization, and have been evaluated only in relatively
interference free (i.e. using 802.11a) indoor settings. And
while Overlay MAC [5] considers a distributed mechanism
for nodes to agree upon a schedule, it works under the
restricted assumption of single-channel operation, and a 2-
hop interference model. The TDMA schemes in [6], [7], [8]
are applicable only to long-distance networks, with highly
directional links, and not to generic mesh networks. (See
Table I for a succinct comparison with other multi-hop TDMA
wireless implementations).

In our recent prior work [9], we have designedLiT MAC,
a full-fledged multi-hop TDMA mechanism, which addresses
all the above-listed challenges. [9] reports an 802.15.4-based
implementation of LiT MAC. The contributions of this paper
are three-fold.

(1) First, we implement the various features of LiT MAC on
commodity WiFi hardware, using modifications to the open-
source MADWIFI driver. The use of commodity hardware is of
practical significance since it allows us to ride on the low-cost
benefits of these platforms1. Sec. IV-D highlights the salient
features of our implementation technique in comparison with
prior implementations. (2) Next, we evaluate the implemen-
tation along various dimensions: multi-hop synchronization
error, time granularity of scheduling, achievable throughput
for UDP & TCP flows, jitter for CBR flows, etc. We have
used indoor as well as outdoor testbeds for such evaluation.

1Our earlier workshop publication [10] worked out some of thedriver level
implementation mechanisms, which we build upon in this work, to implement
various MAC features, and to evaluate extensively.
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(3) Third, we have integrated a routing mechanism with the
LiT MAC and performed a routing stability evaluation on the
outdoor testbed. The stability analysis includes three routing
metrics: the popular ETX metric [11], and the more recent
ROMA [12] & SLIQ [13] metrics. Such evaluation is of
significance since ultimately application QoS depends not only
on the MAC performance, but also on the stability of routes
during packet flow.

Our highlight results are as follows. (A) By making use of
hardware packet timestamping, we attain time synchronization
accuracy with average error of only about10µs even at 7 hops.
This implies a low guard time overhead. The synchronization
error of our technique is lower than that for prior techniques
devised for commodity WiFi hardware and also our technique
has been evaluated over larger number of hops (see Table II).
(B) Using only Linux’s software timers, we can achieve a slot
size as small as 2ms, while CPU interrupt overheads prevent
the use of smaller slot sizes. But a slot size of 2-5ms is often
small enough to achieve low jitter & delay in practice. (C) The
integration of LiT MAC with the SLIQ routing metric works
well; SLIQ’s stability is much better than that of ROMA,
which in turn is more stable than ETX in realistic outdoor
settings.

We believe that our implementation and evaluation is of
practical significance to the mesh networking community. The
rest of the paper is organized as follows. The next section
(Sec. II) presents related work. Sec. III briefly describes LiT
MAC, to setup the context for a description of its implemen-
tation over commodity hardware, in Sec. IV. Subsequently,
Sec. V presents micro-benchmarks and parametric evaluation
of the implementation, while Sec. VI describes overall eval-
uations of our implementation. Sec. VII concludes the paper
with a few points of discussion.

II. RELATED WORK

We now compare our work with prior related work.
Single-hop TDMA: Single hop wireless TDMA systems

are aplenty. Significant such systems closely related to this
work are as follows. Our methodology of modifying the
MADWIFI open source driver to build a TDMA WiFi system
on commodity hardware is similar to [14], [15], [16]. Apart
from the primary difference that [14], [15], [16] are evaluated
for single hop settings while we focus on multi-hop settings,
there are other differences too. For instance, [14] makes use
of out of band ethernet based time synchronization, which is
not applicable for mesh networks. [15] does not evaluate the
time synchronization accuracy of the proposed mechanism, but
its extension [16] reports a time synchronization accuracyof
about25µs. However, the slot size used by [16] is in the range
of 20-60 ms, with a guard time of 4-12 ms. In comparison,
we use slot sizes of 2-10 ms, with a guard time of100µs.

Multi-hop TDMA: Table I compares prior multi-hop
TDMA MAC implementations with our work succinctly; the
details are as below.

Overlay MAC [5] also modifies the MADWIFI driver to im-
plement a TDMA MAC. It proposes a distributed mechanism
for nodes to arrive at an agreement on slot usage. The design

imposes the significant restriction that all nodes should use the
same channel in all time slots. It also assumes that interference
is limited to a 2-hop neighbourhood. Unlike this, due to its
centralized approach, LiT MAC supports multiple channels as
well as consideration of arbitrary interference patterns.

Another important difference is that [5] reports evaluation
only in an interference free, 802.11a testbed. Now, a wireless
TDMA system is stress tested only under conditions which
cause significant packet loss. Hence our consideration of an
802.11g testbed in interference prone conditions is a more
stringent test. A further difference is that while the testbed
used in [5] is indoor, we consider an outdoor testbed too; this
is significant since after all mesh networks are intended for
outdoor deployment.

[3] outlines the design of a TDMA MAC protocol based on
in-band time synchronization and takes into account hardware
bottlenecks such as clock drift, processing delay, etc for
calculating the guard interval, slot duration, etc. It alsotakes
into account wireless errors for calculating the synchronization
period, i.e. time interval after which the network needs to
be re-synchronized. It outlines the implementation of the
protocol on the proprietary WiLD MAC platform with time
synchronization accuracy of the order of microseconds, and
slot granularity of the order of milliseconds.

[4] proposes a pairwise synchronization algorithm similar
to LiT MAC, and takes into account propagation delay to
calculate clock difference between two nodes. It makes use
of a guard band to account for processing delays encountered
while packet transmission, and carries out measurements to
empirically tune the value of the guard band. Based on the
measurements carried out on an indoor testbed, it reports
synchronization accuracy of the order of microseconds at three
hops.

While [3] & [4] are closest to our work in terms ofµs
granularity of synchronization, the differences are many.Our
implementation technique is different from [3], [4] and yields
higher synchronization accuracy on commodity WiFi hardware
over larger number of hops (see Sec. IV-D). Apart from
implementation technique, other differences are that [3],[4]
have primarily focused on time synchronization, while we
have also considered a more comprehensive set of issues such
as schedule dissemination (and the corresponding overhead),
integration with a routing protocol, spatial reuse, and also an
implementation on commodity WiFi hardware. Further, as in
the case of [5], the evaluations in [3], [4] too have considered
only interference free 802.11a settings, indoors. As mentioned
earlier, it is important to test in interference prone (802.11g-
based) realistic outdoor settings.

[6], [7], [8] outline TDMA-based MAC protocols for long-
distance networks. Apart from the difference that these use
loose time synchronization of the order of milliseconds, the
primary difference is that these are applicable only for long-
distance networks with highly directional antennas, whileour
work considers a generic mesh network with directional or
omni-directional antennas.

TSMP [2] describes an 802.15.4-based multi-hop TDMA
MAC implementation. 802.15.4 not only has very different
modulation scheme from 802.11, but also has much lower data
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Synch. Schedule Routing Spatial Reuse EvaluationAccuracy Dissemination Integration Support
Overlay MAC [5] order ofms distributed No 1-chnl only 6 node, indoor, 802.11a

Wildnet[6] order ofms No No No 3 node, outdoor, 802.11b
2P [7] loose No No restricted 3 node, outdoor, 802.11b

TDM-MAC [3] order ofµs No No No 8 node, indoor, 802.11a
Soft-MAC [4] order ofµs No No No 4 node, indoor, 802.11a

TSMP [2] order ofµs No evaln. Yes No evaln. 44 node, indoor, 802.15.4
LiT MAC on WiFi

order ofµs Yes Yes Yes
9 node, outdoor, 802.11g

(our work) 15 node, indoor, 802.11g

TABLE I
COMPARISON WITH PRIORTDMA MULTI -HOP IMPLEMENTATIONS

rate (250Kbps max), and is intended for low data rate sensing
applications. We consider more traditional applications such
as bulk data transfer, audio/video, etc. which require highdata
rates.

Routing stability studies: Our work includes an integration
of LiT MAC with routing metrics and a routing stability
study. [17], [18] are among earlier works to study routing
instability due to link metric variations. [17] studies the
extent of instability with the use of ETT metric in mesh
networks. [18] on the other hand studies how do different
factors such as link metric variations, channel conditions, time
of the day, background traffic, etc affect routing stability.
However, both these studies have carried out measurements for
CSMA/CA based mesh network where the protocol behaviour
and background traffic impacts the link metric computation.
Our work is in context of TDMA mesh networks wherein link
metric probes are transmitted in dedicated time slots. Further,
our study includes the recently proposed ROMA [12] and
SLIQ [13] metrics which offer much better stability compared
to the ETX metric considered in [17], [18] (see Sec. VI-B for
quantitative differences among the metrics).

[13] proposes the use of SLIQ metric to provide improved
stability. However [13] presents only trace based analysis, of
traces from a CSMA/CA based network. In our work, we
have integrated SLIQ with the LiT MAC, and have quantified
SLIQ’s benefits in terms of routing stability, in a realistic
outdoor testbed.

III. L IT MAC: PROTOCOL DESIGN

We now give a brief description of the salient features
of LiT MAC [9]; specifically, time synchronization, schedule
dissemination, and how these work robustly in the presence
of wireless errors. For more detailed description of LiT MAC
protocol design along with its comparison with other TDMA
MAC protocols in literature reader is referred to [9].

Time synchronization & schedule dissemination: To facili-
tate time synchronization and TDMA schedule dissemination,
LiT MAC follows a frame based mechanism, wherein a slot
is a unit of allocation, and a frame consists of three different
types of slots: control, contention and data slots (see Fig.1).
The use of these three types of slots is as follows.

Control slots: These are used for time synchronization as
well as to convey resource allocation i.e. to disseminate the
TDMA schedule. For the transmission of control packets, the
network topology is arranged as a tree rooted at the root
node. For time synchronization, LiT MAC makes use of a
pairwise synchronization mechanism wherein a given node is
time synchronized with its parent in the control tree. The

control packet consists of three types of information: time
synchronization information, the control schedule, and the data
schedule. The control schedule is nothing but the allocation of
control slots to each node in the network. The control slots for
all the nodes need not be in a single frame: different nodes
can be allotted slots in different frames; Fig. 1 shows such
an example where the control schedule spans two successive
frames.

Contention slots:In the contention slots the nodes transmit
packets probabilistically. These slots are used to facilitate
asynchronous events such as a new node joining the network,
resource reservation for a new flow, or a routing metric update.
A new node joins the network by sending node-join request
packets toward the root node, using the contention slots.

Likewise, slot allocation for a new flow is accomplished by
making use of flow request packets. The node that wants to
initiate a flow transmits flow request packets in the contention
slot, which then propagates up the control tree towards the
root node. A scheduling algorithm then decides the slot
allocation to the new flow. The MAC itself can support any
centralized scheduling algorithm; it is responsible only for
communicating the slot allocation given by the scheduler. This
is communicated as the data schedule, as part of the control
packets.

To facilitate dynamic routing, LiT MAC makes use of
topology update packets that can be used by the nodes to
convey routing metric information to the root node.

Data slots: Data slots are used for the actual transfer of
the data. As mentioned above, a node is told about its data
slots via the data schedule contained in the control packets. As
with control slots, the data schedule may span across multiple
frames.

Fig. 1. LiT MAC: An example slot allocation

Fig. 1 shows a possible control schedule for an example
topology and a data schedule for a bi-directional data flow
between nodes 3 & 2. In this example, the control as well as
the data schedules span two adjacent frames.

Handling wireless losses: Any realistic deployment will
face wireless losses due to fading and interference. To handle
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wireless losses, LiT MAC makes extensive use of soft-state
mechanisms. For instance, soft-state based periodic transmis-
sion of the control & data schedules ensures that all nodes
eventually follow the same schedule. Likewise nodes transmit
topology update packets periodically to the root node to inform
that they are alive. Soft-state is used to setup, maintain, and
terminate flows too. That is, a flow-request is repeatedly sent
until the corresponding slot allocation is given (or a timeout
is reached): so the loss of flow-request packets are handled
elegantly. Even after flow setup, flow-renewal packets are
periodically sent, failing which the root node terminates aflow
(i.e. deallocates the corresponding data slots).

Although such use of soft-state mechanism enables LiT
MAC to elegantly handle wireless losses and maintain the
network in consistent state, it has a cost. The overheads of the
frame structure and the soft-state mechanism are quantifiedin
our performance evaluation (Sec. VI). We now move on to the
description of the LiT MAC implementation.

IV. I MPLEMENTATION OF L IT MAC

Our goal is to implement a full-fledged multi-hop TDMA
MAC on commodity WiFi hardware, to take advantage of
the low-cost benefits of the same. This involves resolv-
ing some important issues, as we describe below. We have
modified the MADWIFI driver v0.9.4-r3314 for our imple-
mentation. This driver works for the popular Atheros WiFi
chipsets. We have used Ubiquiti XR2 (http://www.ubnt.com/
xr2) and Mikrotik R52/R52H wireless cards, with Mikrotik
RB 433AH/411AH/411AR (http://www.mikrotik.com/) single
board computers. Some nodes run Openwrt Kamikaze v8.09,
while others run Openwrt Backfire v10.03 (http://openwrt.org),
both based on Linux v2.6.

A. TDMA mechanism

There are two important components of the TDMA mech-
anism (1) time synchronization i.e. how accurately the clocks
across the different nodes are synchronized with each other,
and (2) how accurately we can control packet transmission
times, so that nodes transmit only in their allotted slot. We
describe both below.

1) Time synchronization: As per the 802.11 standard,bea-
con packets contain the exact timestamp2, in terms of WiFi
NIC (Network Interface Card) clock, at which these packets
get transmitted. Likewise at the receive side the hardware
records the time, in terms of WiFi NIC clock, at which the
packet is received. While we have disabled regular 802.11 bea-
cons, we make the hardware treat LiT’s control slot packets as
beacons [10]. We then use the transmit and receive timestamps
to calculate the difference in the WiFi NIC clock between the
two nodes, i.e. the clockoffset. Since LiT MAC makes use
of pairwise synchronization along the control tree, every node
propagates its clock offset with respect to the root node, down
the control tree, and thereby every node is synchronized with
the root node. As in our technique the nodes are synchronized

2beacon timestamp is the exact time in terms of WiFi NIC clock when 25th
byte of beacon packet is sent on air

with respect to WiFi NIC clock, it yields lower synchronization
error compared to [4] as we elaborate in Sec. IV-D.

Discrepancy in WiFi hardware:We faced the following
subtle issue in implementation. The hardware timestamp in
beacon packets, mentioned above, is meant to correspond to
the time at which the 25th byte of the beacon is transmitted
on air. But the timestamp computation is done just before
sending the packet. We observed that the WiFi NIC computes
the timestamp assuming that the packet transmission rate is
1Mbps, even if the beacon were sent at another rate (say
6M). So for control packets transmitted at a data rate more
than 1Mbps, we had to account for this discrepancy in the
offset computation at the receiver, by appropriately taking into
account the packet’s transmit rate.

2) Controlling packet transmissions: The mechanism we
use for packet transmission is: at the start of the node’s
transmission slot, the driver inserts the set of packets that can
be sent in that slot, into the hardware queue of the WiFi NIC,
which then transmits the packets. Now to accurately control
the packet transmission time, there are two requirements: (a)
The packet transmission event should be triggered exactly at
the start of the slot, and (b) Once the packet is put in hardware
queue, it should be transmitted immediately without waiting
for the medium to be free. We describe these in turn.

Use of timers: To trigger the packet transmission event,
we need to make use of a periodic timer. We have an option
of using either Linux’s 1ms granularity software timer or
the hardware timer provided by WiFi commodity hardware.
However, for the hardware timer we observed that under
heavy load (i.e. under continuous packet reception) the timer
accuracy is very low [10]. So we make use of the 1ms software
timer, which is quite accurate for our purpose.

Fig. 2. Triggering packet transmission event

However, for making use of software timer we need to
resolve the following issue. The linux software timer is of
1ms granularity, whereas the hardware clock of the WiFi NIC
is of 1µs granularity. So it is likely that millisecond boundary
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of the software timer is not aligned with the slot boundary
of the TDMA i.e. the software timer can trigger at-most 1ms
before or after the start of the TDMA slot. The event wherein
the timer triggers before the slot start can be handled easily by
doing busy wait till the start of the slot as shown in Fig. 2(a).
However the event when the timer triggers after the slot start
is undesirable, as no packets are transmitted between the slot
start and triggering of the timer. So in case the timer triggers
after the start of a slot, we decrease the next timer trigger
interval by 1ms so that for the next TDMA slot (as well as a
few subsequent slots) the timer triggers before the start ofthe
slot, as shown in Fig. 2(b).

Furthermore, another subtle issue that our measurements
revealed is that there is drift between the software timer and
WiFi NIC clock. This is because they use different clock
sources within the same node. We observed that the software
timer typically drifts behind the WiFi NIC clock by 1µs in
400ms. So the time difference between the software timer
trigger and slot start (busy wait period in Fig. 2(a)) slowly
increases.

However our scheme ensures that this difference does not
increases beyond 1ms. This is since we use the WiFi NIC
clock for time synchronizing the nodes and also to identify
TDMA slot boundaries: the software timer is used only as
an approximation to the slot boundary. To elaborate, when
the difference between software timer trigger and slot start
becomes more than 1ms, we trigger next software timer event,
after interval of slot size, with respect to the millisecond
boundary of software timer just before the slot start and not
with respect to the time of current software timer trigger as
shown in Fig. 2(c). This ensures that for the next software
timer trigger the difference with respect to TDMA slot start
again decreases to a small value as shown in Fig. 2(c).

Disabling CCA: Once the packet is inserted into the hard-
ware queue by the driver, it is essential that the the packet
is transmitted on-air immediately. However, the default WiFi
hardware uses clear channel assessment (CCA) and transmits
the packet only when the medium is free. So in presence
of interference the packet transmission can get delayed. We
have disabled the CCA, alongwith 802.11 backoff, as per the
mechanism given in [19]. The evaluation of the accuracy with
which the packet transmission time can be controlled with
CCA disabled is presented in Sec. V.

B. Hop-by-hop error recovery

In wireless, especially in multi-hop settings, it is beneficial
to have hop-by-hop error recovery for lost packets. We con-
sidered three options for this: adaptive FEC (forward error
recovery), bulk ACKs (acknowledgments), and per-packet
ACKs. Wildnet [6] has implemented the first two options,
whereas we have used per-packet ACKs. These ACKs are
transmitted immediately after the packet transmission ends in
the same slot itself thereby preventing the need to schedule
ACK transmissions separately. While we postpone a quanti-
tative comparison to Sec. V, it is intuitive to note that per-
packet ACKs are efficient if we can get to use WiFi’s in-built
immediate ACK mechanism, since these are generated by the
hardware without any driver involvement.

However, the use of WiFi’s in-built ACKs is tricky for the
following reason. If we let the default hardware decide the
number of retransmissions, such retransmissions may cross
our TDMA slot boundaries. So we do the following. Weturn-
on per-packet hardware ACKs, butturn-off hardware retrans-
missions. Now, the hardware at the sending node notifies the
driver about whether or not an ACK was received. The driver
uses this notification to determine whether or not to retransmit,
while also respecting slot boundaries, and also implementing
a maximum retransmission count.

Another subtle issue is that, for the hardware we use, the
above mentioned notification is received at the driver aftera
delay of about 200-300µs. Waiting for such a long time to
retransmit the lost packet can be inefficient. So what we do is:
we transmitn distinct packets in a given slot, wheren is the
number of the packets that can be transmitted in that slot. Of
thesen packets, if any of the packets is lost then we retransmit
it in the next data slot allotted for the node. Assuming that the
next allotted data slot is after the maximum ACK notification
delay (i.e. about 300µs), the notification would have been
received by the time the next data slot starts and hence the
node can retransmit the lost packet if needed.

C. Routing integration and spatial reuse

In multi-hop wireless networks, routing is inextricably
linked with the MAC, since the same neighbourhood set
determines the next-hop (i.e. routing) as well as transmission
opportunity (i.e. MAC). LiT MAC, being a centralized MAC,
supports centralized dynamic routing. To incorporate various
routing metrics, two aspects are required: (a) the computation
of the routing metric, and (b) conveying the routing metric to
the root node.

Routing metrics such as ETX [11], ROMA [12], or
SLIQ [13] are computed by measuring the packet delivery
ratio over a given link. For this, we need to decide if separate
probe packets should be sent or existing traffic may be used;
and if existing traffic is to be used, then packets in which type
of slots may be used.

We decide not to use the contention slot packets as they have
low periodicity and may also have collision-induced losses.
We also decide not to use data slots as these are allotted
only to nodes that have data traffic to send; and explicitly
allotting data slots to nodes for sending probe packets seems
inefficient. Control packets, on the other hand are broadcasted
periodically by each node. We can use these for routing metric
computation, at no additional overhead.

For the second aspect of conveying the computed routing
metric information to the root node, we use the periodic
topology update packets sent in the contention slots toward
the root node.

Spatial reuse: In parallel work, we have also integrated
LiT MAC with a spatial reuse mechanism, which builds
an interference map using the signal to interference ratio
(SIR). The SIR is in turn computed using the received signal
strength (RSS) profile of neighbours. Like the routing metrics,
this information is also collected using control packets, and
conveyed to the root as part of the topology update packets.
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D. Comparison with prior implementation techniques

We now compare in detail our TDMA MAC implementation
technique with two of the prior techniques in literature [4], [3]
that have also reported micro-second level time synchroniza-
tion accuracy. Table II presents the detailed comparison.

As can be seen from Table II, for [4] the nodes in the
network are time synchronized to system clock3. To achieve
time synchronization the software module timestamps the
packet with current time before it hands over the packet to
WiFi hardware for transmitting it on air. The drawback of
this technique is that it does not account for the delay in the
transfer of the packet from linux kernel to WiFi hardware,
which can be variable. As against this our technique makes
use of WiFi hardware beacon timestamps, for synchronization.
As our technique makes use of WiFi hardware clock, it does
not suffer from synchronization error that can arise due to
variable delay in transfer of packets from linux kernel to WiFi
hardware as in [4]. Likely due to this reason the maximum
synchronization error for our technique is also much less than
that for [4] as can be seen from Table II.

For triggering slot boundaries, like [4], we make use of
software timers provided by linux kernel. But since in our
technique we make use of WiFi hardware clock for higher time
synchronization accuracy, it is essential to account for the drift
in the WiFi hardware clock and system clock in order to make
use of linux software timers that are based on system clock.
Our technique outlines a mechanism to resolve this non-trivial
issue of drift between WiFi hardware clock and system clock.

Another important contribution of our technique, in com-
parison with [4], is that it outlines a mechanism to make
use of 802.11 per-packet hardware acknowledgements for
error recovery which is more efficient than bulk acknowledge-
ment/FEC based error recovery used in [6], as we elaborate
later in Sec. V-C.

Though [3] also incorporates per-packet acknowledgement
based error recovery, however [3] makes use of proprietary
programmable hardware and implements the TDMA MAC
protocol by carrying out firmware level code changes. As
[3] makes use of custom hardware, it is not evident if their
technique is applicable to WiFi commodity hardware in gen-
eral and if yes then how does their technique perform for
commodity hardware.

Table I and II together illustrate the primary contributionof
our work in comparison with prior work. Having described the
various implementation aspects, we now move on to evaluation
of various metrics in the next two sections (Sec. V & Sec. VI).

V. M ICRO-BENCHMARKS & PARAMETRIC EVALUATION

In this section, we first look at the micro-benchmark of time
synchronization accuracy and packet timing accuracy. We then
present parametric studies for the slot size, and the numberof
per-hop retransmissions.

A. Time synchronization & packet timing accuracy

Time synchronization error:To measure the synchroniza-
tion error, we use the setup shown in Fig. 3. We have 8 nodes

3system clock is the clock used by operating system

(in range of each other), and enforce a 7-hop linear topology
in LiT MAC. A separate laptop node is also kept in the
vicinity. The laptop transmits packets every 100ms. As every
LiT MAC node is synchronized with the root node, it records
the sequence number and the global time (time at the root
node) at which each packet from the laptop is received. Now,
ignoring propagation delay, all the LiT nodes should receive
a given packet from the laptop at the same time. We hence
measure synchronization error for a given node as global time
recorded by the root node minus the global time recorded by
the given node for a given packet from the laptop. We run the
experiment for an hour and take the average synchronization
error across the laptop’s packets received in that duration. We
also have continuous backlogged UDP traffic running from the
root to node-7, to verify if synchronization accuracy is affected
under the presence of heavy load.

Fig. 3. Set-up to measure time-sync error
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Fig. 4. Time synchronization error (inµs)

Fig. 4 shows the average synchronization error, as a function
of the number of hops from the root node; the error bars
show standard deviation. As can be seen the synchronization
error increases with hop count from the root node, but the
average error is only about−10µs even at 7 hops. The negative
sign indicates that the global time as recorded by a node is
more than that at the root node. The standard deviation of
synchronization error can be seen to be about 4-6µs except
for the node at second hop for which the standard deviation
is about 10µs. The maximum synchronization error was also
small, about -31µs for the seventh hop node and decreased
as the hop count decreased.

Thus the benefit of our implementation technique is small
synchronization error even at number of hops as large as
seven. In comparison the prior work outlined in Table I has
been tested over small number of hops (mostly 3-4). Higher
synchronization accuracy over large hops is desirable for
mesh networks used for extending connectivity over several
kilometers. Though, in such networks, number of hops can
be reduced by making use of directional antennas mounted
on high rise towers (high rise towers are essential to prevent
ground reflection and provide fresnel zone clearance). How-
ever the cost of high rise towers can be quite high [20]. So
to achieve a range of a few kms without high rise towers, the
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Time synchronization Max hops for Max time-sync Triggering slot Error recovery Hardware usedtime-sync evaln error boundaries

Soft-Mac [4]
Nodes synchronized to

Three 84µs Use of system timers None
802.11 commodity

system clock hardware

TDM-MAC [3]
Nodes synchronized to

Two 10µs Use of hardware timers
Hardware Proprietary programmable

hardware clock per-packet ACKs hardware

LiT MAC (our work)
Node synchronized to

Seven -31µs Use of system timers
WiFi Hardware 802.11 commodity

WiFi hardware clock per-packet ACKs hardware

TABLE II
DETAILED COMPARISON WITH PRIORTDMA MAC IMPLEMENTATION TECHNIQUES

number of hops necessarily has to be large, since each link
range will be a few hundreds of metres at most, with the use
of 10-12m masts; such masts can be cheaper than high rise
towers by up to 2 orders of magnitude [20].

Effectiveness of disabling CCA:It is essential to quantify
how accurately the packet transmission time can be controlled
with CCA disabled for which we carried out the following
experiment. (While [19] gives the mechanism to disable CCA,
it does not quantify the accuracy). In a 2-node topology with
a root node and a hop-1 node, we have backlogged UDP
traffic running from root node to the hop-1 node. The hop-
1 node then measures the inter-arrival time of the packets that
it receives from the root node, from which it computes the
inter-packet gap. We measure the inter-packet gap for 10,000
packets from the root node. We carry out this experiment
for the two cases of CCA enabled and disabled. And for
the case of CCA disabled, we do experiments both with and
without external interference. To produce external interference,
we place a laptop in the vicinity of the nodes, and make
it connect to WiFi access point, and have continuous data
transfer between the laptop and WiFi access point.
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Fig. 5. Gap between successive packets

Fig. 5(a) shows the CDF of the inter-packet gap for the case
of CCA enabled (in presence of external interference traffic),
while Fig. 5(b) shows the CCA of inter-packet gap for the
case of CCA disabled, both in absence as well as presence of
external traffic. For the case of CCA enabled, as can be seen
from Fig. 5(a), only about 50% of the packets have inter-
packet gap less than 90µs, whereas rest of the packets have
inter-packet gap more than 90µs. While for the case of CCA
disabled inter-packet gap is in the range 80 to 90µs for both
the cases of with and without external traffic. For the case
of CCA disabled also we observed that the maximum inter-
packet gap was about 200µs, but the inter-packet gap was
more than 90µs for only a tiny fraction (less than 0.001%) of
the total of ten thousand packets.

Now the expected inter-packet gap is,
= SIFS + ack transmission time + DIFS

= 10 + 38.6 + 30 = 78.6µs

As can be seen from Fig. 5, the measured inter-packet gap
is only about 5-10µs more than the expected time in most
cases. Thus, these results indicate that with CCA disabled it

is possible to precisely control packet transmission timesover
commodity WiFi hardware.

Guard time: The guard time for TDMA slots is dependent
on three factors: the synchronization error, clock drift between
nodes, and the software+hardware delay in transmitting the
packet. We have empirically found that a guard time of100µs
accounts for these factors, and works well in practice [10].

B. Effect of slot size

An important parameter in a TDMA implementation is the
slot size, the smallest unit of allocation. Intuitively, a smaller
slot size is good for lower delay/jitter, but bad for throughput
efficiency due to implementation overheads. To study this
quantitatively, we used a 4-hop (5-node) linear topology in
indoor setup. In LiT MAC, we set:num. control slots = 5,
num. contention slots = 2, andnum. data slots = 96. As there
is no interference in 802.11a in our lab, we carried out this
experiment on channel 149 at the data rate of 6M of 802.11a.

Using iperf v2.0.4 tool, we generate backlogged uni-
directional traffic from the root to the4th hop node. We
measure the throughput and jitter for UDP, as well as TCP
throughput. (UDP and TCP are in separate experiments). We
vary the slot size from 1ms to 30ms. Each experiment duration
is 30 seconds and the packet size with MAC layer overheads
is 1586 bytes for slot sizes of 3ms or more, while the packet
size is 520 and 1120 bytes for slot sizes of 1 and 2ms, as the
slot sizes of 1 and 2ms cannot accommodate 1586 byte packet
at data rate of 6M. We report the average across 5 experiments
in each case.

In these experiments, we do not have any spatial reuse, and
use a per-node slot allocation scheme: each of the 5 nodes get
a data slot in turn: root, followed by the hop-1 node, then the
hop-2 node, and so on4.

Fig. 6 shows the throughput and jitter for different slot sizes.
Fig. 6 also shows the expected UDP throughput, computed by
taking into account the LiT MAC header as well as the 802.11
header that we attach over the LiT MAC header to enable per
packet acknowledgement.

As can be seen from Fig. 6(a), the UDP throughput increases
as the slot size increases. There are two reasons for this. First,
the fixed guard time of100µs between the slots, constitutes
lower overhead for larger slot sizes: the guard time overhead
for a 1ms slot size is about 10%, while for slot size of
30ms it is about 0.3%. The second reason is wastage internal
to the slot, which arises since we do not (at this time)
support MAC layer fragmentation in our implementation. To

4We also tried a slot allocation where the order of slots allotted is hop-4
node, followed by the hop-3 node, ..., root. The results werenot very different
from what we report here.
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Fig. 6. Effect of slot size on throughput and jitter

elaborate, the packet transmission time for a 1586 byte packet
at 6M, including acknowledgement, is about 2224µs. In a
3ms slot, only one packet is transmitted, the idle time being
(3000− 100− 2224) = 676µs, which leads to inefficiency of
about 22%. Whereas for 30ms slots, 13 packets are transmitted
leading to inefficiency of only about 3% and thereby the
throughput for the 30ms slot size case is higher.

Importantly, the throughput results show that the measured
UDP throughput is close to the expected value, thereby im-
plying that the driver-based implementation mechanism for
TDMA outlined in Sec. IV is working properly, without CPU
or memory bottlenecks.

The TCP throughput also increases with the slot size, but
the increase in TCP throughput is lesser than that for UDP
throughput. This is since for TCP we transmit both the TCP
data packet as well as the TCP ACK in the same data
slot. So for a particular slot size the overhead of TCP ACK
transmission can cause fewer number of TCP data packets to
be transmitted in that slot than the number of UDP packets,
leading to lesser TCP throughput.

As can be seen from the Fig. 6(b), the jitter value is very
small for slot sizes upto 3ms, whereas for other slot sizes the
jitter is about 15-20ms. This can be explained as follows. For
slot size up to 3ms, only one packet is transmitted per slot, and
the inter-packet delay is fixed: equal to the schedule lengthi.e.
5 slots. This leads to low jitter. But consider the case of slot
size of 6ms, wherein two packets are transmitted in a slot. Now
the delay between receiving the two consecutive packets that
are transmitted in the same slot is very small, corresponds to
the inter-packet gap of 90µs. But the delay between the second
packet of a slot and the first packet of the next slot is equal
to schedule length, which is much larger. Thus the variation
in delay between receiving the consecutive packets (i.e. jitter)
is more for such scenarios. We however note that jitter values
of 15-20ms are well within the tolerable limits for real-time
applications.

CPU bottleneck for slot size of 1ms:As can be seen from
Fig. 6(a) the throughput for a slot size of 1ms is about 200
Kbps less than the expected throughput, with a packet loss of
4%. The jitter value for 1ms slot size is also slightly more than
that for 2ms and 3ms. Unexpectedly, we observed a packet
loss of about 4% irrespective of enabling or disabling per-hop
retransmissions.

To understand this, we first checked if the reason for the
packet loss could be loss of synchronization or slot overlaps.
We measured the time-sync error as well as the error in
triggering the packet transmission event, but we observed that
these errors were similar to that as observed for slot sizes of
2ms or more.

On more detailed investigation, we observed that the packets

were being dropped at the MAC driver level, as the receive
interrupts for the packet were being missed! Now since the
packet loss is similar for the cases of packet retransmissions
enabled or disabled, it is likely that the CPU acts as a
bottleneck for processing of the received packets, since the
timer trigger frequency for the slot size of 1ms is relatively
high. To further verify this, we carried out measurements ata
data rate of 24M, with slot size as 1ms, under two cases: (a)
transmitting only one packet of 1586 bytes per slot, and (b) 3
packets of 350 bytes in a slot. We observed that for the latter
case the packet loss was about three times (12-15%) that of
the former case (4-5%). This indeed indicates that, at 1ms slot
size, the CPU is not able to handle both the timer trigger events
and packet reception events leading to packet loss. It is worth
noting here that the CPU speed of the Mikrotik RB433AH
platform we used was 680MHz; it had 256MB of RAM, but
as we have seen here, memory is not a bottleneck.

While we have identified this CPU bottleneck to smaller
slot sizes, as noted earlier, the jitter values of 15-20ms seen
for larger slot sizes are acceptable for real-time applications.

C. Number of per-hop retransmissions

It is essential to understand the effect of varying the
maximum number of per-hop retransmissions, on throughput
and jitter. To study this, we use the same 4-hop (5-node)
linear topology as above, and the same LiT MAC parameters
as earlier. We use a slot size of10ms. We emulate various
degrees of packet losses, by probabilistically changing the
destination MAC address of a packet to a “black hole” (non-
existent) MAC address just before sending to the hardware.
We then introduce backlogged traffic, as earlier, from the root
node to the4th hop node.
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Fig. 7 shows the measured UDP & TCP throughputs as well
as measured and expected packet loss, for different values of
the maximum number of per-hop retransmissions. Here we
emulated a loss rate of 20% in each of the 4 links. As can
be seen, the TCP throughput increases significantly as the
maximum number of retransmissions is increased. And, as is
expected the UDP throughput value does not change much by
increasing the number of retransmissions. Also, the measured
packet loss is quite close to the expected value as can be
from Fig. 7(b) (note that y-axis in Fig. 7(b) uses log-scale).
For the case of number of retransmissions 8, the measured
packet loss is slightly more but it is still under 0.05% of
the expected packet loss. The measured packet loss is slightly
more for this case likely due to hardware imperfections. For
e.g. we observed that sometimes the notification by hardware,
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at the driver level, about whether ACK was received or not
was missed causing the packet to be dropped.

The expected UDP throughput without packet drop is
867.7Kbps. With retransmissions enabled, for the case of 3
or more retransmissions when the measured packet loss is
small, the measured UDP throughput should be 20% less
than 867.7Kbps i.e. 694.2Kbps. This is since each node
retransmits about 20% of the packets, the drop in throughput
is 20%. As can be seen, the measured UDP throughput for
the cases of 3 or more retransmissions is about 675Kbps
which is only about 20Kbps less than the expected value of
694.2Kbps. Thus these results indicate that our scheme of
per-packet acknowledgement with retransmission of the lost
packet in the next data slot is efficient in controlling packet
loss without affecting the throughput. And choosing a higher
per-hop retransmission limit results in higher TCP throughput
along with lower packet loss.

While we do not show the results here, but we observed that
jitter values do not change much by increasing the number of
retransmissions.

To study the effectiveness of the retransmission scheme
with increasing (emulated) error rate, we carried out similar
experiments, while fixing the retransmission limit to 8. Fig. 8
shows the UDP/TCP throughput as well as jitter for different
(emulated) error rates per link, for the both cases of with and
without per-hop retransmissions. As can be seen, the benefit
of incorporating retransmissions is particularly apparent in
case of TCP throughput wherein without retransmissions TCP
throughput is practically 0 for link error rates of 5% or more,
whereas with retransmissions even at 30% error rate in each
link, the TCP throughput is slightly more than half of the
TCP throughput at 0% emulated error rate. Jitter values too
are slightly better, with retransmissions as compared to without
per-hop retransmissions.
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Comparison with Wildnet: [6] employs bulk ACKs and
adaptive FEC based error recovery schemes. In the bulk ACK
scheme, at the end of a given data slot, the receiver transmits
a single ACK packet for all the data packets received in that
particular slot. This bulk ACK can be piggybacked with data
packets of the receiver. But if the receiver does not have any
data packets to send, a dedicated slot allocation is needed at
the end of each data slot to transmit bulk ACK itself. This
constitutes significant overhead as compared with our per-
packet ACK scheme which incurs an per-packet overhead of
only about 48µs (SIFS + ack tx time) at the 6M data rate.

FEC based scheme results in lower end to end delay
compared with bulk ACKs or per-packet ACKs, but incurs
higher throughput overhead. For e.g. to reduce packet loss
from 10% to 1%, FEC incurs about 30% throughput overhead,

while to reduce the packet loss from 30% to 1% it incurs 100%
throughput overhead [6]. In comparison, for our scheme, as
can be seen from Fig. 8, to reduce the packet loss from 10%
to≃0% the throughput overhead is about 24%, while to reduce
the packet loss from 30% to≃0% the overhead is only about
40%.

VI. OVERALL PERFORMANCEEVALUATION

We now study the overall performance of LiT MAC in
a realistic setting of an outdoor testbed. We also evaluate
the latency and control overheads associated with the use
of soft-state in LiT MAC, using a 15-node indoor testbed.
The hardware and software specifications for the experimental
set-up is same as that given in Sec. IV, except that for
our outdoor testbed, we use 15dBi omni-directional antennas
installed on building rooftops, whereas for the indoor testbed
we use 2dBi omni-directional internal antennas connected
to the nodes. We used 802.11g in both testbeds, and there
was significant and variable external interference in many
instances. Such external interference causes packet losses in
LiT MAC’s control, contention, and data slots, and this stress
tests protocol operation in realistic scenarios. Fig. 9 shows
the outdoor testbed. The indoor testbed is deployed in our
department building and is spread across three floors.

Fig. 9. Nine node outdoor testbed

A. LiT MAC evaluation

Long-term evaluation: We carried out measurements,
spread over a long duration (7 days), to study how effec-
tively LiT MAC can fulfill application QoS requirements in
a realistic setting of the outdoor testbed. The long duration
is significant since we wish to check if the TDMA system
develops problems such as loss of synchronization over time,
or is able to perform stably.

The data traffic we used was: we started three simultaneous
uni-directional CBR UDP flows of 400 Kbps source rate, for a
duration of one minute, across the following three paths: KR-
MB-Old GH (2hop), KR-GG-SOM-NewGH(3hop-1) and
KR-H13-H12-H14 (3hop-2). For each of these flows we mea-
sured the throughput, packet loss and jitter. This one minute
experiment was then repeated after an interval of five minutes.
This process was repeated for a duration of 7 days.

The values of the TDMA MAC parameters that we used
are given in Table III. Now, the application level throughput
depends to a large extent on the scheduling algorithm used.
Since the focus of the current work is to evaluate the protocol
performance, and since the MAC itself can support any
centralized scheduling algorithm, we use the following flow
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Slot duration 5ms
Num. control slots 2

Num. contention slots 1
Num. data slots 33

Max. num. retransmissions 8
Control overhead 2+1

2+1+33
= 8.33%

Data rate 6M (802.11g)
Channel 8
Testbed Outdoor

TABLE III
TDMA MAC PARAMETER VALUES

dependent slot allocation scheme. Since all the three flows
start at the root node (i.e. node KR), the root node is allotted
the first three slots in the data schedule. Then all the first hop
nodes are allotted one slot each in the data schedule, then the
second hop nodes and so on. Now the schedule length (i.e.
number of slots after which the schedule is repeated) for this
slot allocation scheme is 11 slots, so the end to end delay
incurred by each flow is about 11 x 5 = 55ms (in the absence
of losses).
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Fig. 10. Application performance for CBR traffic

Fig. 10 shows the CDF of throughput, packet loss and jitter
for the 1 minute experiments carried out for the period of 7
days. Now, based on the TDMA MAC parameter values, the
expected throughput for each of the flow is 392 Kbps. As can
be seen from Fig. 10, for the flow 3hop-1, about 90% of the
experiments, while for the other two flows about 75% of the
experiments have throughput over 300 Kbps. The packet loss
for over 95% of the experiments is less than 0.1% for the
flows 3hop-1 and 3hop-2, while for the flow 2hop, the packet
loss is less than 1% for about 90% of the experiments. The
80th %-ile jitter is about 40ms, 70ms, and 100ms for the flows
3hop-1, 2hop, and 3hop-2 respectively.

A good fraction of flows 2hop show high packet loss despite
the per-hop retransmissions. Closer observation showed that
this was because the flow 2hop experienced bursty packet
losses, especially for experiments during the day time when
the external interference was generally more.

To ascertain the reason for relatively lesser throughput for
the flows 2hop and 3hop-2 (as can be seen in Fig. 10(a)),
we analyzed the measurements at various times of the day.
Typically during day time the presence of external WiFi
interference is more in the campus. So we observed that for
the experiments carried out during day time the throughput for
two flows was relatively less compared with the flow 3hop-
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Fig. 11. Throughput variation across time of day

1, as can be seen from Fig. 11 which shows the measured
throughput for the experiments carried out during day and
night time, for the 5th day of the 7 day experiment. As against
this, for the experiments carried out during night time, the
throughput for the three flows is closer to one another, as
the presence of external interference is less. We note that it is
difficult to devise a metric that can accurately quantify amount
of external interference present in the network5. But since
the performance during night time, when external interference
is generally less, is much better than that during day time,
it indicates that less than expected throughput especiallyfor
flows 2hop and 3hop-2 is largely due to presence of external
interference rather than other factors.

The important conclusion from the above study is that
despite periods of heavy interference and the corresponding
packet losses, LiT MAC operated stably, without nodes losing
sync with each other. In most situations, the throughput is high,
as well as packet loss and jitter values are low. The merit of
TDMA performance for application QoS is further highlighted
below, in comparison with CSMA.

Comparison with CSMA:[9] presents detailed performance
comparison of LiT MAC with 802.11 CSMA/CA for voice
traffic. In this work we evaluate the application level benefits
of LiT MAC over 802.11 CSMA/CA in terms of throughput,
packet loss and jitter for CBR UDP and TCP traffic.

We carry out measurements across the three paths 2hop,
3hop-1 and 3hop-2, mentioned above. We keep the values
of different LiT MAC parameters as shown in Table III,
except the slot duration which we change to 3ms. Accordingly,
Fig. 12 shows the throughput values for the three flows. The
error bars in the graph represent the standard deviation.
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Fig. 12. Comparison of TDMA and CSMA

Now the expected throughput for TDMA for uni-directional
UDP is 326 Kbps, whereas for bi-directional UDP it is 163
Kbps for each flow. As can be seen from Fig. 12 the measured
throughputs for TDMA are quite close to the expected value.
However for CSMA the throughput values are typically less
than that for TDMA. The difference between TDMA and
CSMA is particularly apparent in case of uni-directional TCP
and bi-directional UDP transfers. Not only is the TCP and

5External interference is largely due to Internet traffic which is unpre-
dictable [21] and hence so is external interference.
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bi-directional UDP throughput for CSMA less than that for
TDMA, but the variation in throughput across different flows
is also much more. For e.g. for TCP, for the flow 3hop-1 the
CSMA throughput is about 200 Kbps, while for the flow 2hop
the CSMA throughput is only about 60 Kbps.

TABLE IV
TDMA VS CSMA: PACKET LOSS STATISTICS

Apart from the throughput results above, we observed that
average jitter values for TDMA were about 15-30ms, while the
same for CSMA were 2-3 times higher. More importantly, the
difference in average packet loss statistics are stark, as shown
in Table IV. While the packet loss for CSMA can be as high
as 80%, TDMA has negligible packet loss, under 0.5% in
most cases. Thus these results highlight the application level
benefits of using TDMA for mesh networks, in comparison
with CSMA. CSMA was never designed for such use in mesh
networks and shows poor performance.

Latency metrics and soft-state overheads:LiT MAC uses
soft-state based mechanisms for aspects such as node-join,
flow-setup, etc. (Sec. III). How does this affect metrics such
as flow-setup latency, control overhead, etc.? To study this, we
carried out experiments in our 15-node indoor testbed.

Fig. 13. Control tree for indoor testbed

To analyze various latency related metrics, in the 15-node
network, we enforce the control tree as shown in Fig. 13. The
control tree is enforced by ensuring that a given node selects
only a particular other node as a parent during node join. After
a node boots and joins the network, it then initiates a flow
request after a random interval of a few seconds. This flow
continues throughout the experiment. We run the experiment
for half an hour and measure the following latency related
metrics: node join latency, flow set-up latency, flow renewal
and topology update latency.

The node join latency is the time taken by the newly started
node to become part of the network, after it hears the first
control packet. The flow set-up latency is the time between
when the first flow request packet is sent on air and when
its response is received. Flow renewal latency is the time
between when the flow renewal request is sent on air and when
it reaches the root node; topology update latency is defined
likewise.

The TDMA MAC parameter values that we have used are
shown in Table V. As can be seen, every node sends a flow
renewal request 10 frames after the last flow renewal request
was sent. Topology update packets are sent with a period

Slot duration 5ms
Num. control slots 3

Num. contention slots 2
Num. data slots 45

Max num. retransmissions 5
Probability of transmission maxlevel−nodelevel+1

numnodesin contention slot
Flow renewal interval 10 frames

Topology update interval 20 sec
Control overhead 3+2

3+2+45
= 10%

Data rate 6M (802.11g)
Channel 8
Testbed Indoor

TABLE V
TDMA MAC PARAMETER VALUES

of 20 seconds. Since the nodes that are closer to the root
forward more flow renewal and topology update packets, the
probability of transmission that we have used for contention
slots takes into account the node level (i.e. hop count from the
root node). The simulation based analysis in [9], shows that
this approach for computing the probability of transmission
results in low contention slot collisions.

Though [9] has also carried out evaluation for above
mentioned metrics the essential difference of our evaluation,
apart from the type of hardware used, is that we do not
assume anything about the type of traffic, while [9] has carried
out evaluation specifically for real time voice. Due to these
reasons the TDMA MAC parameter values in our setting
are different. Another difference is that [9] has carried out
evaluation for sparse traffic wherein only few voice calls
are active simultaneously while we assume worst case traffic
wherein all the nodes in the network are active simultaneously.

The results of our experiment are shown in Table VI. We
show the latencies in terms of number of frames rather than
in seconds. This is since, for the same number of data, control
and contention slots in a frame if the slot duration is changed,
frame duration will change and so will the latencies.

As can be seen from Table VI, node join and flow set-up
latency increases as the node level (i.e. number of hops from
root node) increases. For the4th hop nodes (nodes 13 and
14), the node join latency is slightly more than 25 frames,
while flow set-up latency for nodes 13 & 14 are about 11 &
18 frames respectively. Also the flow renewal and topology
update latencies are about 12-13 frames for4th hop nodes.

These results can guide in the setting of appropriate frame
duration, depending on the application requirement. For e.g.
if the network needs to support a large number of short lived
flows, then frame duration can be kept small. For a frame
duration of 50ms and considering the flow set-up latency for
4th hop node to be 20 frames, the flow set-up latency for4th

hop nodes is about 1s.
Now, average flow renewal latency for4th hop nodes is

about 13 frames; if we take the timeout for terminating a flow
as 3 x 13 = 39 frames, then for a flow that has ended and
its flow termination request is lost, the root has to wait for
39 x 50ms≈ 2 sec before de-allocating data slots for that
particular flow. This is the cost of using soft-state mechanism
for flow termination. We see that this inefficiency due to data
slots remaining allotted to a flow that has terminated, is quite
small.

Our measurement results show that with a 10% control
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Node Num 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Node level 1 1 1 1 2 2 2 2 3 3 3 3 4 4
Join latency (# frames) 2.4 1.8 5.3 5.4 7.7 3.6 4.8 9.6 18.3 11.8 10.8 12.3 27.2 26.4
Flow set-up latency (# frames) 2.9 3.0 1.9 3.9 8.9 10.0 5.9 6.0 7.9 13.0 8.0 24.0 10.9 17.9
Avg. flow renewal latency 0.7 0.4 0.2 1.0 2.7 3.6 3.4 3.3 6.1 6.9 7.2 6.1 12.4 12.7
(# frames) (std. deviation) (2.0) (1.3) (1.0) (2.3) (2.9) (3.5) (3.2) (3.2) (4.0) (4.3) (4.8) (4.1) (6.7) (7.9)
Avg. topology update latency 0.6 0.4 0.4 1.0 2.9 3.5 3.4 2.7 5.8 7.5 7.2 6.7 12.3 11.6
(# frames) (std. deviation) (1.8) (1.5) (0.8) (2.1) (3.2) (3.2) (3.5) (3.1) (3.9) (4.6) (4.7) (5.1) (6.8) (5.8)

TABLE VI
VARIOUS LATENCY METRICS AS MEASURED IN THE INDOOR TESTBED

overhead for a 15-node mesh network, the various latency
metrics are within a few seconds even at four hops. These
latencies are acceptable for long duration flows that last for
few minutes or more. However, for shorter duration flows that
last for say 5-10 seconds, such as HTTP transfer, latency of the
order of seconds for setting up a flow may not be acceptable.
But we note that such short flows usually will not require
slot reservations, and hence can be handled through other
means. For instance, one may use a pre-setup best-effort flow-
id, which can accommodate such short flows.

B. Routing stability evaluation

As mentioned in Sec. I, routing stability is a key factor in
application performance; LiT MAC’s TDMA slot allocations
will lose meaning if there is high route instability. Havingin-
tegrated routing metric computation with LiT MAC (Sec. IV),
we have compared the performance of the following three
routing metrics: ETX [11], ROMA [12] and SLIQ [13] as
regards routing stability.

We carry out measurements for 33 links in our 9-node
outdoor testbed for this study, with links operating at the
802.11g 6M data rate on channel 8. The values for the different
TDMA MAC parameters that we used arenum. control slots
= 9, num. contention slots = 3, andnum. data slots = 8. We
keep the slot duration as 5ms, thus forming a 100ms frame,
while the experiment duration was 2000 seconds.

As mentioned in Sec. IV, we use control packets of the
LiT MAC protocol as probe packets. The essential difference
of SLIQ compared with ETX and ROMA is that SLIQ is
computed over 200 probe packets while ETX and ROMA are
computed over 10 probe packets sent at a periodicity of 1sec.
Thus for computing SLIQ metric we use the control packet
transmitted in every frame (i.e. every 100ms) thereby updating
the SLIQ metric value every 20 seconds. For computing ETX
and ROMA we use the control packets transmitted every
10th frame. Each node, in our experiment, logs the packet
delivery information of the control packets received from
the neighbouring nodes and computes the value of the three
metrics accordingly.

We now compare the performance of the three metrics
in terms of four aspects: link trigger rate, dominant route
prevalence, route persistence, and route flaps.

(i) Link trigger rate: A trigger is generated whenever the
current link metric differs from the previous value by at least a
threshold percentage. Using a 10% threshold, Fig. 14(a) shows
the CDF of trigger rate computed over all links. As can be
seen, the trigger rate for ROMA and SLIQ is significantly
smaller than that of ETX. For ETX, only about 10% of the
links show trigger rate less than 10 per 1000s, while for

ROMA and SLIQ, about 80% and 100% of links have trigger
rate less than 10 per 1000s, respectively. We observed that the
mean trigger rate for SLIQ is only 3 per 1000s whereas it is
13 and 42 respectively for ROMA and ETX. Although we do
not show results here, we note here that we also compared
the performance at lower threshold values (i.e.< 10%). We
observed that in such cases ROMA performs worse than ETX,
while SLIQ continues to perform well in absolute terms, and
best in relative terms.

(ii) Dominant route prevalence:Among all the routes
between a given source destination pair, the route which is
prevalent for the longest percentage of time is the dominant
route. The CDF of the prevalence of the dominant route,
across all source-destination pairs, is shown in Fig. 14(b).
As can be seen, for about 91% of the cases with SLIQ, the
dominant route prevalence is 90% or more. For ETX only
about 73% whereas for ROMA only about 63% of routes have
dominant route prevalence of over 90%. Thus these results
further indicate that SLIQ is more stable than ETX or ROMA.

(iii) Route persistence:We now analyze the mean of the
route persistence, which is measured as the duration of timea
given route lasts. Fig. 14(c) shows the mean route persistence
for the three metrics at 10% trigger threshold. We can see that
in case of SLIQ, more than 91% of the routes persist longer
than 500 seconds, whereas for ROMA and ETX only about
36% and 22% of routes persist longer than 500 seconds. Also
the mean route persistence for SLIQ is 1319 seconds, whereas
for ROMA and ETX it is 219 and 66 seconds respectively.

(iv) Number of route flaps:We also evaluated the number
route flaps for the three metrics, over the duration of 2000
seconds. Route flap refers to a change in the route between the
given source-destination pair. As can be seen from Fig. 14(d),
the number of route flaps for SLIQ, for all the source-
destination pairs is less than 10. On the other hand for ROMA
about 20% of the routes have more than 10 route flaps, whereas
in case of ETX about 40% of the routes have more than 10
route flaps over the 2000 seconds.

On detailed analysis of routes selected, we observed that
most route flaps occur for the routes that involve links with
intermediate quality. Intermediate quality links are the links
with PDR (Packet Delivery Ratio) between 10 and 90%. From
Fig. 14(c), it is evident that SLIQ is capable of masking the
link variability and hence can select stable routes.

Summary of routing stability results: The above results
uniformly show that the SLIQ metric performs significantly
better than ETX and ROMA as regards routing stability.

SLIQ performs better than ETX, even if we directly com-
pare with the results in [17]. For instance, at the 10%
threshold, [17] reports a median value (i.e. 50%-ile) of 30min
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Fig. 14. Comparison of routing metrics at the 10% link trigger threshold

(i.e. 1,800s) for the persistence of the dominant route, in
the Roofnet outdoor testbed. Whereas as Fig. 14(c) indicates,
SLIQ’s mean route persistence itself is about 2,000s for about
80% of the routes (the dominant route persistence can only be
expected to be higher).

The reason for higher stability of SLIQ, as highlighted in
[13], is that it uses more number of packets (200 packets)
than ETX and ROMA (10 packets each) to compute the
metric value and so can factor out the short term variations in
link quality, resulting in higher stability. Though in ignoring
short term variations in link quality, SLIQ can also ignore
high throughput paths that can occur for short time. Tracking
such short term changes is possible through approaches such
as Opportunistic Routing [22], but this we believe is not
appropriate for real-time applications like voice/video which
have strict delay/jitter requirements. For such applications
routing stability offered by SLIQ, can enable LiT MAC to
give good and stable performance [23].

C. Spatial reuse

Spatial reuse is a key technique for improving performance
in mesh networks; this refers to the use of the same TDMA
slot, in the same channel, by two links in the network. Such
spatial reuse requires interference mapping: i.e. information
on which links interfere with which other links. We have
integrated LiT MAC with an SIR-based interference map-
ping [24] as described in Sec. IV. While the evaluation of the
interference mapping technique itself is the topic of parallel
work, beyond the scope of this paper, here we briefly present
results to demonstrate that LiT MAC can support spatial reuse.

In our outdoor testbed, we identify four 3-hop paths which
support spatial reuse across the first and last hops (within each
path). That is, two of these links can be allotted the same time
slot. In a given experiment, we use one of the four 3-hop paths,
and setup a uni-directional or bi-directional UDP flow. We use
a slot size of 10ms,num. control slots = 4, num. contention
slots = 2, num. data slots = 74, and a MAC layer pkt size
of 1100 bytes. We fix all links at the 6M 802.11g data rate,
using channel 8.

Table VII shows the throughput results for the uni-
directional and bi-directional UDP flows for the four differ-
ent paths. In our experiments of Sec. VI-A, we scheduled
three flows simultaneously, which represents the heavy load
condition. As is well known, CSMA performs poorly under
heavy load [1]. But in this case we schedule the flows
across the four paths individually, so it represents a relatively
low load condition. But even in this condition, TDMA after
incorporating the spatial reuse, performs much better than

Path
CSMA
Thghput
(Kbps)

TDMA
Thghput
(Kbps)

Thghput
improve-
ment(%)

uni bi uni bi uni bi
KR-SOM-H12-H13 1520.2 394.5 1735.1 637.1 14.1 61.5
H13-H12-SOM-KR 1465.1 401.6 1585.2 650.6 8.2 62.0
GG-SOM-H12-H13 1280.4 397.0 1590.3 604.0 24.2 52.1
H13-H12-SOM-GG 1522.1 399.6 1517.1 628.3 -0.3 57.2

TABLE VII
COMPARISON OFCSMA AND TDMA WITH SPATIAL REUSE USING

UNI -DIRECTIONAL (UNI ) AND BI -DIRECTIONAL (BI ) UDP TRANSFER

CSMA. The benefit is particularly apparent in case of bi-
directional UDP transfer wherein the throughput improvement
of TDMA with spatial reuse is as much as 60%.

These results quantify the performance improvement due
to spatial reuse compared with CSMA and further highlight
the benefit of LiT MAC. In other experiments, detailed in
parallel work, we observed that TDMA with spatial reuse gives
close to the expected throughput improvement, compared with
TDMA without spatial reuse.

VII. D ISCUSSION ANDCONCLUSION

Despite the popularity of WiFi mesh networks among the
research community as well as in deployments, providing QoS
in such networks remains an elusive goal. We take the stance
that a TDMA-based approach is necessary to achieve this. But
multi-hop wireless TDMA presents several challenges. Time
synchronization across multiple hops, in presence of wireless
channel losses is the first issue. Next, any TDMA schedule
has to be reliably and consistently disseminated to the network
nodes. Supporting the use of multiple channels of operation
in this context is a further challenge, and so is integrationof
aspects such as spatial reuse and dynamic routing.

In this work we have implemented and evaluated a full-
fledged TDMA MAC, LiT MAC [9]. LiT MAC takes a
centralized approach, and makes extensive use of soft-state
mechanisms to address the above challenges. Our implemen-
tation is on top of commodity WiFi hardware, which lets us
leverage the low-cost benefits of the same. We have evaluated
various aspects of the implementation, using indoor as wellas
outdoor testbeds.

Our results indicate that LiT MAC can achieve time syn-
chronization accuracy of a fewµs across several hops. TDMA
slot sizes can be as small as 2-5ms. However, for slot sizes
smaller than 2ms the CPU becomes a bottleneck affecting
performance, due to the high rate of interrupts. We believe
that for most applications, a slot size of 2ms should not be an
issue.

Outdoor evaluation over long durations has shown that the
TDMA MAC design as well as the implementation are stable
enough for use in practice. The network nodes are able to
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maintain synchronization even in the presence of high internal
load and high external interference conditions. This showsthe
robustness of the soft-state based design.

The soft-state overhead is manageable, and the latencies
involved are a few seconds for operations such as a new
node joining the network, or a new flow being admitted.
The latency of a few seconds is usually acceptable for long-
duration flows. Fortunately, short lasting flows such as HTTP
downloads lasting 5-10 sec or less typically do not require
slot reservation; and these can be handled through a pre-setup
“best-effort” flow.

Our routing stability evaluations show that the use of the
SLIQ metric results in stable routes, which in combination
with the TDMA slotted approach means that applications can
expect to get stable performance. And finally, we have also
demonstrated that LiT MAC can support spatial reuse, to
further enhance network capacity.
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