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Abstract— Consider an information repository whose content is
categorized. A data item (in the repository) can belong to multiple
categories and new data is continuously added to the system. In
this paper, we describe a system, CS*, which takes a keyword
query and returns the relevant top-K categories. In contrast,
traditional keyword search returns the top-K documents (i.e.,
data items) relevant to a user query. The need to dynamically
categorize new data and also update the meta-data required for
fast responses to user queries poses interesting challenges. The
brute force approach of updating the meta-data by comparing
each new data item with all the categories is impractical due to (i)
the large cost involved in finding the categories associated with a
data item and (ii) the high rate of arrival of new data items. We
show that a sampling based approach which provides statistical
guarantees on the reported results is also impracticable. We hence
develop the CS* approach whose effectiveness results from its
ability to focus on a strategically chosen subset of categories on
the one hand, and a subset of new data on the other. Given
a query, CS* finds the top-K categories with high accuracy
even in time-constrained situations. An experimental evaluation
of the CS* system using real world data shows that it can easily
achieve accuracy in excess of 90%, whereas other approaches
demand at least 57% more resources (i.e., processing power),
for providing similar results. Our experimental results also show
that, contrary to expectations, if the rate of arrival of data items
doubles, whereas CS* continues to provide high accuracy without
a significant increase in resources, other approaches require more
than double the number of resources.

I. INTRODUCTION

In this paper, we describe a system, CS* (Category Search),
which takes a keyword query and returns the relevant top-K
categories, given an information repository containing catego-
rized content. Its key features include:

• Unlike current search engines which respond with (just
the identity of) the top-K documents that are relevant to
the keywords specified, CS* returns the top-K relevant
categories. The framework underlying CS* is capable of
handling any information categorization mechanism.

• CS* is appropriate for domains in which new information
arrives at a high rate or where new categories are specified
by users.

• CS* is able to find the correct top-K categories with high
accuracy even in time-constrained situations.

Motivation: Consider a scenario where PC, a presidential
candidate, has recently announced his education manifesto.
PC’s campaign manager is anxious to assess the reaction to

the manifesto among different categories of potential voters.
So the manager examines postings on blogs, forums, wikis,
etc., by firing a keyword query “PC education manifesto” over
a popular blog search engine. The results returned consist of a
large number of blog posts, with the blog entries from highly
ranked blogs being returned at the top of the search result.
Unfortunately, the campaign manager finds it tedious to read
through all the results and from that evolve a consolidated
reaction focusing on specific categories of voters. What would
have been preferable are search results which, for example,
inform the campaign manager that among the reactions from
various groups of interest to the campaign, the most relevant
can be found in postings about (i) K-12 education and (ii)
about high school students’ interest in science. Reading a
sample set of recent postings from each of these top categories
would help the campaign manager understand the real issues
raised by these important groups. For instance, the manager
might find out that the education policy is perceived as not
adequately addressing the concerns of K-12 school teachers.
This would help the campaign manager to take immediate
follow up action.

Notice that using traditional search, grouping the results
into different categories (using say, document clustering tech-
niques) and ordering the categories based on the number of
posts in each category, will not provide the desired results.
Given the keyword query “PC education manifesto”, such
a system might return the category “Postings of users from
America” at the top, as majority of the posts would be from
people in America. The crucial factor that it fails to capture is
that postings about PC’s education policy are likely to consti-
tute a minuscule fraction of the postings from America. This
difference can only be captured by a system that categorizes
updates along specific categories and provides keyword search
over such categories. Such a system would be able to identify
that majority of the blog posts about K-12 schools refer to
PC’s education policy and hence would place them at the top
of the rank order.

Consider a second application, one from the financial do-
main. In a stock exchange, transaction information is cate-
gorized based on the stock(s) associated with the transac-
tion, buyer/seller profiles, etc. Example categories could be
“Transactions made by retail customers”,“Transactions made
by high value customers”, etc. Now consider an analyst who



wants to investigate recent sudden jumps in the price of IBM
and Microsoft stocks. Using CS*, the analyst can issue a
keyword query “IBM Microsoft” to find the top-K categories
of buyers/sellers of these stocks. The results could show
the following categories at the top (i) Transactions made by
Bank of America customers and (ii) Transactions made by
high value customers. The analyst uses this to do further
investigation and realizes that there was a tip issued by Bank
of America to its customers about IBM and Microsoft stocks.
This is a classic example of Real Time Business Intelligence.
Notice that the regular keyword search using existing tech-
niques would not be meaningful as this would return individual
transactions (rather than the categories) which may not be of
direct use to the analyst.
Problem Definition: In this paper we study the problem of
top-K keyword search over categories, where each category
is associated with, or is mapped to, one or more pieces of
information, referred to simply as data items. The data items
in the above examples include the blog posts, forum postings
and stock transactions.

Consider a continuously growing information repository of
data items d1, d2, d3, · · · . Each data item d is associated with
a set of attributes A(d) and a multi-set of terms T (d) drawn
from a universe of terms T . Each data item belongs to one
or more categories from a set of categories C. Each category
c is associated with a boolean predicate pc(·) that takes as
input a data item d and tells whether d belongs to category
c. pc(·) is evaluated over A(d) and T (d). E.g., the predicate
for the category “Forum postings about high school students’
interest in science” would be realized by a text classifier which
would take the posting as input and decide whether the posting
belongs to the category. On the other hand, the predicate for
the category “Blog post of people from Texas” would make
use of the attributes of the data item (i.e., the blog author’s
profile) to decide the categorization. Thus the predicate is
domain dependent and will be provided as input to CS*.

In this paper, for ease of explanation, we do not measure
time in absolute terms, but in terms of time-step. Updates to
the information repository with one or more data items causes
the time-step to be incremented proportionately (i.e., equal to
the number of data items added). Thus, there is a one-to-one
mapping between a time-step and the data item added to the
information repository in that time-step. Let Ds denote the set
of all data items till time-step s, then: Ds = {di : 1 ≤ i ≤ s}.
The data-set (Ms(c)) of a category c, till time-step s, is defined
to be the set of all data items added till time-step s that map
to c: Ms(c) = {d ∈ Ds : pc(d) = 1}.

Given Ds and the set of categories C, our goal is to find
the set of categories most relevant to a keyword query given
by a user at some time-step s. A keyword query Q consists
of a set of keywords {t1, t2, . . . t�}. We need to evaluate the
keyword query with respect to data items added till time-step
s, i.e., the set Ds.

The top-K categories are found using a scoring function.
Let the score of a category c with respect to a keyword query Q
be represented by Score(c,Q). This would depend on the score

of c for each keyword present in Q. Let F be the function
that takes as input a category c and a keyword t and computes
the score of the category with respect to t. Further, let G be
a function that combines the F(c, t) values for each t ∈ Q to
arrive at Score(c,Q). Then,

Score(c,Q) = G(F(c, t1),F(c, t2), . . . ,F(c, t�)) (1)

Given a user query Q issued at a time-step s, the goal is to find
the categories having the top-K scores among all the categories
defined in the system. Here, K is an input parameter. The
query answering process makes use of meta-data which helps
it to find the value of Score(c,Q) for each c. But Score(c,Q)
is bound to change as Ds and hence Ms(c) changes with
the passage of time s. This implies that, to compute the score
accurately, we must keep the meta-data up-to-date as data gets
added to the repository. If data arrival rate is high, this is a
challenging task.

A simple strategy to solve this problem is to eagerly update
the meta-data as soon as new data items arrive. The update-all
strategy, described next, uses such an approach.
Update-all Strategy: This strategy refreshes all the categories
whenever a new data item is added. This involves evaluating
the boolean predicate (pc) of each category on each new data
item and updating the meta-data of those categories whose
predicate evaluates to true. This strategy could be very time
consuming as the process of evaluating the boolean predicate
of each category on the new data item is likely to be a
costly operation. For the presidential candidate scenario, this
would involve running a text classifier on the blog entry (data
item). If the text classifier can classify the blog entry on an
average in say 25 milliseconds, then with 1000 categories 25
seconds will be required to refresh all categories using one
data item. Similarly, in the stock exchange scenario, evaluating
the boolean predicate would require firing a SQL query on a
database of stock transactions. These queries could involve
costly joins with the company or user profile. Hence while a
data item is being processed more data items could be added
to the system. This is particularly true for both the examples
given above as the number of transactions in a stock exchange
is very high and in the blog world, according to a 2006
estimate, more than 13 blog entries are generated per second
[1]. Thus by the time all the categories are refreshed using
a single data item, more data items would have been added.
Therefore, as time progresses, such a meta-data update strategy
would start lagging behind, resulting in an increase in the
number of unprocessed data items. As a result, the meta-data
required for answering the keyword queries becomes stale,
leading to inaccurate top-K results. Clearly what is required,
is a way by which meta-data of a select set of categories is
refreshed using a select set of data items. Incorporating this
idea, we have developed the selective update strategy which
is used by the CS* system.
The CS* Approach: As new data items are added, the
selective update strategy of CS* first identifies a subset of the
categories that are deemed ‘important’ and then identifies the
subset of data items which can provide the maximum impact
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in terms of update to the meta-data and hence to the accuracy
of the reported top-K categories. These data items are used
to refresh the selected important categories. This way, CS*
utilizes the processing time effectively, by only focusing on
the important categories and important data items.

The CS* system which uses this novel approach consists of
two components: (i) meta-data refresher module and (ii) query
answering module. The Meta-data Refresher Module uses the
selective update strategy for updating the meta-data as new
data items are added. The meta-data updated by this module
consists of an inverted index which maps each keyword t,
to the set of all categories that contain t in their data-set.
The index also contains information needed to compute the
functions F and G (see Equation 1). Section IV presents the
details of this module. The Query Answering Module finds the
top-K categories for a given keyword query Q issued at time-
step s∗ using the meta-data. Since it is impossible to keep
the meta-data always up-to-date, it is infeasible to find the
exact top-K categories. Thus, providing results with a high
level of accuracy is a challenge. We address this issue by
carefully maintaining estimates of the actual statistics. Another
challenge is to efficiently find the top-K answers in terms
of running time. We have developed an innovative two-level
threshold algorithm for this purpose, described in Section V.
The research contributions of our work include:

• We formulate the problem of keyword search over dy-
namically categorized information. We believe that this
problem has a lot of practical significance as indicated
by the examples described in this paper.

• We present resource-efficient techniques for maintaining
the indexes and statistics for answering keyword queries
with high levels of accuracy. These involve a number of
interesting subproblems for which we develop systematic
solutions.

• We present a novel two-level threshold algorithm for
answering keyword queries in an efficient and highly
accurate manner.

• We present an experimental study of the CS* system
using real world data. Our analysis shows that CS* is able
to provide an accuracy of over 90%. In comparison, the
update-all technique requires atleast 57% more resources
for providing similar results.

Paper organization: Section II presents a sampling based
approach which provides theoretical guarantees on the results.

We show the impracticality of such an approach and then
present an overview of the statistics maintained by the CS*
system in Section III. The meta-data refresher is outlined in
Section IV and Section V presents the details of the query
answering module. An experimental evaluation of our system
is given in Section VI. Related work is summarized in Section
VII and Section VIII concludes the paper.

II. AN APPROACH THAT PROVIDES STATISTICAL

GUARANTEES

A high rate of arrival of data items leads to staleness in the
computed meta-data which in turn can affect the accuracy of
the top-K results. Hence what we need is a technique which
can guarantee a bounded error in the computed meta-data and
hence in the top-K results. In this section we present such
a sampling based technique which finds the top-K categories
using a scoring function with bounded error. In order to explain
this technique, we use the standard scoring technique used
in information retrieval, based on term frequencies (tf ) and
inverse document frequency (idf ) [2]. We first define the tf ·
idf based scoring function for our setup and then outline the
sampling based approach.

A. tf and idf based scoring functions

The term-frequency of a term t in a category c at time-step
s, is defined to be the number of times t occurs in the data-set
of c normalized by the total number of terms present in it.
Recall from Section I, that there will be s data items in the
system at time-step s. Further, let f(d, t) denote the number
of times t appears in d. Then,

tfs(c, t) =

∑
d : d∈Ms(c) f(d, t)∑

t′∈T

(∑
d : d∈Ms(c) f(d, t′)

)
Notice that the numerator counts the number of times t occurs
in the data-set of c and denominator counts the total number
of terms in the data-set. This size normalization helps to avoid
bias towards categories with large number of terms.

The inverse document frequency seeks to scale down those
terms that occur more frequently across different categories.
At a time-step s, the idf of a term t is calculated as follows:

idfs(t) = 1 + log

(
|C|
|C′|

)
(2)

where C is the set of all categories in the system and C′ is
the set of categories whose data-set contain t, i.e., (∃d ∈
Ms(c))[f(d, t) ≥ 1].

For a keyword query Q = {t1, t2, . . . , t�} issued at time-
step s, the score of a category c is obtained by summing the
individual tf ·idf scores of each keyword present in the query.

Scores(c,Q) =
∑
ti∈Q

(tfs(c, ti) × idfs(ti)) (3)

One way of providing a guarantee on the top-K results is
to compute the Scores(c,Q) value with a bounded error and
ensuring that there is no overlap in the computed Scores(c,Q)
values (due to the error bounds) for the top-K categories. We



now explain a technique to compute the Scores(c,Q) value
(i.e., the tf and idf value) with a bounded error.

B. Estimating idf Values with Bounded Error

In order to find the idf value of all terms with a bounded
error, we pick up a uniform random sample of the categories
and refresh them (continuously) using all the data items. The
idf value is computed using these sampled categories. The
accuracy of the computed idf value will depend on the number
of sampled categories. We use Chernoff bounds [3] to find a
correlation between the size of sample and the error bounds
on the computed idf values.

We can have a good estimate of the idf(t) value for a term t,
if we have a good estimate on the value of |C′|

|C| (see Equation

2). Let τ = |C′|
|C| and let us sample n categories out of the

total of C categories. Let the random variable Xi = 1 if the
ith category contains the term t. Let the random variable X
represent the number of categories in the sample that contain
the term t. The expected value of X is given as: E[X ] =
E[

∑n
i=1 Xi] =

∑n
i=1 E[Xi] = nτ .

For any positive constant, 0 ≤ ε ≤ 1, the Chernoff Bounds
provide information on how close the actual occurrence of
a term in the sample is to its expected count. Applying the
Chernoff Bound formula to X :

P (X ≤ (1 − ε)nτ) ≤ eε2nτ/2

P (X ≥ (1 + ε)nτ) ≤ eε2nτ/3
(4)

ε in the above formula measures the accuracy of the sample.
The bounds also tell us the probability that the sample of size
n will have a given accuracy. This is called the confidence of
the sample and is defined as 1 minus the expression on the
right hand side of the equations. If we are willing to tolerate
a confidence (Conf = 1− ρ) of say 90% (i.e., ρ = 0.1), then
we can equate the RHS of Equation 4 with ρ. Doing this (for
the first of the two equations) we obtain: ρ = eε2nτ/2 =⇒
n = − 2loge(ρ)

ε2×τ .
If we want an accuracy of 99%, then ε = 0.01. Substituting

the values of ε and ρ, we get: n = 46051.7
τ . For |C| = 1000,

the value of τ can be of the order of 0.001. In such a case, the
number of samples that would be needed will be 46051700.
As the number of categories will be smaller than this, such
an approach translates to maintaining all the categories up-to-
date with respect to all the data items. This is same as the
update-all technique which has a huge overhead. Hence the
sampling based approach for finding the Scores(c,Q) value
with a bounded error is not practical.

C. Estimating tf Values with Bounded Error

In order to find the tf value with a bounded error, we keep
picking a uniform random sample of the data items (as they
are added) and use it to update the tf values. Using arguments
similar to those used for idf estimation, we can show that the
number of data items that need to be sampled will be very
large. Hence such approaches fall behind the data arrival rate
and do not provide good results as is corroborated by our
experimental evaluation.

In summary, sampling based approaches that provide guar-
anteed accurate results are not practicable in environments
with high data arrival rates. Hence there is a need for a
technique that may not have guaranteed accuracy, but provides
high accuracy in practise. In the next three sections we present
details of the CS* system which has these properties.

III. STATISTICS MAINTAINED BY CS*

CS* maintains statistics (i.e., meta-data) to find the value
of Score(c,Q) given by Equation 1. We use the standard
information retrieval technique of scoring based on term
frequencies (tf ) and inverse document frequency (idf ) for
explaining this feature of CS*. The scoring function using
tf · idf is given in Equation 3. The statistics that need to
be maintained for this scoring function includes the term
frequency and the inverse document frequency. In our system,
we ensure that the statistics of the categories are refreshed
contiguously. This means that whenever the statistics of a
category c are refreshed using a data item ds (the item added
at time-step s), then it is ensured that they have also been
refreshed using all data items added till the time-step s i.e.,
the set of data items d1, d2, . . . ds−1. This contiguous property
improves the efficiency of the algorithms used by the meta-
data refresher (details in Section IV). For a category c, let
s′ be the largest time-step such that statistics of c have been
refreshed using ds′ ; we refer to s′ as the last refresh time-
step of c and denote it by rt(c). Thus, when the statistics
of c are refreshed again, ds′+1 will be the first data item
to be considered. As a result, the statistics contains the term
frequency information for c till rt(c), namely tfrt(c)(c, t) is
available for any term t.

Suppose a keyword query Q = {t1, t2, . . . , t�} is presented
at the current time-step s∗. In order to accurately find the top-
K categories, we need the term frequencies tfs∗(c, ti), for
each category c ∈ C and each keyword ti ∈ Q. However, only
the term frequencies tfrt(c)(c, ti) are available in the statistics.
We estimate tfs∗(c, ti) by analyzing how the term frequency
of ti in c changed in the recent past. This is based on the
principle of temporal locality which assumes that the term
frequencies do not change dramatically.

Suppose for a term t and a category c, rate of change of
term frequency is denoted by Δ(c, t) and is an estimate of
the change in the term frequency per data item added to the
system. Notice that this would be dependent on two factors: (i)
The selectivity of the category c, i.e., out of say p data items
added to the information repository, how many are likely to
belong to c’s data-set and (ii) the change in the term frequency
for each new data item added to c’s data-set. The system could
keep track of these two factors to predict the value of Δ(c, t).
Thus the value of Δ(c, t) over a sequence of time-steps can be
seen as a time series and we are required to predict its value at
a time-step in the future based on its values in the past. Given
such a predicted value of Δ(c, t), we estimate tfs∗(c, ti) as
follows:

tfest
s∗ (c, ti) = tfrt(c)(c, ti) + Δ(c, ti) × (s∗ − rt(c)) (5)



In the sum on the RHS, the first component is the known
term frequency till time-step rt(c) and the second component
is the estimated change in its value due to new data items
added between rt(c) and s∗. The Δ values corresponding to a
category c are updated whenever the category c gets refreshed.

For the sake of completeness, we provide one example
technique for deriving the Δ values. However, note that our
system is independent of the exact mechanism used for this
purpose. The Δ value can be computed by looking at the
changes in the term frequencies in the recent past and using
an exponentially smoothed value. Let c be a category and let
its last two refresh time-steps be s2 and s1 (with s2 > s1). For
a term t, let Δs1(c, t) be the Δ value computed at time-step
s1. At time-step s2, we compute Δs2 as follows:

Δs2(c, t) := Z · tfs2(c, t) − tfs1(c, t)

s2 − s1
+ (1 − Z) · Δs1(c, t)

where Z (0 ≤ Z ≤ 1) is a smoothing constant. By setting
Z > 0.5, we can give more importance to the recently added
data items. While answering a query at time-step s∗, in order
to get an estimate tfest

s∗ (c, ti) on the exact value of tfs∗(c, ti),
we use Equation 5 with Δrt(c)(c, t) as the Δ value.

Turning to inverse document frequencies, ideally, one would
like to maintain idfs∗(t) for each term t. However, this requires
refreshing the statistics whenever a data item is added, because
adding a data item can change the idf of every term contained
in it. So, here-again, we shall only maintain an estimated idf
(i.e., idfest(t)), for each term t. The details are presented while
discussing the meta-data refresher module (Section IV).

IV. META-DATA REFRESHER

The Meta-data Refresher uses the selective update strategy
for maintaining and refreshing the statistics as accurately as
possible. During each invocation it first identifies the set of
‘important’ categories (of size N ) and then identifies the set of
data items (of size B) which can provide the maximum impact
to the selected categories in terms of update to statistics.
The meta-data refresher then refreshes the chosen categories
using the selected data items. Once it has finished refreshing,
the meta-data refresher is invoked again and the process is
repeated.

The first and foremost task for the meta-data refresher is
that of finding the importance of a category. As we shall see
in Section IV-A, the meta-data refresher uses the predicted
query workload to compute the importance and selects the N
categories with maximum importance. Given the N important
categories the issue that needs to be addressed next is: How
to find the right set of data items that would provide the
maximum impact? Answering this question requires us to first
define the benefit (or impact) of a set of data items for a
category. This is the focus of Section IV-B. The benefit is
then used by our dynamic programming algorithm (details in
Section IV-C) to find the optimal set of data items to refresh
the selected important categories.

The above discussion assumes some value of N and B.
These values are computed during each invocation of the

meta-data refresher based on the system’s performance as
explained in Section IV-D. The meta-data refresher also has the
additional responsibilities for maintaining the idf values and
for handling new categories added to the system. These details
are outlined in Section IV-E and Section IV-F respectively.

A. Determining Important Categories

We find the importance of a category based on the predicted
query workload. The meta-data refresher uses the keyword
queries seen in the past to predict the query workload. Thus
the predicted query workload W is simply a multi-set of
keywords that were queried in the recent past. This can be
easily computed by keeping track of the queries posed to the
system.

For the predicted query workload W , we use the follow-
ing principle in computing the importance of a category:
a category that is highly relevant to a large number of
keywords in W should have higher importance; a category
is relevant to a keyword, if the category is one among the
top-ranked categories for the keyword (query). Based on the
above principle the importance of a category is defined as
follows. For a keyword t ∈ W , we define its candidate
set to be the set of top-2K categories for t. The candidate
set can be easily computed by the Query Answering module
while answering the keyword query (details in Section V). Our
formula for calculating the importance also takes into account
the frequency of occurrence of the keywords in W . We define
the weight of a keyword t ∈ W to be the number of times it
occurs in the predicted workload W . Then the importance of
a category c is calculated as the sum total of the weights of all
the keywords in whose candidate sets the category c appears:

Importance(c) =
∑

t∈W∧c∈CandidateSet(t)

weight(t) (6)

The above formula ensures that the categories that appear in
the candidate set of multiple keywords have higher importance.
The Importance(c) so calculated can be thought of as a
measure of the likelihood of the category being used for
answering some query in the future. Thus, if there is no drastic
change in the query workload, refreshing a category with high
importance would help us to improve the accuracy of the query
results by a large amount.

In CS*, the meta-data refresher chooses the N categories
with maximum importance. We represent these categories by
IC. The size of W in Equation 6 is set to U which is called
as the query workload prediction window.

B. Strategy for Refreshing Categories

Given the set IC, the next task is to choose the set of B most
beneficial data items to refresh the N categories. In order to
solve this problem we need to find answers to four important
questions, namely: (i) When can a data item be useful for a
category? (ii) How can we define the benefit of a data item for
a category? (iii) How do we reduce the number of data items
that we need to consider (from among those not considered
so far)? and (iv) How to find the optimal set of data items



to refresh the selected important categories? We provide an
answer to each of these questions in this section.

As mentioned in Section III, we ensure that the categories
are refreshed contiguously. In order to ensure the contiguous
property, our algorithm selects the needed B data items in the
form of ranges. For i ≤ j, let the range [i, j] represent the set
of all data items added between time-steps si and sj , namely
the set di, di+1, . . . , dj . Let width([i, j]) denote the number of
data items in the range. Our goal is to choose a set of ranges R
with the constraint that the sum of the width of the ranges in
R should be at most B. Notice that selecting two overlapping
ranges (i.e., [i1, i3] and [i2, i4] such that i1 ≤ i2 ≤ i3) is
equivalent to selecting the combined range (i.e., [i1, i4]).

Once a set of ranges R is chosen, the categories in IC
are refreshed with respect to data in these ranges. In order to
determine if a category c ∈ IC can be refreshed using a range
[i1, i2] ∈ R, we need to consider the following three cases:

1) rt(c) > i2: Here, the range is of no use to c, as c has
already been refreshed using the data items in this range.

2) i1 ≤ rt(c) ≤ i2: Here, c can be refreshed using the data
items in the range [rt(c), i2].

3) rt(c) < i1: Here, we cannot refresh c using the data
items in this range, because it would lead to the violation
of the contiguous refreshing property.

Our next task is to design a mechanism for measuring the
benefit of a range [i1, i2], denoted by Benefit([i1, i2]). This
is calculated using the benefits that this range provides for each
category in the set IC. Consider a category c ∈ IC. The benefit
that the range [i1, i2] provides for c is simply the number of
data items in this range that can be used to refresh c. This
benefit is denoted by Benefit([i1, i2], c) and is calculated as
below:

1) If rt(c) > i2, Benefit([i1, i2], c) = 0.
2) If i1 ≤ rt(c) ≤ i2, Benefit([i1, i2], c) = i2 − rt(c).
3) If rt(c) < i1, Benefit([i1, i2], c) = 0.

The overall benefit of [i1, i2] is calculated based on the benefit
it offers to each category in IC, taking also into account the
importance of the categories:

Benefit([i1, i2]) =
∑
c∈IC

Importance(c)×Benefit([i1, i2], c)

The above formula is designed to ascribe more benefit to a
range that is beneficial to an important category. Extending
the above formula, we define the benefit of a set of ranges R
as the sum of benefits of all the ranges in it.

Let us now analyze the set of ranges that we need to
consider. Notice that any range in the interval from 1 to the
current time-step s∗ is a possible candidate; this means that(
s∗

2

)
ranges are possible. This being a very large number, we

try to reduce the number of candidate ranges so as to improve
the efficiency of our algorithm (for finding the optimal set of
ranges), without having a large impact on its accuracy.

In order to do this, we first arrange the categories in IC
in ascending order of their last refresh time. Let this ordering
be c1, c2, . . . , cN . Consider a range [i1, i2] which is contained
in between two consecutive refresh times, i.e., for some k,

rt(ck) < i1 < i2 < rt(ck+1). The benefit of this range is
0 and so, such ranges can be ignored. Next consider any
range [i1, i2] such that i1 does not coincide with the last
refresh time of any category in IC. This means that for some
k, rt(ck) < i1 < rt(ck+1) and by previous observation,
i2 > rt(ck+1). Notice that we can shift the starting point of
the range to rt(ck+1) without incurring any loss in benefit, i.e.,
Benefit([rt(ck+1), i2]) = Benefit([i1, i2]). Hence, we can
ignore such ranges. Even after the above pruning of ranges,
we are still left with all the ranges that start at rt(ck), for
some ck ∈ IC; the number of such ranges can be seen as
ΣN

i=1(s
∗ − rt(ci)). The above number is a function of s∗ and

hence, it is large. We wish to keep the number of candidate
ranges as a function of N and we achieve this by considering
only those ranges that end at some rt(ck), for some k 1. Let
[i1, i2] be a range such that rt(ck) < i2 < rt(ck+1), for
some k. By shifting the ending point to rt(ck), we would lose
a small amount of benefit; but this allows us to reduce the
number of ranges to be considered drastically. To summarize,
we shall only consider the

(
N
2

)
ranges that start and end at

some last refresh time. We call such ranges as nice ranges.
The above discussion serves as the motivation of the range
selection problem.

C. Range Selection Problem

The input to the range selection problem is a sequence of
categories IC = c1, c2, . . . , cN sorted in the ascending order
of their last refresh times and a bandwidth B. The goal is to
find a set of non-overlapping nice ranges having a total width
of at most B, such that the total benefit is maximized. In this
section we present a dynamic programming algorithm for the
range selection problem.

For 1 ≤ i < j ≤ N , let NRij denote the (nice) range
[rt(ci), rt(cj)]. The input to the algorithm is the set of all nice
ranges represented by NR. Our goal is to find a subset R ⊆
NR of non-overlapping nice ranges such that width(R) ≤ B
and Benefit(R) is maximized. The algorithm constructs an
N × B matrix E, whose (k, b) entry contains the maximum
benefit that can be achieved by using only the categories
c1, c2, . . . ck and a bandwidth of b. Observe that E[N,B] gives
the benefit of the optimal solution to our original problem.

The entry E[k, b] can be inductively computed from entries
E[k−1, ·]. Consider the optimal solution R∗ corresponding to
the entry E[k, b]. The set R∗ can either include a range of the
form NRjk (for some j) or not include any such range. In the
latter case, R∗ is also the optimal solution corresponding to
the entry E[k−1, b]. On the other hand, suppose R∗ includes
a range of the form NRjk, for some 1 ≤ j < k. Then the
set R∗−{NRjk} is the optimal solution corresponding to the
entry E[j, b − Width(NRjk)].

Based on the above observations, we can derive the fol-
lowing recurrence for the entries of E. For 1 ≤ k ≤ N and

1The ranges can also end at s∗ which can be handled by adding an
imaginary category cimg with rt(cimg) = s∗ to IC.



1 ≤ b ≤ B,

E[k, b]=max

{
E[k − 1, b]
max

1≤j<k
{Benefit(NRjk)+E[j, b − Width(NRjk)]}

The dynamic programming algorithm uses the above recur-
rence relation to compute the matrix E. The algorithm is given
in detail in [4].

The matrix E has N ·B entries and it takes O(N) time to
compute each entry. Thus, the running time of the algorithm
is O(N2 · B). Notice that if we had not reduced the number
of ranges to be considered from

(
s∗

2

)
to

(
N
2

)
, the running time

would have been O((s∗)2 ·B) where s∗ >> N . This justifies
our strategy of reducing the number of input ranges.
Justification for contiguous refreshing: Consider a system
CS’ where the categories are not refreshed in a contiguous
manner. For such a system, rt(c) would represent the num-
ber of (non-contiguous) data items using which c has been
refreshed. Due to the non-contiguous refreshing property the
dynamic program will have to select a set of ‘B’ data items
(and not ranges). Due to the absence of ranges, the size of the
input to the dynamic program would be:

∑
c∈IC(s∗ − rt(c)).

This being a function of the current time-step s∗, it will be very
large compared to the input size of

(
N
2

)
in the CS* system.

Such a large input size would adversely affect the number
of categories that the meta-data refresher can refresh in one
invocation, as we shall see in the next section. Hence the CS*
system is designed to refresh the categories in a contiguous
manner.
Parallelization of meta-data refresher: Once the meta-data
refresher chooses the nice ranges IC of width B and the set of
important N categories, the job of refreshing the categories can
be executed in parallel over B ×N processors. If the number
of available processors p is less than this, then the meta-
data refresher distributes it evenly among these p processors.
Each of the processors updates the statistics stored at a central
location from where it is accessed by the Query Answering
module. In this paper we focus on the core algorithms used by
the meta-data refresher and do not get into the synchronization
issues, which are beyond the scope of this paper.

D. Selecting B and N Values to Keep Up with Data Addition

Let γ be the average units of time (including communication
costs) required to refresh a single category using a data item
per unit processing power. If the available processing power
is p, then the update-all technique will require γ×|C|

p units of
time to refresh all the categories (C) using one data item. Let
the rate of arrival of data be α i.e., α data items are added
per unit time. As γ×|C|

p > 1
α , the update-all technique starts

lagging behind the data item addition rate.
The meta-data refresher accesses B data items and uses

them to refresh N categories. Thus the time taken for one
invocation of the meta-data refresher would be: B·N ·γ

p . If a
new data item is added before the invocation finishes, the meta-
data refresher would start lagging behind the data item addition
rate. Thus the maximum time available for a single invocation

would be: 1
α . Thus,

B · N · γ
p

=
1
α

=⇒ N =
p

α · B · γ (7)

Given a value of B, we can use the above equation to find
the value of N and vice-versa. Consider the system at the first
time-step i.e., when only one data item has been added. For
such a system, the value of B will be 1 as we cannot refresh
a category using say, a fraction of a data item. With B = 1,
the value of N can be computed from Equation 7. If the
data items in the set IC do not change over time, then these
values of B and N would ensure that the statistics associated
with the categories in IC are always maintained up-to-date
i.e., their staleness (L =

∑
c∈IC(s∗ − rt(c))) would be zero.

However, in practice the categories in IC would change due
to the change in query workload. The staleness of this new set
of important categories would thus be greater than zero. If we
continue to use the same value of B and N , then there would
be no improvement in the staleness and the quality of query
results would suffer. The query results can be improved by
reducing the staleness of the important categories which would
require an increase in the value of B. However, if we simply
increase the value of B without changing the value of N , it
would lead to an increase in the time taken by the meta-data
refresher. Consequently, the meta-data refresher would start
falling behind the data item arrival rate. This can be avoided
by reducing the value of N such that the time taken by the
meta-data refresher is constant. Thus given an increased value
of B, the value of N can be computed using Equation 7.

Now the problem that needs to be addressed is to find
the right increase in the value of B. We compute the value
of B using the following feedback mechanism. During each
invocation, the meta-data refresher first finds the staleness
of the N important categories, where N is set to its value
used during the previous invocation. It keeps track of the
minimum and maximum value of the staleness of the top
N categories seen in the past i.e., [Lmin, Lmax]. During the
current invocation, if the staleness of the N categories is the
maximum seen so far, then we need to focus on a smaller set
of categories and reduce their staleness. Hence, we set N = 1
and compute Bmax value using Equation 7. If on the other
hand the staleness is the least seen so far, then the value of
B is set to 1 and the value of N is computed accordingly.
For other values of staleness (L′), we set the value of B in
proportion to the quantity: L′−Lmin

Lmax−Lmin+1 . This ensures that if
say, the range [Lmin, Lmax] is [10, 20] and the value of L′ is
14, then the value of B will be set to 40% of its maximum
value (Bmax). Hence if the staleness increases, the value of
B will increase proportionately. Thus during each invocation,
the meta-data refresher sets the value of N and B such that
it does not start falling behind the data item arrival rate. Note
that if the data item arrival rate slows down sufficiently, then
CS* behaves like the update-all technique.
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E. Estimating idf

The meta-data refresher is also responsible for maintaining
the estimated value of the inverse document frequency for each
keyword (i.e., idfest). The crucial difference between the term
frequency and the inverse document frequency is that unlike
the term frequency, the idf value does not change significantly
with time. The meta-data refresher computes the idf(t) value
by finding the number of categories having tf(·, t) > 0 (i.e.,
|C′| value in Equation 2). Over a period of time as the tf
statistics get updated, the idf value approaches its correct value
and it does not change significantly over time. Hence CS* uses
the previous known value of the idf which turns out to be good
estimate for the actual value.

F. Handling New Categories

We now consider the case when a new category is added to
the system. Note that the rate of addition of a new category
will be very low. Whenever a new category is added to the
system, we refresh the category fully till current time-step s∗

and update the statistics accordingly. The importance of the
category can also be computed by analyzing the predicted
query workload. Once these statistics have been computed,
the new category gets integrated into the system.

V. QUERY ANSWERING MODULE

Given a keyword query Q = {t1, t2, . . . , t�} issued at the
current time-step s∗, the goal of the query answering module
is to find the top-K categories using the following scoring
function:

Scoreest
s∗ (c,Q) =

∑
ti∈Q

tfest
s∗ (c, ti) × idfest

s∗ (ti) (8)

We build on ideas from the Threshold Algorithm (TA) [5] to
efficiently find the top-K categories. Given a set of objects, the
threshold algorithm finds the top-K objects with respect to a
scoring function, where the function is made of � components
and the overall score of an object is determined by applying
a monotone aggregation operator to the scores given by the �
components. In our case, the categories are the objects. The
overall score of a category c with respect to a keyword query
Q, is a sum of the scores with respect to the � keywords.
Thus, the scores with respect of each keyword ti ∈ Q (i.e.,
tfest

s∗ (c, ti) × idfest
s∗ (ti)) is an individual component in the

overall score.

The TA algorithm requires � sorted lists, where the jth list
provides an ordering of the input objects on the jth component
of the overall score. Thus, in our case, for each keyword ti, we
need a sorted list σi that provides an ordering of all categories
based on tfest

s∗ (·, ti)× idfest
s∗ (ti). However, the main problem

is that we cannot maintain the required sorted list σi. This is
because, the value tfest

s∗ (·, ti) is a function of s∗ (see Equation
5) and hence, the sorted order could change with a change in
s∗ i.e., with the addition of each new data item. Hence, in
principle, we need to recompute the sorted lists every time
a keyword query is asked. We avoid this re-computation by
employing a keyword level threshold algorithm.

An overview of the two-level threshold algorithm is given
in Figure 2. For the user query Q = {t1, t2, . . . , t�}, the
query answering module sets up � keyword level threshold
algorithms, one for each keyword ti ∈ Q. The output of
these � keyword level threshold algorithms is fed to the query
level threshold algorithm TA′. The keyword level threshold
algorithm TAi is responsible for outputting the categories
according to the ordering σi and the query level threshold
algorithm finds the top-K categories with respect to the overall
score Scoreest

s∗ (·,Q). For the ease of exposition, we first
discuss the scenario of single keyword queries (� = 1) which
only requires the use of the keyword level TA and then explain
the general case requiring the TA at two levels.

A. Answering Single Keyword Queries

For a query consisting of a single keyword t, the estimated
score of a category c is Scoreest

s∗ = tfest
s∗ (c, t) × idfest

s∗ (t),
where s∗ is the current time-step. Since the idf is a common
multiplicative factor across all categories, the ordering of
the categories depends only on the estimated term frequency
tfest

s∗ (·, t). The tfest
s∗ value depends on the current time-step

s∗ and hence keep changing; so it is difficult to maintain
an ordered list of categories based on their tfest

s∗ (·, t) values.
Here, we propose an efficient algorithm for computing the
required sorted list at the current time-step.

Let us take a closer look at the function tfest
s∗ (c, t). Rewrit-

ing Equation 5, we see that:

tfest
s∗ (c, t) = tfrt(c)(c, t) + Δ(c, t) × (s∗ − rt(c))

= tfrt(c)(c, t) − Δ(c, t) × rt(c) + Δ(c, t) × s∗
(9)

We split the RHS into two components: (i) tfrt(c)(c, t) −
Δ(c, t) × rt(c) and (ii) Δ(c, t) × s∗. The first component is
independent of s∗ and its value changes only when the cate-
gory c is refreshed. On the other hand, the second component
is dependent on s∗. But the interesting fact is that the value
of the current time-step s∗ is common for all the categories.
Our solution exploits this insight as described below.

We maintain an inverted index that provides a mapping from
each term to the set of categories containing the term. For
each term t, the inverted index consists of two different sorted
lists of categories: (i) the first list sorts the categories in the
descending order of the first component (i.e., tfrt(c)(c, t) −
Δ(c, t)× rt(c)); and (ii) the second list sorts the categories in
the descending order of their Δ values i.e., Δ(c, t). We use



the threshold algorithm [5] to merge these two lists to get the
top-K categories. A sketch of this procedure is presented next.

Let O1 and O2 be the two orderings of the categories
based on the value of the first component and the Δ value
respectively. We do a parallel scan of the two lists iteratively
using two cursors. We keep a buffer of all the top-K categories
seen so far in the scan. Consider any iteration of the scanning
process. Let c1 and c2 be the categories under the two cursors.
We compute the term frequencies tfest

s∗ (c1, t) and tfest
s∗ (c2, t)

and choose the category having the higher term frequency.
Without loss of generality, suppose c1 is the chosen category.
We want to see if c1 is one among the top-K categories and
if so, include it in the buffer. Towards that end, we perform
the following test: Find the category c that has the lowest
tfest

s∗ (·, t) score among all the categories in the buffer; if
tfest

s∗ (c1, t) > tfest
s∗ (c, t), then delete c from the buffer and

add c1. Next, we repeat the procedure for c2. The above
procedure ensures that the buffer always contains the top-K
categories among those seen so far. The scanning process is
terminated if tfest

s∗ (c, t) is larger than the maximum possible
term frequency achievable by any category not seen so far.
Namely, we terminate the scanning process if,

tfest
s∗ (c, t) ≥ [tfrt(c1)(c1, t)−Δ(c1, t)×rt(c1)]+Δ(c2, t)×s∗.

If the process did not terminate, we advance the two cursors
and go to the next iteration. Once the above procedure termi-
nates, we simply output the categories in the buffer. It is fairly
easy to see that the procedure outputs the top-K categories.
A formal proof of correctness can obtained by adapting the
arguments from [5].

B. Answering Multiple Keyword Queries

The algorithm presented in the previous section works
for single keyword queries. We now address the issue of
extending the technique to handle a multiple keyword query
Q = {t1, t2, . . . , t�}. Recall Equation 8, which provides the
approximate score Scoreest

s∗ (c,Q) of a category c with respect
to Q. Our goal is to find the top-K categories according to
this score.

Consider any keyword ti ∈ Q. Let σi be the ordering of
all the categories based on the scores with respect to ti (i.e.,
tfest

s∗ (·, ti)×idfest
s∗ (ti)). We can use the algorithm given in the

previous section to obtain the sorted list σi for each keyword
ti. We then use the Threshold Algorithm (called the query level
TA) to merge these � lists to get the desired top-K categories.
The pseudo code of the Two Level Threshold algorithm is
given in [4].

VI. EXPERIMENTAL EVALUATION

In this section, we discuss the experimental evaluation of CS*.

A. Experimental Setup

Dataset: We used data from the site www.citeulike.org for
our experiments. This site is a free online service to organize
academic papers from different disciplines. People can upload
their academic papers on this site and can also post reviews on

the posted papers. The site also offers a “who-posted-what”
dataset which has details about all the postings made on the
site along with the timestamp when they were posted. The
dataset also has the tags associated with the posted article.
Using the article ids present in the dataset we crawled the
site to retrieve the documents. We thus created a trace of the
documents posted on the site along with the time when they
were posted and the tags associated with them. We used this
trace in our experiments which consisted of 100,000 articles
posted after 30-May-2007. The experiments were conducted
by employing a trace replay. Recall from Section I, where in
the blog example, 13 blog entries are generated per second.
For a data generation rate of 13 articles per second, 100000
articles translates to 2.14 hours of data. In order to simulate
a high rate of arrival of data items, we increased the speed of
the clock during the trace replay to ensure that say, 13 articles
are generated per second.
Categories: The categories were generated using the tags
associated with the articles with each tag representing one cat-
egory. Thus a category like say ‘asthma’ would have all the ar-
ticles related to asthma. Hence, the dataset in our experiments
can be considered to have been manually (pre)classified due
to the presence of the tags with the articles. Our downloaded
dataset had about 5000 distinct tags (i.e., categories).
Query Workload: Various studies [6], [7] on query logs
of different search engines suggest that they follow a a Zipf
distribution [8]. Hence we generated the query workload using
a Zipf distribution (with moderate skew i.e., Zipf parameter
θ = 1) over the keywords present in all the documents in our
corpus. Each query consisted of 1 to 5 keywords.

If a keyword query contains a keyword that appears in
a large number of documents, a large number of categories
will be relevant to the query. These categories coupled with
the continuous addition of new data items will ensure that
the ranking of the top-K categories will continuously keep
changing. Hence the possibility of an incorrect result is max-
imum when the keyword query contains such a keyword. In
order to do a thorough evaluation of CS*, we ensured that the
frequency of occurrence of a keyword in the query workload
was proportional to its frequency in the trace.
Processing Power: Consider a deployment of CS* on 10 ma-
chines i.e., the meta-data refresher would have 10 processors
available for running the refresh process in parallel. If the data
arrival rate is 15 data items per second and it takes 1 second
to refresh a category using one data item on one machine
(including communication costs), then in one second the 10
machines would have processed 10 data items and there would
be 5 data items left unprocessed (if |C|=1). We simulated this
on a single machine by modelling time as follows: In 10 ticks
of simulation time, 15 data items are added to the system. Thus
at the end of 10 ticks of simulation time, the single machine
would have processed 10 data items and 5 data items would
be left unprocessed. Thus 10 ticks of simulation time will be
similar to the one second of the actual setup.
Categorization Time: The total time required to determine all
the categories a single data item belongs to is referred to as



categorization time. Our analysis using real classifiers (Naive
Bayes Classifiers) showed that this can vary between 15 to
75 seconds for our setup (assuming some mutual exclusion
between categories). In our dataset, as the data items were
pre-categorized, we simulated the different type of classifiers
by adding a delay proportional to the time that would be
required to classify the data items. Our experiments were
run on server grade windows machines with 4 GB RAM
and 3.6 GHz processors and used the exponentially smoothed
estimator given in Section III (with Z = 0.5) to estimate the
value of Δ.
Accuracy: For a keyword query Q, let the top-K results
returned by CS* be: Re = {c1, c2, . . . , cK}. Consider a system
that has the refreshed statistics for all the categories for all data
items till current time-step s∗. Let the results returned by such
a system be: Re

′
= {c′

1, c
′
2, . . . , c

′
K}. Then the accuracy of

CS* for a keyword query is defined as follows: Accuracy =
|Re∩Re′|

K . E.g., if Re = {c1, c2, c3} and Re
′

= {c1, c4, c2}
and K = 3, then the accuracy of the system is 66%. The
accuracy of CS* for a set of queries is simply the average of
its accuracy across all the queries in the set. The correct query
results (Re

′
) were determined by using a system that refreshes

all the categories every time a new data item is added. It is
important to note that such a system takes a huge amount of
time to update the statistics and answer the query.

Notice that for a top-K setup, this definition of accuracy is
the same as that of precision used in IR literature. Similarly,
the recall metric for a top-K setup measures the following
quantity: Out of the documents which are actually in the top-
K, how many are reported to the user. Notice that this is also
same as the accuracy defined above.

B. Experimental Results

We conducted two sets of experiments. The first set of
experiments was to measure the accuracy of the CS* system.
These sets of experiments thus evaluate the efficiency of the
meta-data refresher and are presented next. The second set of
experiments evaluate the query answering module.
Evaluation of Meta-data Refresher: In this section we eval-
uate the effectiveness of the meta-data refresher by measuring
the accuracy of the CS* system. The nominal value of the
various parameters used in these experiments is summarized in
Table I. Note that a processing power of 500 need not represent
500 processors. It could represent, say 50 machines, each of
which can categorize a data item in γ

10 time units. The rate of
creation of new blog posts suggested in [1] is 13 blog entries
per second (i.e., α=13). However, this being a 2006 estimate
the nominal value of α was set to 20 in our experiments.
Accuracy with varying processing power: We studied the
effect of increasing processing power on accuracy. As is
expected, the accuracy of both CS* and update-all technique
improves with increase in processing power. However, Figure
3 shows that CS* comprehensively outperforms the update-all
technique and is able to achieve an accuracy in excess of 90%
using a processing power of 300. The update-all technique, on
the other hand requires 65% more processing power to provide

TABLE I

PARAMETERS RANGES AND NOMINAL VALUE USED IN THE EXPERIMENTS

Parameter Range of Values Tested Nominal Value
α 2 to 20 20

Categorization Time 15 to 75 25
Number of data items 25K to 100K 25K

Processing power 2 to 500 300
� 1 to 5 3
U 10 10
K 10 10
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Fig. 3. Accuracy with varying processing power and number of data items

similar accuracy. Thus CS* can achieve a user specified
accuracy requirement by increasing the processing power –
at a cost which is significantly lower than that of the update-
all technique. Note that the accuracy of update-all does not
improve till the processing power is significantly increased
(i.e., around 450), when it stops lagging behind the data item
addition rate.
Scalability with respect to number of data items: Figure
3 also shows the effect of the number of data items on
the accuracy. The accuracy of the update-all technique has
a noticeable reduction with an increase in the number of data
items. However, contrary to expectations, there is no such drop
in the accuracy of CS*. At any time-step s′, the update-all
technique would have examined s′p

|C|γ data items. Hence an
increase in the number of data items leads to a proportional
increase in the staleness of the meta-data for all the categories.
Hence the accuracy of the update-all technique suffers with an
increase in the number of data items. CS* on the other hand
focuses on the important categories and keeps them refreshed.
Because CS* ignores the unimportant categories it is likely
to lead to a small error for queries related to them. With an
increase in the number of data items, the staleness of the meta-
data of these unimportant categories increases. However, this
does not lead to a decrease in the accuracy of our results (as
these categories were being ignored even when the number of
data items in the system were less). Thus, this showcases the
scalability of the meta-data refresher module.
Accuracy with varying categorization time: In this set of
experiments, we evaluated the accuracy of CS* by varying the
categorization time using a processing power of 300. Figure
4 shows that even when the categorization time becomes very
high, CS* is able to provide very good accuracy which is
much better than that of the update-all technique. Notice that
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the accuracy of CS* can be further improved by increasing the
processing power. The gain due to increase in the processing
power is much more for CS* than that for the update-all
technique as is evident from Figure 3.
Scalability with respect to arrival rate: We studied the effect
of the rate of arrival of data items (α) on the accuracy. The
CS* system and the update-all technique will provide 100%
accuracy if they can refresh all the categories using a data item
before a new one arrives. Thus the amount of processing power
required will depend on the rate of arrival of data items. If α
value doubles, then generally the processing power needs to
double to maintain an accuracy of 100%. For each value of α,
we first found out the processing power required to achieve
100% accuracy for the update-all technique. For each value
of alpha, in this experiment, the processing power was set to
50% of its value required to achieve 100% accuracy (using
update-all). The graph shows that contrary to expectations,
as the rate of arrival of data items increases the accuracy
of CS* also increases. In other words, if the rate of arrival
of data items doubles, then CS* will not require double the
processing power to provide the same level of accuracy. As
is evident from the graph, the update-all technique on the
other hand requires more than double the processing power
to maintain its accuracy. This counter intuitive result is due
to the fact that with the increase in the rate of arrival of
data items and processing power, the important categories get
refreshed using more number of data items. So the statistics
of the important categories are maintained much better. This
leads to an increase in the accuracy of CS* system.

Figure 5 also shows the accuracy provided by the sampling
based refresher described in Section II. Such a refresher
samples the data items and refreshes all the categories using it.
For computing the idf value it uses a strategy similar to that
used by CS*. The accuracy of this refresher is slightly better
than that of the update-all technique. The difference between
this technique and update-all is that, update-all refreshes the
categories using all the data items in the order of their arrival.
In the sampling based refresher this order is not maintained
and some data items get skipped. In our experimental data,
data items appearing in a time window would be similar to
each other. E.g., papers posted in one day would be related
to the conferences whose acceptance notification has arrived
in the recent past. Hence, the sampling based refresher gets
more diverse data items (due to skipping some of them) as
compared to the update-all technique. This helps to update

TABLE II

SAMPLE PARAMETER COMBINATIONS THAT PRODUCE 90% ACCURACY

α Categorization Processing Power Extra Power
Cost CS* Update-all Required

20 25 300 493 64.33%
20 50 594 982 65.31%
10 25 155 244 57.42%

the statistics of more number of categories, which results in
slightly better results.
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Fig. 6. Accuracy with varying skew in workload

Accuracy under changing query workload: In this set of
experiments, we tried to find the effect of the skew in the query
workload on the accuracy of CS*. The skew in the workload
was increased by setting the zipf parameter θ to 2. This leads
to an increase in the accuracy of CS* as seen from Figure 6.
The increase in the skew leads to a lesser change in the set
of important categories. This allows the meta-data refresher to
focus on the important categories for longer periods of time
which leads to an improvement in the accuracy.
Evaluation of Query Answering Module: We analyzed the
efficiency of the two level threshold algorithm by measuring
the number of categories considered by the algorithm in
determining the top-K results. We found that the two-level
threshold algorithm analyzes only 20% of the categories to
find the top-K result. The running time of the query answering
module was very small (of the order of milliseconds). Notice
that in the absence of the two-level threshold algorithm, a
normal query answering module will have to compute the
current statistics of all the categories, sort them and then
return the top-K categories. In the stock exchange scenario
of Section I, this would require at least 80% more time (as
we analyze only 20% of the categories), when analyst would
expect quick answers.



In summary, the CS* system provides an accuracy significantly
better than the update-all technique using a fraction of its
resources. Table II summarizes the various parameter settings
under which CS* can provide over 90% accuracy. It clearly
shows that CS* outperforms the update-all technique and leads
to a saving in processing power of more than 57%. These
point out the effectiveness of the various aspects of decision
making, built into CS*, making it a practical solution for the
problem of keyword search over categorized data.

VII. RELATED WORK

The problem of ranking categories which map to a set of
dynamic data items broadly encompasses two areas (i) Rank-
ing of documents in information retrieval and (ii) efficiently
maintaining statistics related to dynamic data. There has been
a large body of work on document ranking. Our work does
not focus on developing the best ranking technique and we use
the tf · idf [2] based ranking measure to describe our system.
Notice that CS* can be easily made to work for other types
of scoring functions such as cosine distance as it requires the
maintenance of similar statistics.

In the information retrieval domain, the problem posed
by dynamic documents has been looked at from a crawler
perspective i.e., to develop better crawling techniques in the
face of dynamic web content. [9], [10] present techniques for
efficient retrieval of dynamic web-pages so as to capture the
maximum number of changes to the web-page. However, our
algorithms focus on updating the categories once the updates
to the web-pages have been detected. Hence, we can make
use of the techniques mentioned in the literature to detect the
updates. Another related problem in information retrieval is
that of clustering of search results [11], [12] using document
clustering techniques. However, as noted in the introduction,
focusing merely on the search results will not provide the
correct top-K categories. By focusing only on the search
results, document clustering techniques are unable to evaluate
an important criterion; that of ranking the categories based
on the percentage of documents in the category contained
in the search result. This criterion is central to the ranking
mechanism used in CS* which helps it return the correct top-
K categories.

Dynamic data has been widely studied in the area of
continuous queries [13]. Answering continuous queries gen-
erally involves building models for the dynamic data. Various
techniques such as Discrete Time Markov Chains and Black-
Scholes Differential Equation [14] have been used to model
dynamic data in the literature. The Δ value required by our
system can be estimated using these models.

Finally, the problem of answering top-K queries has been
widely studied in database literature [15]. However, our prob-
lem is closer to the top-K ranking of documents than that of
finding the top-K results in a database. In summary, to the
best of our knowledge, this is the first attempt to address the
problem of identifying the top-K categories for a keyword
query where the categories map to one or more data items
which are being continuously added to the system. We believe

that this is a very important problem and has wide ranging
applications beyond those mentioned in this paper.

VIII. CONCLUSION AND FUTURE WORK

In this paper we introduced the CS* system which solves the
important problem of enabling keyword search on categories
which map to multiple data items, where new data items are
continuously added to the system. An update-all technique
which refreshes all the categories whenever a data item is
added will have a prohibitive overhead. Our CS* system
consists of two major components: (i) the Meta-data Refresher
which is responsible for maintaining the statistics associated
with the categories and (ii) the Query Answering Module
which is responsible for using these statistics to answer the
user query. The meta-data refresher keeps its attention focused
on a dynamically chosen set of important categories and
then refreshes them using data items which can provide the
maximum benefit. The job of the query answering module
is to accurately find the top-K categories related to a user
query. We achieved this by proposing a two-level threshold
algorithm which was able to find the top-K categories by only
examining 20% of the statistics. We experimentally evaluated
our system on real world data and showed that our system
is able to achieve an accuracy in excess of 90% by using a
fraction of the resources required by the update-all technique.
Our experiments also showed that the CS* system was highly
scalable and was able to easily handle large number of data
items. One of the assumptions of the CS* system was that
the data items are append only. We are currently exploring
techniques to extend our work so as to handle in-place updates
and deletions of data items.
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