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ABSTRACT
We investigate memory-management in hypervisors and pro-
pose Singleton, a KVM-based system-wide page deduplica-
tion solution to increase memory usage efficiency. We ad-
dress the problem of double-caching that occurs in KVM—
the same disk blocks are cached at both the host(hypervisor)
and the guest(VM) page caches. Singleton’s main compo-
nents are identical-page sharing across guest virtual ma-
chines and an implementation of an exclusive-cache for the
host and guest page cache hierarchy. We use and improve
KSM–Kernel SamePage Merging to identify and share pages
across guest virtual machines. We utilize guest memory-
snapshots to scrub the host page cache and maintain a sin-
gle copy of a page across the host and the guests. Singleton
operates on a completely black-box assumption—we do not
modify the guest or assume anything about its behaviour.
We show that conventional operating system cache manage-
ment techniques are sub-optimal for virtual environments,
and how Singleton supplements and improves the existing
Linux kernel memory-management mechanisms. Singleton
is able to improve the utilization of the host cache by reduc-
ing its size(by upto an order of magnitude), and increasing
the cache-hit ratio(by factor of 2x). This translates into
better VM performance(40% faster I/O). Singleton’s uni-
fied page deduplication and host cache scrubbing is able to
reclaim large amounts of memory and facilitates higher lev-
els of memory overcommitment. The optimizations to page
deduplication we have implemented keep the overhead down
to less than 20% CPU utilization.

Categories and Subject Descriptors
D.4.2 [OPERATING SYSTEMS]: Storage Management—
Main memory, Storage hierarchies; C.4 [PERFORMANCE
OF SYSTEMS]: Performance attributes

General Terms
Performance
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1. INTRODUCTION
In virtual environments, physical resources are controlled

and managed by multiple agents — the Virtual Machine
Monitor(VMM), and the guest operating systems (running
inside the virtual machines). Application performance de-
pends on both the guest operating system and hypervisor, as
well as the interaction between them. The multiple sched-
ulers (CPU, I/O, Network), caches, and policies can poten-
tially conflict with each other and result in sub-optimal per-
formance for applications running in the guest virtual ma-
chines. An example of guest I/O performance being affected
by the combination of I/O scheduling policies in the VMM
and the guests is presented in [8].

In this paper we consider the effects of physical memory
being managed by both the VMM(Virtual Machine Moni-
tor) and the guest operating systems. Several approaches to
memory management and multiplexing in VMMs like bal-
looning and guest-resizing exist [35]. We focus on techniques
which do not require guest support(page-sharing) and con-
sider system-wide memory requirements, including that of
the host operating system.

The primary focus of our memory-management efforts is
on the behaviour of the page-cache. The page-cache in mod-
ern operating systems like Linux, Solaris, FreeBSD etc. is
primarily used for caching disk-blocks, and occupies a large
fraction of physical memory. The virtualization environ-
ment we focus on is KVM(Kernel Virtual Machine) [18],
which is a popular hypervisor for Linux, and allows unmod-
ified operating systems to be run with high performance.
KVM enables the Linux kernel to run multiple virtual ma-
chines, and in-effect turns the operating system(Linux) into
a VMM(also called hypervisors). We consider the effective-
ness of using conventional OS policies in environments where
the OS also hosts virtual machines. We show that the exist-
ing operating system techniques for page-cache maintenance
and page-evictions are inadequate for virtual environments.

In most KVM setups, there are two levels of the page-
cache—the guests maintain their own cache, and the host
maintains a page-cache which is shared by all guests. Guest
I/O requests are serviced by their respective caches first, and
upon a miss fall-through to the host page-cache. This leads
to double-caching: same blocks are present in the guest as
well as the host caches. Furthermore, the host-cache sees
a low hit-ratio, because pages are serviced from the guest’s
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Figure 1: Memory usage graph for a sequential disk-
read workload.

page-cache first. This double caching wastes precious phys-
ical memory and leads to increased memory-pressure, caus-
ing swapping and performance loss. In particular, the prob-
lem of swapping is detrimental for virtual setups. Figure 1
shows the memory-usage graph when guest VMs execute
I/O intensive workloads, and illustrates that the host sys-
tem starts swapping even in the presence of cached pages.
Note that the guests maintain their own page-caches, and
the host caching leads to swapping of pages belonging to
VMs. While this unfortunate situation can be ameliorated
with existing techniques like using direct I/O and fadvise

for the guest VMs etc, we show that they adversely affect
VM performance.

This paper addresses the problem of multiple levels of
cache present in virtual environments, and we seek to imple-
ment an exclusive-cache. Exclusive caching entails not stor-
ing multiple copies of the same object in multiple locations
in the cache hierarchy. While multi-level caching and exclu-
sive caches are well studied in the context of network-storage
systems [15, 11, 37] and CPU architectural caches, our work
is the first to focus on exclusive caching in KVM-based envi-
ronments. Furthermore, we implement a completely black-
box approach—requiring no guest modifications or knowl-
edge. We do not rely on graybox techniques like intercepting
all guest I/O and page-table updates found in Geiger [17]
and XRAY [5]. Another constraint we adhere to is that
our solution must not cause performance regressions in non-
virtualized environments, since the OS(Linux) serves both as
a conventional OS running userspace processes and virtual
machines. Thus, we do not change any critical kernel compo-
nent. This prevents us from implementing specialized tech-
niques for second-level cache-management which are found
in [13, 37, 40, 41].

Page deduplication across Virtual Machines [35, 19, 20] is
an effective mechanism to reclaim memory allocated to the
VMs by the hypervisor in a completely guest-transparent
manner. To implement the exclusive page-cache, we utilize
content-based page deduplication, which collapses multiple
pages with the same content into a single, copy-on-write
protected page.

1.1 Contributions
As part of this work, we design and evaluate Singleton, a

Kernel Samepage Merging (KSM) based system-wide page
deduplication technique. Specifically, our contributions are
the following:

• We optimize existing KSM duplicate-page detection
mechanisms which reduce the overhead by a factor of
2 over the default KSM implementation.

• We implement an exclusive host page-cache for KVM
using a completely black-box technique. We utilize the
page deduplication infrastructure (KSM), and proac-
tively evict redundant pages from the host cache.

• Through a series of workloads and micro-benchmarks,
we show that Singleton delivers higher cache-hit ratios
at the host, a drastic reduction in the size of the host-
cache, and significantly improved I/O performance in
the VMs.

• We show that proactive management of host cache pro-
vides higher levels of memory overcommitment for VM
provisioning.

Our implementation is a non-intrusive addition to the host
kernel, and supplements the existing memory-management
tasks of the VMM (Linux), improves page-cache utilization
and reduces system-load.

2. BACKGROUND
Singleton presents an exclusive cache solution for KVM,

and uses the KSM page deduplication infrastructure. This
section presents the relevant background which will help mo-
tivate our solution. Some of the optimizations which we have
added to KSM to reduce the page-sharing overhead are also
presented.

2.1 KVM architecture and operation
KVM(Kernel Virtual Machine) is a hardware-virtualization

based hypervisor for the Linux kernel. The KVM kernel
module runs virtual machines as processes in the host sys-
tem, and multiplexes hardware among virtual machines by
relying on the existing Linux resource-sharing mechanisms
like its schedulers, file-systems, resource-accounting frame-
work, etc. This allows the KVM module to be quite small
and efficient.

The virtual machines are not explicitly created and man-
aged by the KVM module, but instead by a userspace hyper-
visor helper. Usually, QEMU [6] is the userspace hypervi-
sor used with KVM. QEMU performs tasks such as virtual
machine creation, management and control. In addition,
QEMU can also handle guest I/O and provides several emu-
lated hardware devices for the VMs (such as disks, network-
cards, BIOS, etc.). QEMU communicates with the KVM
module using a well-defined API using the ioctl interface.
An important point to note is that the virtual machines cre-
ated by QEMU are ordinary user-space processes for the
host. Similar to memory allocations for processes, QEMU
makes a call to malloc to allocate and assign physical mem-
ory to each guest virtual machine. Thus, for the host kernel,
there is no explicit VM, but instead a QEMU process which
has allocated some memory for itself. This process can be
scheduled, swapped out, or even killed.



Figure 2: Sequence of messaages to fulfill an I/O
operation by a guest VM.

Figure 3: Copy-on-Write based hypervisor level
page sharing.

2.2 Disk I/O in KVM/QEMU
The guest VM’s “disk” is emulated in the host userspace

by QEMU, and is frequently just a file on the physical disk’s
filesystem. Hence, the emulated disk’s read/write are mapped
to file-system read/write operations on the virtual-disk file.
Figure 2 depicts the(simplified) control flow during a guest
VM disk I/O operation. A disk I/O request by the guest
VM causes a trap, on which KVM calls the QEMU userspace
space process for handling. In the emulated disk case, QEMU
performs the I/O operation through a disk I/O request to
the host kernel. The host reads the disk block(s) from the
device, which get cached in host-page-cache and passed on
to the guest via KVM. For the guest, this is a conventional
disk read, and hence disk blocks are cached at the guest as
well.

2.3 Linux page-cache and page eviction
The Linux page-cache [25] is used for storing frequently

accessed disk-blocks in memory. It is different from the con-
ventional buffer-cache in that it also stores pages belonging
to mmap’ed files, whereas traditional buffer-caches restricted
themselves to read/write I/O on file-system buffers. In a
bid to improve I/O performance, a significant amount of
physical memory is utilized by the kernel as page-cache.

Figure 4: Basic KSM operation. Each page during a
scan checksummed and inserted into the hash-table.

Linux uses an LRU variant (specifically, a variant of LRU/2
[27]) to evict pages when under memory pressure. All the
pages are maintained in a global LRU list. Thus, page-cache
pages as well as pages belonging to process’ private address
spaces are managed for evictions in a unified manner. This
can cause the kernel to swap out process pages to disk inspite
of storing cache pages. The page-cache grows and shrinks
dynamically depending on memory pressure, file-usage pat-
terns, etc.

2.4 Page Deduplication using KSM
KSM(Kernel Samepage Merging) [4] is a scanning based

mechanism to detect and share pages having the same con-
tent. KSM is implemented in the Linux kernel as a kernel-
thread which runs on the host system and periodically scans
guest virtual machine memory-regions looking for identical
pages. Page sharing is implemented by replacing the page-
table-entries of the duplicate pages with a common KSM
page.

As shown in Figure 3, two virtual machines have two
copies of a page with the same content. KSM maps the
guest-pseudo physical page of both machines A and B to
the same merged host physical page K. The shared page
is marked copy-on-write(COW) — any modifications to the
shared page will generate a trap and the result in the shar-
ing being broken. To detect page similarity, KSM builds a
page-index periodically by scanning all pages belonging to
all the virtual machines.

KSM originally used red-black binary-search trees as the
page-index, and full-page comparisons to detect similarity.
As part of Singleton, we have replaced the search-trees with
hash-tables, and full-page comparisons with checksum(jhash2)
comparisons. In each pass, a single checksum-computation is
performed, and the page is inserted into a hash-table(Figure 4).
Collisions are resolved by chaining. To reduce collisions, the
number of slots in the hash-table is made equal to the total
number of pages.

Due to volatility of the pages (page-contents can change
any time) and the lack of a mechanism to detect changes,
the page-index is created frequently. Periodically, the page-
index(hash-table) is cleared, and fresh page-checksums are
computed and inserted. The KSM scanning-based compar-
ison process goes on repeatedly, and thus has a consistent
impact on the performance of the system. KSM typically
consumes between 10-20% CPU on a single CPU core for the
default scanning-rate of 20MB/s. The checksumming and



hash-tables implementation in Singleton reduces the over-
head by about 50% compared to the original KSM imple-
mentation (with search-trees and full-page comparisons).

To see that KSM can really detect and share duplicate
pages, the memory finger-print [38] of a VM is calculated
and compared for similarity. The number of pages that KSM
shares compared to the actual number of pages which are
duplicate (which is obtained by the fingerprint) determines
the sharing effectiveness of KSM. The memory fingerprint
of a VM is simply a list of the hashes of each of its pages.
By comparing fingerprint similarity, we have observed that
KSM can share about 90% of the mergeable pages for a
variety of workloads. For desktop workloads(KNOPPIX
live-CD), KSM shares about 22,000 of the 25,000 mergeable
pages. Ideal candidates for inter-VM page sharing are pages
belonging to the kernel text-section, common applications,
libraries, and files [20, 19, 35, 10]. These pages are often
read-only, and thus once shared, the sharing is not broken.

At the end of a scan, KSM has indexed all guest pages
by their recent content. The index contains the checksums
of all guest pages, including the duplicate and the unique
pages. Moreover, this index is created periodically (after ev-
ery scan), so we are assured that the checksum correspond-
ing to a page is fairly recent and an accurate representation
of the page content. Thus, the KSM maintained page-index
can be used as a snapshot of the VM memory contents.

3. SYSTEM-WIDE PAGE DEDUPLICATION

3.1 Motivation: Double caching
A pressing problem in KVM is the issue of double-caching.

All I/O operations of guest virtual machines are serviced
through the page cache at the host (Figure 2). Because all
guest I/O is serviced from the guest’s own page-cache first,
the host cache sees a low hit-ratio, because “hot” pages are
already cached by the guest. Since both caches are likely
to be managed by the same cache eviction technique (least-
recently-used, or some variant thereof), there is a possibility
of a large number of common pages in the caches. This
double-caching leads to a waste of memory. Further, the
memory-pressure created by the inflated host cache might
force the host to start swapping out guest pages. Swapping
of pages by the host severely impacts the performance of the
guest VMs. An illustration of how guest I/O impacts the
host page cache is shown in Figure 5. A single VM writes
to a file continuously, which causes a steady increase in the
amount of host-page-cached memory and corresponding de-
crease in the free memory available at the host.

Double caching can be mitigated if we provide an exclusive-
cache setup. In exclusive caching, lower levels of cache(the
host page-cache in our case) do not store an object if it
is present in the higher levels(the guest page-cache). Any
solution to the exclusive caching problem must strive for
a balance between size of the host page cache and perfor-
mance of the guests. A host-cache has the potential to
serve as a ‘second-chance’ cache for guest VMs and can im-
prove I/O performance. At the same time, large host page-
caches might force guest VM pages to be swapped out by the
host kernel—leading to severely degraded performance. Sin-
gleton provides an efficient exclusive cache which improves
guest I/O performance, and reduces host-cache size drasti-
cally.
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Figure 5: Host free and cached memory on a write-
heavy guest workload.

The shared nature of the host-cache also makes it impor-
tant to provide performance isolation among the virtual ma-
chines as well as the processes running on the host system.
Disk I/O from an I/O intensive guest VM can fill-up the
host-cache, to the detriment of the other VMs. Not only do
other VMs get a smaller host cache, but also suffer in per-
formance. The memory-pressure induced by one VM can
force the host-kernel to put additional effort for page alloca-
tions and scanning pages for evictions, leading to increased
system load.

3.2 Potential/Existing approaches
In the context of multi-level exclusive caching in storage

systems [13, 37, 5], it has been shown that exclusive caches
yield better cache utilization and performance. Exclusive
caches are usually implemented using explicit co-ordination
between various caches in a multi-level cache hierarchy. DE-
MOTE [37] requires an additional SCSI command for demo-
tion notifications. Gray-box techniques for inferring cache
hits at higher levels in the cache hierarchy, like X-RAY [5]
and Geiger [17] use file-system information to infer page-use
by monitoring inode access-times.

In the host-guest cache setup that virtual systems deal
with, notifications can cause a large overhead since the page
cache sees high activity. Furthermore, the host/guest page-
caches are present on a single system, unlike the distributed
client/server storage caches. Solutions to exclusive caching
require the lower-level(host) cache to explicitly read-in the
items evicted from the higher-level(guest) cache. This is not
desirable in our setup: VM performance would be impacted
if the host does disk accesses for evicted items, leading to
overall system-slowdown.

More pressing is the problem of actually generating the
eviction notifications—modifications to both the host and
the guest OS memory subsystems will be required. However,
in spite of the benefits of exclusive caching, modifications to
the operating system are not straight-forward. The first
challenge is to get notifications of evictions—either by ex-
plicit notifications from the guest, or by using I/O-snooping
techniques like those developed in Geiger [17]. The funda-
mental problem is that there is no easy way to map disk
blocks in the host and the guest page cache. The hypervisor
(QEMU) supports a large number of virtual disk formats
(RAW, LVM, QCOW, QCOW2, QED, FVD [34]). The
mapping from a virtual block number to a physical block



Operations VM using VM using
Direct I/O host cache

putc 34,600 33,265
put block 48,825 51,952
rewrite 14,737 24,525
getc 20,932 44,208
get block 36,268 197,328

Table 1: Bonnie performance with and without
caching at the host.

number (which the host file system sees) can be determined
fairly easily in case of RAW images, but one would need
explicit hypervisor support in other cases. The lack of a
common API for these image formats results in a complex
co-ordination problem between the host, the guest, and the
hypervisor. Clearly, we need a better solution which does
not need to contend with this three-way coordination and
yet works with all the above mentioned setups and environ-
ments.

Direct IO: An existing mechanism to overcome the wastage
of memory due double-caching is to bypass the host page-
cache. This can be accomplished by mounting the QEMU
disks with the cache=none option. This opens the disk-
image file with the direct-IO mode (O_DIRECT). However,
direct-I/O has an adverse impact on performance. Table 1
compares performance of file operations on two VMs run-
ning the Bonnie [2] file system benchmark. In one case,
both Virtual Machines mount their respective (virtual) disks
with cache=writeback option (QEMU default) set and in
the other we use the cache=none option. Table 1 shows the
Bonnie performance results of one of the VMs. Bypassing
the host cache results in almost all operations with direct
I/O to be slower than with caching. With direct I/O, the
block read rates are 6x slower, the read-character rate 2x
slower. Further, the average seek rate with Direct I/O was
2x slower than with host-page-caching—185 seeks per second
with direct I/O and 329 seeks/second with caching. Clearly,
the I/O performance penalty is too much to pay for a re-
duced memory usage at the host —host cache is not used
with direct I/O. Additionally, using O_DIRECT turns off the
clever I/O scheduling and batching at the host, since the
I/O requests are immediately processed. Direct-I/O scales
poorly with an increase in number of VMs, and we do not
consider it to be a feasible solution to the double-caching
problem.

Fadvise: Additionally, the hypervisor can instruct the
host kernel to discard cached pages for the virtual disk-
images. This can be accomplished by using the POSIX
fadvise system-call and passing the DONTNEED flag. Fad-
vise needs to be invoked periodically by the hypervisor on
the disk-image file for it to have the desired effect. All file
data in the cache is indiscriminately dropped. While fadvise
mitigates double-caching, it fails to provide any second-level
caching for the guests. The DONTNEED advise can also po-
tentially be ignored completely by some operating systems,
including the previous versions of the Linux kernel.

3.3 The Singleton approach
To implement a guest-exclusive cache at the host, Sin-

gleton uses KSM and the page-index it maintains to search
for pages present in the guests. As mentioned earlier (Sec-
tion 2.4), KSM maintains a snapshot of contents of all pages
in its search indexes (red-black trees in case of default KSM,
hash-tables in Singleton).

Singleton’s exclusive caching strategy is very simple and
presented in Algorithm 1. We look-up all the host page-
cache pages in the KSM maintained page-index of all the
VMs to determine if a host-cache page is already present
in the guest. The host page-cache pages are checksummed,
and the checksum is searched in KSM’s page-index. An
occurrence in the guest page-index implies that the page is
present in the guest, and we drop the page from the host’s
page-cache.

A page in the host’s page cache is said to belong to VM
V if an I/O request by V resulted that page being bought
into the cache. Pages in the page-cache belong to files on
disk, which are represented by inodes. We identify a page
as belonging to a VM if it belongs to the file which acts
as its virtual-disk. To identify which file corresponds to the
virtual machine’s disk, we pick the file opened by the QEMU
process associated with the VM.

Algorithm 1 Singleton’s cache-scrubbing algorithm imple-
mented with ksm.
After scanning B pages of VM V:

For each page in the host-cache belonging to V:

If (page in KSM-Page-Index)

drop_page(page);

Dropping duplicate pages from the host page-cache is re-
ferred to as cache-scrubbing. The cache scrubbing is per-
formed periodically by the KSM thread—after KSM has
scanned (checksummed and indexed) B guest pages. We
refer to B as the scrubbing-interval.

After dropping pages from the host-cache during scrub-
bing, two kinds of pages remain in the host cache : pages
not present in the guest, and pages which might be present in
the guest but were not checksummed (false negatives due to
stale checksums). Pages not present in the guest, but present
in the host-cache can be further categorized thus: 1. Pages
evicted from the guest. 2. Read-ahead pages which were not
requested by the guest. The false-negatives do not affect cor-
rectness, and only increase the size of the host-cache. False
negatives are reduced by increasing KSM’s scanning rate.

Cache-utilization of the host’s cache will improve if a large
number of evicted pages are present(eviction based place-
ment [37]). Keeping evicted pages in the host-cache in-
creases the effective size of cache for the guests, and re-
ducing the number of duplicates across the caches increases
exclusivity. To reduce the multiplicative read-ahead [39] as
well as to reduce cache size, read-ahead is disabled on the
host. We treat the guest as a black-box and do not explicitly
track guest evictions. Instead, we use the maxim that page-
evictions are followed by page-replacement, hence a page re-
placement is a good indicator of eviction. Page replacement
is inferred via checksum-changes. A similar technique is used
in Geiger [17], which uses changes in disk-block addresses to
infer replacement. To differentiate page-mutations(simple
writes to a memory-address) from page-replacement, we use
a very simple heuristic: a replacement is said to have oc-



curred if the checksum and the first eight bytes of the page
content have changed.

Singleton introduces cache-scrubbing functionality in KSM
and runs in the KSM thread (ksmd) in the host-kernel. We
take advantage of KSM’s page-index and page-deduplication
infrastructure to implement unified inter-VM page dedupli-
cation and cache-scrubbing. The cache-scrubbing function-
ality is implemented as an additional 1000 lines of code in
KSM. The ksmd kernel thread runs in the background as
a low-priority task (nice value of 5), consuming minimal
CPU resources. Singleton extends the conventional inter-
VM page deduplication to the entire system by also includ-
ing the host’s page-cache in the deduplication pool. While
the memory reclaimed due to inter-VM page sharing de-
pends on the number of duplicate pages between VMs, Sin-
gleton is effective even when the workloads are not amenable
to sharing. Since all guest I/O passes through the host’s
cache, the number of duplicate pages in the host’s cache
is independent of the inter-VM page sharing. Singleton
supplements the existing memory-management and page-
replacement functionality of the hypervisor, and does not
require intrusive hypervisor changes. While our implemen-
tation is restricted to KVM setups and not immediately ap-
plicable to other hypervisors, we believe that the ideas are
relevant and useful to other hypervisors as well.

3.4 Scrubbing frequency control
The frequency of cache scrubbing dictates the average size

of the host cache and the KSM overhead. To utilize system
memory fully and keep scrubbing overhead to a minimum,
a simple scrubbing frequency control-loop is implemented in
Singleton. The basic motivation is to control the scrubbing
frequency depending on system memory conditions (free and
cached). A high-level algorithm outline is presented in Al-
gorithm 2. The try_scrub function is called periodically
(after KSM has scanned 1000 pages). We use two basic
parameters: maximum amount of memory which can be
cached (th_frac_cached) and minimum amount of mem-
ory which can be free (th_frac_free), both of which are
fractions of the total memory available. The scrubbing fre-
quency is governed by the time-period t, which decreases
under memory pressure, and increases otherwise. With host
cache getting filled up quickly, Singleton tries to increase
scrubbing rate and decreases it otherwise. The time-period
has minimum and maximum values between which it is al-
lowed to vary(not shown in the algorithm). The time-period
is also a function of number of pages dropped by the scrub-
ber (scrub_host_cache).

4. EXPERIMENTAL ANALYSIS
Cache scrubbing works by proactively evicting pages from

the host’s page-cache. In this section we explore why ad-
ditional cache management is required for the host’s page
cache, and why the existing Linux page eviction and reclaim-
ing mechanisms are sub-optimal for virtual environments.
We show how Singleton improves memory utilization and
guest performance with a series of benchmarks. Our results
indicate that significant reductions in the size of the host
page-cache, an increase in the host page-cache hit-ratio, and
improvement in guest performance can all be obtained with
minimal overhead.

Algorithm 2 Singleton’s frequency control algorithm.

try_scrub (th_frac_cached, th_frac_free) {

Update_memory_usage_stats(&Cached, &Free, &Memory);

//Case1: Timer expires. t is current scrub interval

if(cycle_count-- <= 0) {

Dropped = scrub_host_cache() ;

//returns num pages dropped

prev_t = t ;

t = prev_t*(Cached + Dropped)/Cached;

}

//Case2: Memory pressure

else if(Cached > Memory*th_frac_cached ||

Free < Memory*th_frac_free) {

Dropped=scrub_host_cache();

prev_t = t ;

t = prev_t*(Cached - Dropped)/Cached;

}

cycle_count=t;

}

4.1 Setup
Since scrubbing is a periodic activity and can have drastic

impact on system performance when the scrubbing opera-
tion is in progress, all experiments conducted are of a suf-
ficiently long duration (atleast 20 minutes). The workloads
are described in Table 2. The scrubbing interval thresholds
are between 100,000 and 200,000 pages scanned by KSM
(scrubbing-interval algorithm presented in section 3.4), and
is of the order of once every 30-60 seconds. The cache-
threshold is set as 50% of the total memory and the free-
threshold is 10%. For read-intensive benchmarks, the data
is composed of blocks with random content, to prevent page
deduplication from sharing the pages. For guest I/O, vir-
tIO [30] is used as the I/O transport to provide faster disk
accesses.The experiments have been conducted on an IBM
x3250 blade server with 8GB memory, 2GB swap-space and
one 150GB SAS hard-disk(ext4 file-system). In all the ex-
periments otherwise stated, we run 4 VMs with 1 GB mem-
ory size each. The hosts and the guest VMs run the same
kernel (Linux 3.0) and OS(Ubuntu 10.04 x86-64 server). To
measure the performance on each of the metrics, a compar-
ison is made for three configurations:

Default: The default KVM configuration is used with no
KSM thread running.

Fadvise: This runs the page deduplication thread and calls
fadvise(DONTNEED) periodically.

Singleton: Page deduplication and eviction based cache
placement is used.

4.2 Host-cache utilization
The host cache sees a low hit-ratio, because “hot” pages

are cached by the guest. Because of double-caching, if the
host’s cache is not large enough to accommodate the guest
working set, it will see a low number of hits. Our primary
strategy is to not keep pages which are present in the guest,
and preserve pages which are not in the guest. This in-
creases the effective cache size, since guest cache misses have
a higher chance of being serviced from the host’s page-cache.
Presence of pages being present in the guest provides addi-
tional knowledge to Singleton about a cached page’s use-



Workload Description
Sequential Read Iozone [26] is used to test the sequential read performance.
Random Read Iozone is used to test random-read performance.
Zipf Read Disk blocks are accessed in a Zipf distribution, mimicking many commonly occurring

access patterns.
Kernel Compile Linux kernel (3.0) is compiled with make allyesconfig with 3 threads.
Eclipse The Eclipse workload in the Dacapo [7] suite is a memory-intensive benchmark, which

simulates the Eclipse IDE [3].
Desktop A desktop-session is run, with Gnome GUI, web-browsing, word-processor.

Table 2: Details of workloads run in the guest VMs.

fulness, which is not available to the access-frequency based
page-eviction mechanism present in the host OS(Linux) ker-
nel. We exploit this knowledge, and remove the duplicate
page from the host cache.

Singleton’s scrubbing strategy results in more effective
caching. We run I/O intensive workloads in the guest VMs
and measure the system-wide host cache hit-ratio. The hit-
ratio also includes the hits/misses of files accessed by the
host processes. Details of the workloads are in Table 2.
The results from four VMs running sequential,random, and
zipf I/O are presented in Figure 6. For four VMs run-
ning sequential read benchmark (Iozone) the cache-hit ratio
is 65%, an improvement of about 4% compared to default
case (vanilla KVM). A significant reduction in cache-hits
is observed when using fadvise(DONTNEED) (16% less than
Singleton). Calling fadvise(DONTNEED) simply drops all the
file pages, in contrast to Singleton which keeps pages in the
cache if they are not present in the guest. Thus, Single-
ton’s eviction based placement strategy is more effective,
and keeps pages to accommodate a larger guest working set.

Scrubbing impacts random-reads more, since the absence
of locality hurts the default Linux page-eviction implemen-
tation. By contrast, keeping only evicted pages leads to a
much better utilization of cache. The cache-hit ratio with
Singleton is almost 2x the default-case (Figure 6). For this
experiment, the working set size of the Iozone random-read
was kept at 2GB, and the VMs were allocated only 1 GB.
Thus, the host-cache serves as the second-chance cache for
the guests, and the entire working set can be accommodated
even though it does not fit in the guest memory. For work-
loads whose working-sets aren’t large enough, the host-cache
sees a poor hit ratio : about 35% in case of the kernel-
compile workload. In such cases, the scrubbing strategy
only has a negligible impact on host cache utilization. We
have observed similar results for other non I/O intensive
workloads as well.

The increased cache utilization translates to a correspond-
ing increase in the performance of the guest VMs. For the
same setup mentioned above(four VMs executing the same
workloads), sequential-reads show a small improvement of
2% (Table 3). In accordance with the higher cache-hit ra-
tios, random-reads show an improvement of about 40% with
Singleton over the default KVM setup. Similar gains are ob-
served when compared to fadvise(DONTNEED)—indicating
that by utilizing the host-cache more effectively, we can im-
prove the I/O performance of guests. We believe this is im-
portant, since disk-I/O for virtual machine is significantly
slower than bare-metal I/O performance, and one of the key
bottlenecks in virtual machine performance.
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Figure 6: Host page-cache hit ratios.

Sequential
reads (KB/s)

Random
reads (KB/s)

Zipf Reads
(KB/s)

Default 4,920 240 265,000
Fadvise 4,800 280 260,000

Singleton 5,000 360 270,000

Table 3: Guest I/O performance for various access
patterns.

4.3 Memory utilization
The Linux kernel keeps a unified LRU list containing both

cache and anonymous(not backed by any file, belonging to
process’ address space) pages. Thus, under memory pres-
sure, anonymous pages are swapped out to disk even in the
presence of cached pages (Figure 1). Without the proac-
tive cache-scrubbing, we see an increased swap traffic, as the
host swaps pages belonging to the guest’s physical memory.
This swapping can be avoided with scrubbing. The preemp-
tive evictions enforced by Singleton also reduce the num-
ber of pages in the global LRU page-eviction list in Linux.
This leads to reduction in the kernel overhead of maintain-
ing and processing the list of pages, which can be quite large
(millions of pages on systems with 10s of gigabytes of mem-
ory). Scrubbing supplements the existing Linux memory-
management by improving the efficiency of the page-eviction
mechanism.

The periodic page evictions induced by scrubbing reduces
the size of the cache in the host significantly. We ran I/O
intensive benchmarks, which quickly fill-up the page-cache
to observe Singleton’s ability to reduce cache size. Figure 8a
shows the average cache size over the workload-runs, when
the workloads are running on four virtual machines. The
host cache size with Singleton is 2-10x smaller than the de-
fault KVM. Compared to the fadvise(DONTNEED) approach
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Figure 7: Memory usage graph for a sequential read
workload with and without Singleton.

which drops all cache pages, Singleton has a larger cache
size. The cache-size can be further reduced if needed by
increasing the frequency of the cache-scrubbing. However,
our scrubbing-frequency algorithm (presented in Section 3.4)
enables us to make a more judicious use of available mem-
ory, and increases the scrubbing frequency only when under
memory-pressure.

A lower average cache size increases the amount of free
memory available, prevents swapping, and reduces memory
pressure. In addition to scrubbing, Singleton also employs
inter-VM page deduplication, which further decreases the
memory usage. A reduction in the amount of swapping when
different workloads are run in the guests can be seen in Fig-
ure 8b. Without scrubbing, the swap is utilized whenever
the guests execute intensive workloads which fill-up the host
page-cache. In contrast, using fadvise(DONTNEED) and Sin-
gleton results in no/minimal swap-space utilization.

As Figure 1 shows, pages are swapped to disk even though
a significant amount of memory is being used by the page-
cache. Scrubbing prevents this kind of behaviour, as illus-
trated in Figure 7. The periodic scrubbing results in sharp
falls in the cache-size, and increases the amount of free-
memory. This reduction in memory pressure and the re-
duced swapping reduces the system load and paging activity.
In the kernel-compile and eclipse workloads, a further reduc-
tion in memory-usage is observed because of the inter-VM
page-deduplication component of Singleton. When identical
workloads are running in four guest VMs, we can see sig-
nificant amount of pages being shared (seen in Table 8c).
Out of a total 1 million pages (1 GB allocated to each of
the 4 VMs with 4KB pages), the percentage of pages shared
varied from 8% in the case of sequential read workload to
35% with the kernel-compile workload. The page-sharing is
dependent on the workload—same files are used in the case
of kernel compile, whereas only the guest kernel pages are
shared with the sequential read workload.

An additional benefit of Singleton is that it helps provide
a more accurate estimate of free memory, since unused cache
pages are dropped. This can be used to make more informed
decisions about virtual-machine provisioning and placement.

4.4 Memory overcommitment
The increased free memory provided by Singleton can be

used to provide memory overcommitment. To measure the
degree of overcommitment, the total amount of memory al-
located to virtual machines is increased until the breaking-
point. The breaking-point is the point at which the per-
formance degradation is unacceptable(cannot SSH into the
machine, kernel complains of a lock-up, etc) or the Linux
Out-Of-Memory killer(OOM) kills one of the VMs. On a
system with total 10GB virtual memory(8GB RAM + 2GB
swap), 8 virtual machines(1 GB allocated to each) are able
to run without crashing or being killed. Three kinds of
VMs running different workloads(sequential-reads, kernel-
compile, and desktop). The desktop VMs run the same
OS (Ubuntu 10.04 Desktop), and benefit from the inter-
VM page-deduplication, since the GUI libraries, application-
binaries etc are shared across all the VMs. The number of
desktop VMs were increased until the system crashed, and
with Singleton we were able to run 7 desktop VMs in ad-
dition to 2 kernel-compile VMs and 2 sequential-I/O VMs
(Table 4). A total of 11GB of memory was allocated to the
VMs, with 1.5GB used by the host processes. Without Sin-
gleton, the number of VMs able to run is 8, after which the
kernel initiates the Out-of-memory killing procedure, and
kills one of the running VMs to reduce the memory pres-
sure. Thus, the page deduplication and the cache-scrubbing
provides a good combination for implementing memory over-
commitment for virtual machines.

Sequential Kerncompile Desktop Total
Default 2 2 4 8
Fadvise 2 2 4 8

Singleton 2 2 7 11

Table 4: Number of running VMs till system crashes
or runs out of memory.

4.5 Impact on host and guest performance
The improved cache utilization provides better perfor-

mance for guest workloads. Performance for I/O intensive
workloads running concurrently in four guest VMs is pre-
sented in Table 3. The overhead of building and maintain-
ing a page-index periodically (done by the KSM thread) does
not interfere with guest execution because of the minimal
CPU resources it requires. The CPU utilization of Single-
ton and the system load-average during various workloads
shown in Table 8. The CPU utilization stays below 20%
on average for most scenarios. Due to the lower memory-
pressure, the system load-average is significantly reduced.
Most of the resource-utilization of Singleton is due to the
cache-scrubbing, which needs to checksum and compare a
large number of cache pages periodically. With the scrub-
bing turned off (only inter-VM page deduplication), our op-
timizations to KSM result in an average CPU utilization of
just 6%, compared to 20% for the unmodified KSM.

Another important improvement is the reduction in the
number of pages that the kernel page-eviction process has
to scan to evict/drop a page from memory. As mentioned
earlier, the kernel maintains a global LRU list for all the
pages in memory, and this list can contain millions of en-
tries(pages). Without any proactive cache scrubbing, the
cache fills up this LRU list, and the kernel needs to evict
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Workload Pages-shared
Sequential 80,000
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Figure 8: Comparison of memory utilization with various workloads.

Avg. pages Cache pages Scan
scanned/s dropped/s efficiency

Default 1,839,267 1459 0.07 %
Singleton 7 109 99.87 %

Table 5: Page eviction statistics with and without
Singleton.

some pages in order to meet page allocation demands. The
overhead of scanning a large number of pages is significant,
and is one of the causes of the system load. We show the
average number of pages that the kernel scans (pgscand of
sar tool) during VM workload execution, and also the scan
efficiency. The scan efficiency is defined as the ratio of the
number of pages dropped to the number of pages scanned,
and a higher efficiency indicates lower overhead of the page
eviction process. The results are presented in Table 5, which
shows the average number of pages scanned and the scanning
efficiency for the host system during an I/O intensive work-
load. Because singleton drops pages which are not going to
be used (since they are present in the guests), the efficiency is
very high (99%). This means that 99% of all the cache pages
scanned by the kernel for dropping were actually dropped,
and thus the overhead of scanning paid off. In contrast, we
see very low efficiency (less than 1%) in the default case.
The average number of pages scanned during the eviction
process is also very high (1.8 million), which also explains
the low efficiency. With cache-scrubbing, there are negligi-
ble number of pages which are scanned by the swap daemon
(kswapd), partly because of the lower memory pressure, and
also because of the guest cache-content aware eviction pro-
cess which ensures that only pages which might be used in
the future are kept in the cache.

Guest performance isolation: The host-cache is a
shared resource among guests, and it can potentially benefit
the VMs. However, the host-cache is not equally or propor-
tionally distributed amongst the VMs. VMs doing heavy
I/O will have more pages in the host-cache, and can po-
tentially interfere with the operation of the other VMs. The
memory pressure induced at the host can trigger swapping of
guest pages and increased page-eviction activity, resulting in
decreased guest performance. By scrubbing the host-cache,
Singleton is able to provide increased performance isolation
among guests. With two VMs doing heavy I/O and the other
two running kernel-compile workload, the I/O activity floods
the host page-cache, and reduces the kernel-compile perfor-

Sequential Read speed Kernel compile time
Default 7,734 KB/s 3165 s
Fadvise 7,221 KB/s 3180 s

Singleton 7,432 KB/s 2981 s

Table 6: Impact of I/O interference on the kernel-
compile workload.

Eclipse benchmark time Kernel compile time
Default 65 s 3300 s
Fadvise 62 s 3500 s

Singleton 60 s 3200 s

Table 7: Impact on host performance (Eclipse) due
to kernel-compile workload running in VM.

mance(Table 6). Scrubbing prevents this from happening,
and the result is improved kernel-compile performance(6%).

In addition to providing isolation among guests, cache-
scrubbing can also provide improved performance for appli-
cations running in the host system. Processes running on
the host (along with the virtual machines) also share the
page-cache with the VMs. Without scrubbing, the cache-
size can increase, and the memory pressure can adversely
affect the performance of the other host-processes/VMs. A
common use-case of virtualization is running desktop oper-
ating systems in virtual machines. These VMs run along
with existing host processes. On a desktop-class system
(3GB memory), we run one VM(1 GB memory) running the
kernel-compile workload, and run the Eclipse workload on
the host. This mimics a common usage pattern. The work-
load executing in the VM results in performance degrada-
tion on the host. With Singleton, a 10% improvement in the
workload running in the host(Eclipse) is observed(Table 7)
.

4.6 Summary of results
The important results based on our experimental evalua-

tion are as follows:

• Singleton provides increased host-cache utilization due
to system-wide page deduplication. In our case, upto
2x increase in host cache hit-ratios was observed with
random-read workload.

• The exclusive cache enables larger guest working sets
to be present in memory, resulting in improved I/O



Singleton
CPU %

Singleton load
average

Default load
average

Sequential 17.74 5.6 12.3
Random 19.74 4.8 10.3

Kerncompile 11.7 5.3 6.0
Zipf 10.2 4.9 4.9

Table 8: Scrubbing overhead and host load averages.

performance in the guests, especially for random I/O,
where we have observed a 40% improvement.

• Memory utilization with Singleton is significantly im-
proved. Host cache sizes show a 2-10x decrease. The
lower memory-pressure results in much lesser swapping—
with 4 VMs and over different workloads, we observed
close to no swap usage.

• Singleton’s page deduplication and exclusive cache en-
able increased levels of memory overcommitment. In
our setup, we were able to run 11 VMs instead of 8
VMs without Singleton.

5. RELATED WORK
Page deduplication : Transparent page sharing as a

memory saving mechanism was pioneered by the Disco [9]
project, although it requires explicit guest support. Inter-
VM content based page sharing using scanning was first im-
plemented in VMWare ESX Server [35]. While the proba-
bility of two random pages having exactly the same content
is very small, the presence of a large number of common ap-
plications,libraries etc make the approach very feasible for
a large variety of workload combinations [20, 19, 16, 21,
10]. Furthermore, page deduplication can also take advan-
tage of presence of duplicate blocks across files (and file-
systems). Storage deduplication for virtual environments is
explored in [42, 29]. Page sharing in hypervisors can be
broadly classified into two categories—scanning-based and
paravirtualized-support. Scanning based approaches peri-
odically scan the memory areas of all VMs and perform
comparisons to detect identical pages. Usually, a hash based
fingerprint is used to identify likely duplicates, and then the
duplicate pages are unmapped from all the page tables they
belong to, to be replaced by a single merged page. The
VMWare ESX-Server [35] page sharing implementation, Dif-
ference Engine [14] (which performs very aggressive dupli-
cate detection and even works at the sub-page level), and
KSM [4] all detect duplicates by scanning VM memory re-
gions. An alternative approach to scanning-based page shar-
ing is detecting duplicate pages when they are being read-in
from the (virtual) disks. Here, the virtual/emulated disk
abstraction is used to implement page sharing at the de-
vice level itself. All VM read-requests are intercepted and
pages having same content are shared among VMs. Exam-
ples of this approach are Satori [24] and Xenshare [19]. This
approach is not possible with KVM because it does not pri-
marily use paravirtualized I/O.

Cache Management : Page-cache management for vir-
tual environments is covered in [33], however it requires
changes to the guest OS. Ren et.al., [28] present a new buffer
cache design for KVM hosts. Their ‘Least Popularly Used’
algorithm tracks disk blocks by recency of access and their

contents. Duplicate blocks are detected by checksumming
and eliminated from the cache. LPU does not provide a
guest-host exclusive cache, nor does it implement any inter-
VM page sharing. Instead, all VM I/O traffic goes through a
custom LPU buffer-cache implementation. We believe that
having a custom high-traffic page-cache would suffer for scal-
ability and compatibility issues—the page-cache contains
millions of pages which need to be tracked and maintained in
an ordered list (by access time) for eviction purposes. This is
not a trivial task: the Linux kernel has been able to achieve
page-cache scalability (with memory sizes approaching 100s
of GB and 100s of CPU cores conteding for the LRU list
lock) only after several years of developers’ efforts. Hence
our goal with Singleton is to minimize the number of system
components that need to be modified, and instead rely on
proven Linux and KVM approaches, even though they may
be sub-optimal.

Exclusive Caching : Several algorithms and techniques
for implementing exclusive caching in a multi-level cache hi-
erarchy exist. Second-level buffer management algorithms
are presented in [41, 40]. Most work on exclusive caching
is in the context of network storage systems— [13], DE-
MOTE [37], XRAY [5].

An exclusive-cache mechanism for page-caches is presented
in Geiger [17], which snoops on guest pagetable updates and
all disk accesses to build a fairly accurate set of evicted
pages. However it uses the paravirtualized drivers and shadow
page-tables features of Xen, and its techniques are inapplica-
ble in KVM and hardware-assisted two-dimensional paging
like EPT and NPT [1].

Memory overcommitment : One way to provide mem-
ory overcommitment is to use conventional operating sys-
tems techniques of paging and swapping. In the context of
VMMs, this is called host-swapping [35], where the VMM
swaps out pages allocated to VMs to its own swap-area. An-
other approach is to dynamically change memory allocated
to guests via a ballooning method [35, 31], which “steals”
memory from the guests via a special driver. Several other
strategies for managing memory in virtual environments,
like transcendent memory [23], collaborative memory man-
agement [32] exist, but they require explicit guest support
or heavy hypervisor modifications.

6. FUTURE WORK
To reduce the page deduplication and scrubbing overhead

even further, we are in the process of implementing addi-
tional optimizations to KSM which we hope will bring down
the overhead to negligible levels.

Scanning only dirtied pages: A fundamental limita-
tion of KSM (and all other scanning-based page-deduplication
mechanisms) is that page-dirty rates can be much higher
than the scanning rate. Without incurring a large scanning
overhead, it is not possible for a brute-force scanner to detect
identical pages efficiently.

We are interested in reducing the scanning overhead by
only checksumming dirtied pages—similar to VM Live Mi-
gration [12], where only dirtied pages are sent to the destina-
tion. Conventional techniques rely on write-protecting guest
pages, and incur expensive faults on a guest access to that
page. Instead, we intend to use a combination of techniques
based on hardware-assisted page-dirty logging and random
sampling. In some cases, like AMD’s Nested Page Tables
(NPT) implementation [1], it is possible to obtain a list of



dirtied pages without the expensive write-protect-trap ap-
proach seen in VM Live-migration. AMD’s NPT implemen-
tation exposes dirty page information of the guests (pages
in the guest virtual address space),which can be exploited to
perform dirty-logging based scanning. Further, dirty logging
overhead or scanning overhead can be reduced by sampling
and subset of pages and by eliminating “hot” pages from the
working set in the scan process.

Scrub pages in LRU order: Our current host cache
scrubbing algorithm checksums and compares pages in the
host’s page cache in an arbitrary order which is determined
by the kernel-maintained inode list. The overhead of scrub-
bing is equal to the number of pages in the page-cache which
are checksummed but not dropped. To improve on this,
we can look at the page-cache pages in the least-recently-
used (LRU) order. We are exploring means to drop and
scrub pages from the host page-cache by exploiting the LRU
list and aggressively dropping the ‘recent’ pages, which have
higher likelihood of being present in the guest VMs. Fur-
ther, a heuristic to stop or reduce rate of scrubbing can be
formulated based on the fraction of dropped host pages.

Estimating Working-Set-Size: As the cache scrubbing
implementation shows, the page search index which KSM
builds and maintains is a valuable resource. Below we de-
scribe a few other potential uses of the index for hypervisor
memory management and other tasks. KSM’s search index
can be used to estimate the working set size (WSS) of a VM.
Several approaches to estimating the WSS of VMs exist [17,
36, 35, 22], but we can exploit KSM’s index to estimate the
WSS with low overhead and implementation effort. Since
page contents are recorded (checksummed), page evictions
can be easily tracked, allowing us to use Geiger’s [17] ap-
proach to estimate WSS by measuring page eviction rate.
If the first few bytes of a page have changed since the last
KSM scan, we can say that the page has been evicted, with
a high probability. Strictly, a changed checksum and initial
few bytes implies page reuse, but as Geiger [17] shows, it
almost always implies page eviction.

7. CONCLUSION
By combining inter-VM page deduplication and host cache

scrubbing, Singleton achieves unified redundancy elimina-
tion in KVM, and can reclaim massive amounts of mem-
ory. Through a series of workloads under varying degrees
of memory-pressure, we have shown that host-cache scrub-
bing is a low-overhead way of implementing an host/guest
exclusive-cache in KVM. Our exclusive cache implementa-
tion results in tiny host page-caches (of the order of a few
megabytes, as compared to several gigabytes without the
scrubbing), along with improved guest performance because
of better cache utilization.

Singleton does not require any intrusive modification to
either the hypervisor or the guest, and works in a wide va-
riety of environments. We achieve significant guest perfor-
mance gains (upto 40%) along with memory savings(2-4x
reduction in cache sizes), despite being conservative about
the components of the system we modify. By utilizing the
existing page-sharing infrastructure, we have shown how to
implement several memory management tasks like eviction-
based placement, with minimal modifications and overhead.
Further, our modifications to KSM have demonstrated that
inter-VM page deduplication can save significant amount of
memory with low overhead,

As remarked earlier, page-sharing is a guest-transparent
technique to reclaim memory and allow for memory over-
commitment. By demonstrating that page-sharing along
with its associated benefits (like exclusive caching etc) in-
creases guest-performance, we believe that it is a useful and
viable memory overcommitment approach.
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