
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 27(6), 677–699 (JUNE 1997)

Message Filters for Object-oriented Systems

RUSHIKESH K. JOSHI, N. VIVEKANANDA AND D. JANAKI RAM

Department of Computer Science and Engineering, Indian Institute of Technology, Madras-600036, India,
(email: frushi, vivek, djramg@lotus.iitm.ernet.in)

SUMMARY

In the conventionalobject model, encapsulatedobjects interact by messages that result in method invocations
on the destination object. A message is delivered directly at the destination object. As a result of the
direct deliveries, the message control code performing intermediate message manipulations cannot be
abstracted out separately from the message processing code in the destination object without sacrificing the
transparencyof the intermediate message control. We propose the filtered delivery model of message passing
for object-oriented languages to provide the separation of message control from message processing in a
transparentmanner. An interclass relationship, called a filter relationship, is introduced. As a consequence,a
filter object can intercept and manipulate messages sent to another object called its client via filter member
functions. A filter member function in a filter object can intercept a particular member function invocation
on its client object. The filtered delivery model supports both upward and downward filtering mechanisms,
facilitating interception of an upward message and its return message value. Filter objects can be plugged or
unplugged at runtime. Binding of filter member functions to corresponding member functions in the client
is selective and dynamic. The filtered delivery model is developed for the C++ object-oriented language; its
applications are described and implementation is discussed. 1997 by John Wiley & Sons, Ltd.

KEY WORDS: direct message delivery; filtered message delivery; filter object; filter relationship; object-oriented programming

INTRODUCTION

Objects form the basic building blocks of an object-oriented program. Objects interact by
sending messages to each other. Messages are in turn mapped to invocations of member
functions. When a sender object prepares the contents of a message and selects the destination
object for that message, the message is said to have been generated. When a message is ready
for the destination to be read, we say that the message has been delivered. In the traditional
object model, message delivery is modeled as an activity that is directly triggered by message
generation. We term this model of message passing as the direct delivery model. The direct
delivery model is widely adopted in the existing object-oriented languages such as Smalltalk1

and C++.2

A response to a message can be divided into two stages of message control and message
processing. Message control code is the code that performs intermediate message manipula-
tions before messages are delivered at the destination object. Message processing code is the
actual code in the destination object that processes the messages to achieve the functionality
desired by the caller. There can be many situations in which a finer control over messages
is desired. For example, message contents might have to be checked against concerns such
as validity and security. Similarly, an application may require a message preprocessing stage
as in the case of an intermediate stage that implements a cache to improve the performance

CCC 0038–0644/97/060677–23 $17�50 Received 17 July 1995
1997 by John Wiley & Sons, Ltd. Revised 15 October 1996

678 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

of read requests sent to a server object. Separating message control from message processing
can be very advantageous. The actual message processing becomes independent of message
control, thereby providing the capability to modify the functionality of a message processing
object in a transparent way by means of the separate message control stage. The separation
makes it possible to develop message control policies in a modular way.

In the direct delivery model, the message control code is coupled with the message pro-
cessing code. As a result, the message control code cannot be abstracted out without breaking
its transparency. An application may require its message control policy to be changed dy-
namically. In such a case, the destination object needs to be modified owing to the coupling
between message control and message processing. For example, for a dictionary object, a
message control policy may cache items in order to lower the search time. A new policy for
routing the search requests to another dictionary object may have to be added when a new
dictionary server becomes available. In this case, the dictionary object needs to be modified
to incorporate the new message control policy.

On the other hand, a forced abstraction of the message control code destroys its transparency.
For example, a security object might be separated out from the message processing object.
However, the calling semantics of direct deliveries require that the message be explicitly sent
to the security object, which subsequently forwards it to the message processing object. Thus,
the transparency of message control is destroyed.

We propose a new model for inter-object message communication called filtered delivery
that achieves separation between message processing and message control in a transparent
way. In this model, as opposed to direct deliveries, messages sent to a destination object can
be intercepted by special objects called filter objects. While filter objects intercept messages,
the calling semantics at the source object do not change. We incorporate the filtered delivery
message passing model in the sequential object-oriented programming language C++.2 A new
interclass relationship called a filter relationship is introduced. Using this relationship, a filter
object can be empowered to intercept messages sent to an ordinary object. Both upward calls
and their return values can be intercepted.

OVERVIEW OF THE FILTERED DELIVERY MODEL

Figure 1 shows the conventional direct delivery message passing model. An object User sends
a message insert() to a ResourceQ object. Object User is the source object for message
insert(). The message is delivered directly at object ResourceQ, which is the destination
of the message as chosen by the source object itself. As a result of message delivery, the
corresponding method is invoked at the destination object.

Since messages are directly delivered, any intermediate message control has to be accom-
modated within the destination object. We cannot abstract out the message control part without
disturbing the actual destination and without sacrificing its transparency. For example, con-
sider the case of inserting an intermediate object in Figure 1 to route the user requests to
another resource. In this case, the User object has to be modified to send requests to the
new intermediate object. Another problem is that, when the intermediate object needs to be
replaced or removed, the code in source object needs to be modified. For example, an addition
of a second intermediate object requires the source object to refer to the new object instead
of the old one. If the intermediate objects are removed, the message should go directly to the
destination object. We propose the filtered delivery model that provides a modular way to de-
velop objects that act as message filters for their client objects. Filter objects act transparently.
Removal, addition or replacement of filter objects do not require any modification of code,

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 679

invoke insert ()

Object User

JobQueue. insert (job)

Object ResourceQ

insert message

Figure 1. The direct delivery model

either at the source object or at the destination object.
Filters as message manipulators are used in various applications ranging from distributed

algorithms3 to multi-media collaborative applications.4 However, the existing object oriented
languages do not provide a formal support for designing filter objects for developing filters as
modular and transparent entities. We have earlier proposed a primitive language construct for
filtering called capture specification for ShadowObjects,5 a model for control replication in
distributed systems. Shadow objects are replicas of an object, which provide the same set of
services as that of the original object. The replicas can be hidden behind the original object or
exposed to the network. When the replicas are hidden, the capture specification is employed
to intercept the service requests sent to the original object and schedule them on-the-fly on
one of the replicas. The drawbacks of the capture specification are that it is closely coupled
with a class, it is statically declared, and it cannot be changed or enhanced during runtime.

In the composition filter model,6 input and output filters are specified within an interface of
a class. Filters belong to specialized filter classes depending on their usage. Dispatch filters
are used to conditionally accept messages. Meta filters can delegate messages to abstract
communication types. In contrast to the composition filter model, we provide the separation
between message processing and message control by means of dynamically pluggable filter
objects that are separate entities from the destination of messages. We achieve this by a special
interclass relationship called a filter relationship.

Our filter model has similarities with the filter mechanism provided in the Orbix Corba
product.7 Orbix allows programmers to supply filter code for clients and servers mainly for
packaging requirements such as authentication, debugging, performance statistics, auditing
and encryption. The main purpose of the filter mechanism is to keep the Orbix implementation
flexible and lightweight. Our filter model is provided at the language level by introducing a
filter relationship between classes. The main features of our model include dynamic creation of
filter relationship between objects, per message and selective filtering and dynamic changing
of filtering policies.

Some design patterns8 such as decorator and proxy provide some functionalities of the
filtered delivery model. However, the filters introduced in this paper are at the programming
language level, and the main intent is to glue client object and server object using a filter object
in a transparent way. Design patterns are at the level of structuring object-oriented systems. It
is possible to construct specific design patterns based on the the filter object model, especially
for gluing objects together.

Now we take a closer look at the filtered delivery model. Figure 2 shows the conceptual
view of the filtered delivery model. A message filter functions as a message manipulator for its

680 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

Filter Object

insert
upfilter

 ()

return
downfilter

Object User

bounce

pass

JobQueue.insert(job) invoke insert ()

invoke newInsert ()

Object NewResouceQ

Object ResourceQ

messages to
external objects

Figure 2. The filtered delivery model

client object. In the figure, ResourceQ is a filter-client object for the filter object. Messages
sent to object ResourceQ pass through the filter object. User calls the member functions of
ResourceQ directly. The filter object intercepts these messages when they are on their way.

The filter object can take the following actions upon interception of a message:
(a) Interception of upward messages: upward messages are messages from a source object to

a destination object that has a filter. The filtering function that filters an upward message
is called an upfilter.

(b) Manipulation of messages: an upfilter may change the arguments of a message and process
an arbitrary code.

(c) Bounce: an upfilter returns a value to the source of the message on behalf of the destination.
(d) Pass: the upfilter passes the message on to the filter-client after a possible manipulation of

the message contents.
(e) Intermediate invocations on other objects: a filter object may send requests to other objects

as part of its control code.
(f) Interception of downward messages: downward messages are the return values from the

destination. A downward message can also be filtered. The function that filters a downward
message is called a downfilter.

The above actions and the various paths that a message can take in presence of a filter object
are shown in the figure. Various properties of filter objects can be described from the point

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 681

of view of their functionality and usage. We divide these properties into two categories of
essential and extended properties. Essential properties concentrate on the basic functionality
of filter objects. They describe a bare minimum filter object model. The extended properties
explore their flexibility from the point of view of their usage.

The essential properties of filter objects

We define the following properties as essential properties for filter objects:
(a) Support for basic filtering actions: filter objects are specified to intercept messages arriving

at an ordinary object called a filter-client. Filters may manipulate the messages. They
eventually pass or bounce them. Bounce is a return performed by the filter. Whereas, pass
specifies forwarding of the message to its client. This property provides elegant language
constructs to enable the design of objects that carry out tasks related to message control
such as range checking, security checking, data conversions, message preprocessing and
message routing.

(b) Modularity: specification of a filter object is separate from the specification of its client
object. Neither a filter object breaks the encapsulation of its client, nor the client breaks
the encapsulation of its filter.

(c) Transparency: sender may not know the existence of a filter object. Hence, direct delivery
call semantics are preserved for the source of a message. Since the sender does not know
the existence of a filter, it directly sends messages to the destination. No code changes in
the source object are required when a filter object is added, removed or replaced. Filters
can thus be used to act on-the-fly.

(d) Selective filtering: filters can intercept messages selectively. Some of the methods may
remain unfiltered, whereas some may be filtered. This property enables a filter object to
implement independent message control codes for multiple messages.

The extended properties of filter objects

(a) Group filtering: group filtering allows multiple filter-clients to be served by a single filter.
This property defines an obvious extension to the power of a filter object. A filter object
may intercept messages sent to a number of its client objects that are instances of the same
client class.

(b) Dynamic filtering: filters can be changed for a client over its lifetime. This property specifies
the dynamic binding capability of filters. Binding is done at two levels. At the first level,
the filter objects may be removed and replaced. At the second level, individual member
functions within a filter object that filter their corresponding counterparts in the client
object may be changed at runtime.

(c) Layered filtering: this property specifies that filters can be nested. With this property,
multilevel filters can be designed by specifying filters to filters. Multilevel filters can be
used for designing multilevel message processing. For example, one filter may take care
of security whereas another may be attached to function as a router to redirect messages
to other servers.

As can be seen from the above properties, the basic filter object model provides support for
one to one filter relationship between a filter object and a filter-client object. The the extended
model provides support for one to many (group filtering), and many to one (layered filters) filter

682 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

relationships. In the following section, we describe the basic filter object model in detail. The
basic model consists of various mechanisms that provide support for the essential properties
discussed above. The support for the extended properties is discussed in the subsequent
section. The base language used is C++. We have emphasized examples rather than syntactic
specifications in our description.

BASIC FILTER OBJECT MODEL

The basic filter object model covers the essential properties of filter objects. Filter objects are
specified separately from their client objects by a new interclass relationship called a filter
relationship. A filter relationship is different from other relationships such as inheritance,
aggregation, association, using, instantiation and metaclass relationships (see Booch9 for a
detailed description of these). As a result of a filter relationship between two classes, their
instances, which are objects, also acquire the filter relationship.We define the filter relationship
as:

the ability given by one object (filter-client object) to another object (filter object)
to intercept, manipulate and forward or bounce the messages sent to it.

A filter relationship is first established at class level. An instance of a filter class that is in
a filter relationship with a filter-client class is given the ability to filter messages sent to an
instance of the filter-client class. Subsequently during runtime, the instances may be plugged
together to act in the filter relationship.

Specifying a filter relationship

In the following example, a filter relationship is established between a client class Re-
sourceQ and a filter class FilterQ:

class ResourceQ f
...

g;
class FilterQ : filter ResourceQ f

...
g;

The relationship enables an instance of the filter class FilterQ to intercept messages sent
to an instance of its client class ResourceQ. Two special operators, plug and unplug are used
to specify the filter relationship between the instances of these classes.

The operators plug and unplug

Specification of a filter relationship at class level does not automatically start the relationship
between their instances. The plug operator is used to bind two objects in filter relationship.
For example, the following code binds filter object cache to its client dictionary.

main () f
Dictionary *dictionary = new (Dictionary);
Cache *cache = new (Cache);

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 683

...
plug dictionary cache;
...

g

Similarly, the unplug operation is used to break the filter relationship between objects. The
operation

unplug dictionary;

breaks the filter relationship between cache and dictionary. After an unplug operation is
performed on a filter-client, it is on its own, and receives further messages as direct deliveries.

A filter object can selectively intercept messages sent to its client object. For example, it
may intercept only one single member function among many others defined in the public
interface of its client. Selective filtering is possible with the help of beta messages, which are
described subsequently.

Organization of a filter class

A filter class defines an interface called a filter interface apart from the usual private
and public interfaces. A filter interface defines filter member functions that are invoked
automatically when their corresponding member functions in the client object are intercepted
by the filter object. Thus, the members of the filter interface are invoked only by the system that
executes the program. Filter member functions defined in the filter interface are not accessible
as private or public members.

The filter interface

The filter interface is split into upfilter and downfilter interfaces. The member functions of the
upfilter interface can intercept the upward messages going towards the filter-client, whereas the
downfilter member functions can intercept the return values from the client. Both interfaces
are independent, and the presence of one is not mandatory for the presence of the other.
Each interface specifies a mapping from filter member functions in a filter class to member
functions in a client class. As an example, the following code specifies an upward filter member
function searchCache() and a downfilter member function replenishCache(), in filter
class Cache for the member function searchWord() defined in client class Dictionary.

class Dictionary f
...
public:

Meaning searchWord (Word); // returns meaning of a word
g;
class Cache : filter Dictionary f
...
upfilter:

Meaning searchCache (Word) filters searchWord;
// returns meaning if hit

downfilter:
Meaning replenishCache (Meaning) filters searchWord;

684 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

// updates cache if miss
g;

An assignment of a filter member function to a member function in its client class is specified
using the keyword filters. An assignment gives the capability to a particular filter member
in the filter class to intercept a particular member function in its client class. An assignment
does not automatically mark the commencement of the filtering action, but the filter member
functions have to be explicitly enabled to actually commence filtering. In the above example,
if a message searchWord() for an instance of class Dictionary is generated, it can be
made to go through searchCache() in an instance of class Cache. The upfilter member
returns the meaning of the word on itself, if it is found in the cache. The message is not passed
on to dictionary object in that case.

The downfilter members can also be specified in a similar way. The only difference in this
case is that a downfilter member function takes one argument and returns one argument. A
downfilter member function receives the return value from the client, and also has to return a
value of the same type to the source of the message. Hence, the type of the input and the return
arguments for a downfilter is the same as the return type of the corresponding client member
function. In the above example, the filter replenishCache() can intercept the return values
of calls to searchWord() in its client. When a meaning is on its way, the cache may be
replenished by the downfilter member function.

The beta messages enable and disable

We introduce beta messages that function as messages to filter member functions. Ordi-
nary messages such as class messages or instance messages are modeled as invocations of
member functions. On the other hand, beta messages are modeled as directives to member
functions themselves. Beta messages can be sent to a filter member only from within the
corresponding filter object. Two standard beta messages, enable and disable, are provided to
mark the commencement and termination of a filtering action. These beta messages can be
applied selectively to individual upfilter and downfilter member functions. For example, if a
beta message searchCache.enable is sent to a filter member searchCache(), it starts
intercepting its peer member function searchWord() in its client class. The restriction of
sending beta messages from within a filter object protects the encapsulated behavior of the
filter object. Any member function (public or private) can send a beta message to a filter
member function. Two additional beta messages are provided to know the current state of a
filter member function. They are explained in the section on the dynamic binding of filters.

The following code demonstrates the use of beta messages. A public member invocation
start filtering() enables the upfilter searchCache() and the downfilterreplenish-
Cache(), while end filtering() disables them. After disabling, the filter relationship
between the objects terminates and messages do not go through the cache filter.

class Dictionary f
...
public:

Meaning searchWord (Word);
g;
class Cache : filter Dictionary f
...

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 685

upfilter:
Meaning searchCache (Word) filters searchWord;

downfilter:
Meaning replenishCache (Meaning) filters searchWord;

public:
start filtering () f searchCache.enable; replenishCache.enable; g;
end filtering () f searchCache.disable; replenishCache.disable; g;

g;
main () f
Dictionary *dictionary = new (Dictionary);
Cache *cache = new (Cache);

...
plug dictionary cache;
cache->start filtering() ;
....
cache->end filtering() ;
....
unplug dictionary;

g

Actions of an upfilter member function

The upfilter member function are specified like any other member function of a class
except that they can perform two additional actions, pass and bounce, which are explained
below. The prototype of an upfilter member function should match with its corresponding
member function in the client class. For example, if an upfilter member in a filter class F
has to be specified for a client member function myReturnType C::func2(myType) in
a client class C, its specification can be given as myReturnType F::filter2(myType).
This requirement reflects the ability of a filter member to receive the message sent to its
client as it is, and also return a value on behalf of its client. Moreover, in the presence of
an overloaded client member function, this type information within the declaration of a filter
member gives its corresponding overloaded meaning.

Once an upfilter is enabled, the corresponding upward messages are intercepted and the
upfilter member function is invoked. All arguments in the message to the client object arrive
at the upfilter as corresponding arguments. The contents of the message can be manipulated
inside the filter member function. The filter member can also invoke member functions on
the same or other objects just as any other ordinary member function can. It takes one of the
following two actions upon completion of its message manipulation activity:

(a) Pass the message: the message can be passed on to the client object after the desired filter
action is performed. The pass action is specified by a pass statement.

(b) Bounce the message: the filter can return a value on behalf of its client by a special return
statement bounce(). The type of the bounced value is the same as that of the return value
specified by its client. The receiver object is kept unaware of the interception unless this
information is explicitly encoded in the return value.

The following code is an example of a filter member function that bounces a return value of
�1 if the argument x is negative. The message is passed on as it is for all non-negative values
of x less than 100. For higher values of x, it is held at the threshold of 100 and then passed on.

686 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

int aFilter :: filter1 (int x) f
if (x < 0) bounce (-1);
if (x > 100) x = 100;
pass;

g;

Actions of a downfilter member function

A downfilter member function intercepts the return messages from a client object. To inter-
cept a return message, it is not required that the upward message be intercepted. A downward
filter takes exactly one argument, which is the return message to be intercepted. Within the
filter, this return value can be manipulated. A bounce from the downward filter returns a value
to the calling object. In the following example, the downfilter code unconditionally adds a
value of 2 to every return message and then returns it to the caller.

aFilter : filter C f
...
downfilter:

int down1 (int) filters func1;
g;
int aFilter :: down1 (int x) f

bounce (x+2);
g;

EXTENDED FILTER OBJECT MODEL

The extended filter object model supports the extended properties of filter objects. The group
filtering construct facilitates multiple filter-clients to be served by one filter object. Dynamic
bindings of filters are possibleat two levels. A filter object may be changed and individual filter
member function may also be changed for a filter-client member function over its lifetime.
Filters to filters provide support for designing multilevel filters.

Support for group filtering

It is possible to plug multiple client objects within a single filter object. Group filters thus
define a one to many relationship. In such a case, a beta message on a filter member acts as
a group beta message. Figure 3 shows a group configuration for upward messages. Similar
configuration is possible for downward messages also.

In the figure, objects file1, file2 and file3 are instances of class File and are clients
of the filter object fileFilter. A beta message enable enables the filtering action by a
particular filter member function such as readFilter() or writeFilter() for the entire
group of clients at a time. Similarly the disable beta message disables filtering for all clients.
The plug and unplug operations can be performed on individual client objects. For example,
object file1 can be selectively unplugged leaving the other two objects plugged. Any number
of clients can be plugged or unplugged to a filter at any time, but all of them must belong to
a class that is in filter relationship with the class that defines the object fileFilter. Group
filters can also be used for shared administration of messages sent to a group of objects. It is

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 687

fileFilter

to respective
filter-clients

read

write

read

write

read

write

readFilters

writeFilters

file1.read ()

file2.write ()

file3.write ()

Object file1

Object file2

Object file3
Figure 3. Group filtering

possible to design group multi-cast filters to address the specific problems of multi-casting10

such as late-comers joining a multi-cast group.

Dynamic binding of filters

At filter object level

A filter-client may change its filter object over its life time. A filter-client may be in filter
relationship with many filter classes, but at the level of instantiation, a client object can be
in filter relationship with only one filter object at a time. The following example shows the
dynamic binding of filter objects for a client object, which is a design object. A design object
such as a machine part undergoes different levels of design process, and at each level, the
design process has to satisfy different constraints. Readers are referred to the section on
applications of filter objects for a detailed treatment on this application.

688 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

class DesignObject f ...g;
class Constraint-A : filter DesignObject f ... g;
class Constraint-B : filter DesignObject f ... g;
main ()
f
DesignObject *designObject;
Constraint-A *constraint-A; // a filter for designObject
Constraint-B *constraint-B; // another filter for designObject

...
plug designObject constraint-A;
... // design level 1
unplug designObject;
plug designObject constraint-B;
... // design level 2
unplug designObject;

g

At filter member function level

It is possible to specify multiple upfilter or downfilter member functions for one client
member function at compile time, and bind at runtime only one of them as a filter for the
corresponding client member function. In the following example, a filter object implements
two caching policies cachePolicy1() and cachePolicy2(). Either of the policies can
be used as an acting upfilter for member read() in the client object. Two additional beta
messages, is enable and is disable, are provided for testing purposes. They return a
boolean result as per the status of the corresponding filter member. A public member function
enable1() can be invoked to initialize the upfilter to cachePolicy1(). Subsequently, a
public member function switch filter() can be invoked to switch the upfilter member
function from cachePolicy1() to cachePolicy2(), or vice versa.

class Cache : filter Dictionary f
...
upfilter:

cachePolicy1(..) filters read f...g;
cachePolicy2(..) filters read f...g;

public:
enable1 f cachePolicy1.enable; g
switch filter ();

g;
Cache :: switch filter () f

if (cachePolicy1. is enable) f cachePolicy1.disable;
cachePolicy2.enableg

else
f cachePolicy2.disable; cachePolicy1.enable; g

g

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 689

Object User

Filter Object
Router

Filter Object
Security

Object Server

call Server.service () service ()

to other objects

Figure 4. The Multilevel filters

Filters to filters

It is possible to design nested multilevel filters by specifying them as filters to filters. Mul-
tilevel filters can be useful in protocol software development in networking. In the following
example corresponding to Figure 4, a Security filter filters an object Server. A Router fil-
ter is specified to intercept the Security filter. Thus, Security is a filter-client for Router.
Filter Router may intercept the public and filter members of its client Security. Filtering
the filter member functions leads to multilevel filtering.

class Server f...g;
class Security: filter Server f...g;
class Router: filter Security f...g;

Figure 4 pictorially captures the multilevel filter relationship. The service requests sent
to the Server object may be captured by the Router and routed to other objects instead. If a
request is passed on, it goes through the Security filter before it reaches the object Server.

APPLICATIONS OF FILTER OBJECTS

In this section, we discuss some applications of filter objects in detail, which were used as
examples in developing the filter object model in the earlier sections. The first application uses
filter objects for implementing the constraint meta-object model for collaborative applications.
The second application implements access control mechanism for replicated objects using
filters. Requests to an object can be rerouted to one of its replicas by capturing the calls
on-the-fly. Finally, a database application implements an on-the-fly cache on a host using a
filter object. The filter object can change the cache policy by changing the filter members.
These applications give a flavor of the applicability of filter objects.

690 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

(real path)
filtered message

(real path)
filtered message

di
re

ct
 m

es
sa

ge
(a

pp
ar

en
t p

at
h)

di
re

ct
 m

es
sa

ge
(a

pp
ar

en
t p

at
h)

Designer 2

notify D to Crank

0.9 <= H/ D <= 1.3 0.45 < lcp/dcp <= 0.65cooperation

Crank Object

Node 2Node 1

Piston Object

verify D from Piston

Constraint
Object

Designer1

object
Constraint

Figure 5. Filter objects in the constraint meta-object model

Filters in the constraint meta-object model, a model for distributed collaborative design-
ing

This application demonstrates the use of filter objects for maintaining the consistency of
design objects. It also uses the dynamic binding feature of filter objects.

The Constraint Meta-Object model11 has been proposed to develop collaborative design
applications. The constraint meta-object model for a mechanical design application is shown
in Figure 5. In this model, designers collaboratively design through a design space consisting
of design objects. The design space captures collaboration via interdependencies between
design objects. Each design object has several constraints that have to be satisfied when
changes are made to the design object. Due to the interdependent nature of design objects,
other dependent design objects need to be notified when a change is made to a design
object. Constraint meta-objects capture the constraints on the design parameters of design
object. They transparently intercept the design operations on design objects, validate these
operations against the constraints, and also perform the necessary notify operations. Constraint
meta-objects are implemented as filter objects since the filter mechanism allows transparent
interception of messages.

An upfilter member is generated for a constraint meta-object to make a temporary copy
of its filter-client, the design object. The temporary copy is used in recovering the design
object back when a completed design operation does not satisfy the constraints. A downfilter

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 691

Replicate-agent

Replica 1

Replica 2

filtered call

filtered call

Filter object

Figure 6. The ShadowObjects model

performs the validation of the object against the constraints and restores the original state of
the object if necessary.

Dynamic plugging and unplugging of the filter to an object helps in capturing a dynami-
cally changing constraint environment such as during the migration of a design object from
designer’s environment to manufacturer’s environment.

Filters in the ShadowObjects model

The ShadowObjects model5 demonstrates the applicability of filter objects in routing cap-
tured messages to other desired objects. The model is developed for control replication in
distributed systems. Figure 6 depicts the use of filter objects for the ShadowObjects model.
In this model, an object can replicate itself into a number of replicas at any point of time.
The replicas are hidden behind the original object called the replicate-agent. Requests to a
replicate-agent can be routed to one of the replicas. Routing is performed by capturing the
calls to the replicate-agent by a router modeled as a filter object.

The calls from outside are still made to the original object providing the replicate-agent
the ability to encapsulate its replicas. The ShadowObjects model also provides a mechanism
to selectively expose the hidden replicas, in which case, the outside objects can contact the
exposed replicas directly. A filter may be disabled when a replica is exposed and enabled
when it is hidden.

692 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

class DB f // database front end
...
public:

void connect to back end ();
record *read (int rid);
void write (record *rec, int rid);

g;
class Cache : filter DB f // filters read and write requests
private: ...

cache object CO;
float hit ratio;

upfilter: // access through cache
record *directCache (int rid) filters read;
void invalidate entry(record *, int rid) filters write;

downfilter: // implements replacement policies
record *replenishLIFO (record *) filters read;
record *replenishFIFO (record *) filters read;

public: ...
Cache () fhit ratio = 0; g;
switch policy ();

g;
Cache :: switch policy () f

if (replenishLIFO.is enable) f
replenishLIFO.disable;
replenishFIFO.enable;

g else if (replenishFIFO.is enable) f
replenishFIFO.disable;
replenishLIFO.enable;

g else replenishFIFO.enable; // default action
g;

Figure 7. Filters for on-the-fly caching

Filters for on-the-fly caching

This application demonstrates the capability of filter objects to add functionalities to existing
messages on-the-fly. It also demonstrate the applicability of switching between various filter
member functions. A filter object functions as a cache with multiple cache policies for a
database front-end server. Caching is performed on-the-fly. The filter object captures read
requests and caches their answers transparently when required. If a read request can be replied
by detecting a cache hit, the filter answers the request by itself.

Figure 7 shows a filter object Cache, which implements different cache replacement poli-
cies. The filter object can change the active policy on receipt of a message switch policy.
Class DB is the front-end sever class to the actual data base. The filter object filters read and
write queries. If a write query arrives, it invalidates the cache entry if one exists for that
record. Read queries are intercepted by an upfilter member, and if an entry exists in the cache,
it is served by the filter itself without having to go through the data base server. In the case of

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 693

a cache miss, the read request is forwarded to the data base front and when the result is on its
way home, it is intercepted by a downfilter member. The downfilter member replenishes the
cache by invoking the cache replacement policy.

The filter object mechanism models the on-line cache conveniently without having to
modify the front end object. Cache is an added functionality to the front end. A filter object
conveniently captures an added functionality. Experimentation with varying cache policies
would require changes only to the filter object keeping the front end intact. Another advantage
of modeling the cache as a filter object is that the cache object can easily accommodate
multiple front ends by means of the group filtering mechanism.

The above examples show how filters can be used to control messages. Filter objects are
developed independently of their clients in a modular way. The message processing code
remains with filter-clients whereas the message control is abstracted by the filter objects.
Various functionalities can be programmed as a part of the message control code. A filter can
dynamically tune its characteristics.

Experience with filter objects

We have been able to extensively use the filter object model in developing different ap-
plications such as those discussed above. We generally found that the filter object model
provides ease of programming especially in the context of distributed program development.
Our experience also showed that the most attractive features of the model are its ability to
dynamically plug filter objects, group filtering and layered filtering. Though we have not been
able to apply layered filtering to practical problems, we foresee their use in the context of
protocol software engineering. We have also observed that the filter overhead is practically
negligible in these applications.

IMPLEMENTATION OF FILTER OBJECTS

We describe a user level implementation scheme for filter objects in C++. Due to the flexibility
of C++, it was possible for us to convert a C++ code that uses filters to a plain C++ code. We
use various features of C++ such as function pointers, inheritance, polymorphism, parameter
passing by reference, and the ability to specify one to one association using buried pointers.12

The code conversion is achieved with the following steps:

1. Identify all classes that are in filter relationship with a client class. Consider the following
relationships as shown in Figure 8.

class JobMix1 : filter JobServer ...;
class JobMix2 : filter JobServer ...;

In this example, JobMix1 and JobMix2 are the filter classes for client class JobServer.
2. Form a hierarchy of these filter classes rooted at a new special filter class. For the above

example, a new class JobServerFilter is defined, and JobMix1 and JobMix2 are
made subclasses of class JobServerFilter. Thus, we translate the above relationships
in the following hierarchy, which is pictorially shown in Figure 8 by dotted lines.

694 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

Class
JobServerFilter

Class JobMix1 Class JobMix2

inheritsinherits

filterA

filterB

serviceB

serviceA

Class JobServer
association
one to one

virtual filters for serviceA and serviceB

filter members for serviceA and serviceB

LEGEND

Figure 8. Hierarchy of filters

The new hierarchy

class JobServerFilter f...g;
class JobMix1 : public JobServerFilter f...g;
class JobMix2 : public JobServerFilter f...g;

We know that, at any time, either an instance of JobMix1 or an instance of JobMix2 can
be plugged to the client object. JobMix1 and JobMix2 may implement different codes
for the actual filtering actions, but both of them filter only the member functions defined
in the client. Hence, this behavior is earned by treating an instance of JobMix1 or Job-
Mix2 as an instance of their super class JobServerFilter by means of inclusion
polymorphism.13

3. All the filter members are defined as virtual functions in class JobServerFilter. The
number of virtual functions in class JobServerFilter is equal to the total number
of member functions in JobServer that are filtered by JobMix1 or JobMix2. The
subclasses JobMix1 and JobMix2 define the actual filter member functions. In the

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 695

figure, class JobMix1 provides two member functions for serviceA. Class JobMix2
has two filter member functions for serviceB. Whenever there are multiple filter
members for one client member, one of them is bound at runtime. The binding is achieved
by making the appropriate function call through a function pointer from a function that
overrides the virtual function defined in the superclassJobServerFilter. The enable
and disable beta messages assign and remove these function pointers.

4. The client class JobServer declares a pointer to an instance of class JobServerFil-
ter. This pointer specifies a one to one association relationship with an instance
of class JobServerFilter and an instance of class JobServer. The relationship is
shown by a thick line in the figure. Whenever an instance of classJobServer is plugged
to a filter object that is an instance of JobMix1 or JobMix2, this pointer is made to
point to the corresponding instance.

5. Now, every member function inJobServer that is upward filtered, is made to go through
the corresponding upfilter member function defined as virtual in JobServerFilter.
All parameters except pointers are passed by reference to the filter member. This scheme
allows the filter member function to manipulate the message arguments. A pass statement
in the filter member brings back the control to the member function of JobServer. On
the other hand, a bounce statement returns the control to the caller object.
Similarly, in the case of an enabled downfilter, the return statement in the client member
function relinquishes control to the filter by sending the return value as a parameter to it.
The downfilter subsequently returns a value to the caller on behalf of the client object.

6. The same steps are followed for filters to filters. In such cases, a filter that intercepts
method invocations of another filter considers it as its filter-client.

7. Provisions are made for checking possible runtime errors regarding the usage of filter
objects. Some of the possible runtime error messages are the following:

Cannot enable two filter members at a time for one client member
Cannot enable a filter member of an unplugged filter object
Cannot plug two filter objects for one client object

Performance test

The performance test was carried out on a Sun Sparc machine to observe various overheads
involved in the filter object model. The test setup was configured as shown in Figure 9. Five
different kinds of messages are shown in the figure. Message A is a direct message from a
source object to a destination object that has no filter specified even at the class definition
level. Message B is a message to an object that has a filter class but does not have the filter
object instance plugged. Message C goes through a filter object that is only plugged but not
yet enabled. Message D is the filtered message that goes through a filter member function.
In the configuration for message E, the action that a filter member takes is embedded as a
function call into the destination object itself. Table I shows the absolute timings for these five
configurations. The number of arguments is varied from none to 4, where each argument is an
integer taking 4 bytes.

Various overheads are computed from these absolute figures and are presented in Table II.
The comparison between the timings for messages A and B gives the overhead of declaring a
filter class. In Table II, this overhead is shown as filter declaration overhead. All the figures in
Table II are quoted in terms of null body, null argument direct member function call, measured
to 0.527 micro seconds as shown in Table I. For example, the filter declaration overhead is

696 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

D: Call to an object which has a filter enabled

E: Call to an object which has no filter,

but the filtering action is embedded

A: Direct call to an object which has no filter

B: Call to an object which has an unplugged filter

C: Call to an object which has a filter plugged,

but not enabled

C

D

E

A

B

Figure 9. Performance test setup

computed as (B � A)=0:527. The filter declaration overhead, a constant, involves checking
of a condition whether the destination object has a filter object specified. As can be observed
from the table, it does not depend on the number of arguments, and on average, remains within
0.2 times the direct null member function call.

Message C, when compared with message A, gives the plug overhead. This overhead checks
whether the corresponding filter member is enabled. The plug overhead is shown in the table.
It does not depend on the number of arguments, and is also a constant. On an average, it
remains less than one direct null member function call.

When message D is compared with message E, we get the total overheads of a filter object
that performs its intermediate action and passes the arguments to the the destination. The
overhead is given as filter overhead in the table. As can be observed from the table, these
overheads sum up to around three times a direct null member function call. It is observed
that with an increase in the number of arguments, there is a slight increase in this overhead.
However, this overhead does not depend on the the body of the destination member function
or the body of its filter member since both get canceled while comparing D with E.

EVALUATION AND FUTURE WORK

The filter object model provides a flexible mechanism for developing dynamically pluggable
filters for object oriented systems. Filter objects can be developed independently from their
clients. A filter class does not break the encapsulation of its client, nor does the client need any
modification to its code to agree with an added filter class. Only one restriction on the type

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 697

Table I. Timings for the five configurations

No. of Arguments A B C D E
� sec. � sec. � sec. � sec. � sec.

0 0.527 0.628 1.033 1.963 0.727
1 0.607 0.710 1.054 2.258 0.870
2 0.866 0.958 1.301 2.724 1.260
4 1.274 1.370 1.730 3.630 1.910

declarations has to be maintained. The declarations of the filter-client member functions and the
corresponding filter member declarations should match. However, between the corresponding
arguments, it is possible to have ordinary subtyping relationships. The matching declarations
are required, since a filter member takes and returns arguments of the same type as that of its
client member function. The type information for filter members is also required to give them
the overloaded meanings for their corresponding overloaded client members.

Filter objects can be maintained separately from their clients since the encapsulation between
them is ensured. The code in a filter class can be reused by other classes at the level of class
inheritance, since a filter class is treated at par with any other class. Methods defined in a
filter class may be reused to design a new filter for a new or a derived class. However, filter
relationships are not reusable. Reuse of filter relationships to obtain polymorphic filtering is
a topic for further research.

The implementation of filters is at the user level, which involves overheads of a preprocessing
stage during compilation and also involves run time overheads. A filter class has to be
recompiled with its filter-client when it undergoes changes.

In this work, we have restricted ourselves to the design and development of filter objects for
a sequential object-oriented paradigm. We are carrying out research work in order to achieve
smooth integration of the filtered delivery model with concurrent distributed systems. The
filtered delivery model finds several applications in distributed systems. A server object can
be equipped with a filter to restrict requests depending on the current load on the server. A
filter may reroute the requests to a new server making this decision transparent to the clients.
We have used filters in our earlier work on control replication in distributed systems.5 Filters
act as schedulers to the replicas of a server.

The sequential and the distributed object models differ over the function call semantics. In a

Table II. Performance Overheads in Terms of Null Member Call

No. of arguments Filter declaration overhead Plug Overhead Filter Overhead
(B - A)/0.527 (C - A)/0.527 (D - E)/0.527

0 0.192 0.96 2.34
1 0.195 0.85 2.63
2 0.175 0.83 2.78
4 0.182 0.87 3.26

698 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

sequential object oriented language like C++, sending of a message is replaced by a blocking
function call. The return value is treated as an implicit message that arrives at the originator and
not as an explicitly programmed message. Whereas, in concurrent object oriented languages
such as Charm++14 and Mentat,15 a sender object may be located in a different address
space on a different processor than that of the destination object. The concurrency available
is exploited by various non-blocking message passing mechanisms. The sender continues
processing immediately after dispatching a message and does not have to block until a return
message arrives. In such a case, if the return address is known, any object may return a value
to the caller object on behalf of the destination object. A filter object can exploit the non-
blocking call semantics by supporting forwarding of member function calls. For example,
a filter may forward a Remote Procedure Call (RPC) request to a lightly loaded machine
and permanently forget about it. Filters can serve various purposes in distributed systems
such as fault tolerance, forwarding, routing, and load balancing. For example, a filter object
may implement a redundant invocation mechanism or a reinvoke upon timeout mechanism to
provide fault tolerance to message invocations. Filters to filters have applications in multilevel
security architectures and in the development of layered network protocols.

CONCLUSIONS

We have discussed the filtered delivery model for message passing between objects. In this
model, the messages can be intercepted and manipulated by special objects called filter
objects. An interclass relationship called a filter relationship is introduced. A filter relationship
empowers a filter class to provide filter member functions that can intercept messages sent to
another class in a transparent manner. Filter objects can be dynamically plugged and unplugged
to their clients. The model supports selective filtering of member function invocations. Beta
messages, which act as directives to member functions are introduced to achieve dynamic
and selective filtering. The filter object model was developed for the C++ object-oriented
programming language, and a scheme was discussed to implement filter objects in C++ itself.
The filtered delivery model separates the message control code from the message processing
code in a transparent manner. Three practical applications for the filter object model were
discussed. The model supports modular design of transparent filter objects. It is possible to
design application specific filters and plug them to their client objects on demand.

ACKNOWLEDGEMENTS

We thank T. N. Shrikanta who wrote a part of the translator. We thank the anonymous referees
whose comments and suggestions have improved the quality of the work.

REFERENCES

1. A. Goldberg and D. Robson, Smalltalk-80, Addison-Wesley, 1989.
2. B. Stroustrup, The C++ Programming Language, 2nd Ed., Addison-Wesley, 1991.
3. G.R. Andrews, ‘Paradigms for process interaction in distributed programs,’ ACM Computing Surveys, 23(1)

49–90, (March 1991).
4. J. Reidl, V. Mashayekhi, J. Schnepf, M. Claypool and D. Frankowski, ‘SuiteSound: a system for distributed

collaborative multimedia, IEEE Transactions on Knowledge and Data Engineering, 5(4) 600–610 (August
1993).

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 699

5. R.K. Joshi and D. Janaki Ram, ‘ShadowObjects, a programming model for control replication in distributed
systems’, Technical Report IITM-CSE-DOS-95-003, 1995.

6. M. Aksit, K. Wakita, J. Bosch, L. Bergmans and A. Yonezawa, ‘Abstracting object interactions using compo-
sition filters’, Proceedings of ECOOP-1993, LNCS-791, Springer-Verlag, 1993, pp. 152–184.

7. IONA Technologies Ltd., Dublin, Ireland, The Orbix Architecture, January 1995.
8. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns, Addison-Wesley, 1995.
9. G. Booch, Object-oriented Analysis and Design, 2nd ed., Benjamin/Cummings, 1994

10. D. Janaki Ram and L. Rajesh Kumar, ‘Multimedia multicast routing algorithm’, Proceedings of Networks-96,
Bombay, India, 1996, pp. 1-10.

11. D. Janaki Ram, Vivekananda, Ch. S. Rao and Krishna Mohan, ‘Constraint Meta-object: a new object model
for distributed collaborative designing’, IEEE Transactions on Systems, Man and Cybernetics (PART A),
27(2), 208–221 (March 1997).

12. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Modeling and Design,
Prentice-Hall, 1991.

13. L. Cardelli and P. Wegner, ‘On understanding types, data abstraction and polymorphism’, ACM Computing
Surveys, 17(4), 471–522, (December 1985).

14. L. Kale and S. Krishnan, ‘Charm++: a portable concurrent object oriented system based on C++, 8th Annual
Conf. on Object-oriented Programming Systems, Languages and Applications, ACM SIGPLAN Notices,
28(10), 91–108 (October 1993).

15. A.S. Grimshaw, ‘Easy-to-use object-oriented parallel processing with Mentat’, IEEE Computer 39–51 (May
1993).

	INTRODUCTION
	OVERVIEW OF THE FILTERED DELIVERY MODEL
	The essential properties of filter objects
	The extended properties of filter objects

	BASIC FILTER OBJECT MODEL
	Specifying a filter relationship
	The operators plug and unplug
	Organization of a filter class
	The filter interface
	The beta messages enable and disable

	Actions of an upfilter member function
	Actions of a downfilter member function

	EXTENDED FILTER OBJECT MODEL
	Support for group filtering
	Dynamic binding of filters
	At filter object level
	At filter member function level

	Filters to filters

	APPLICATIONS OF FILTER OBJECTS
	Filters in the constraint meta-object model, a model for distributed collaborative designing
	Filters in the ShadowObjects model
	Filters for on-the-fly caching
	Experience with filter objects
	IMPLEMENTATION OF FILTER OBJECTS
	The new hierarchy

	Performance test
	EVALUATION AND FUTURE WORK
	CONCLUSIONS
	acknowledgements
	REFERENCES

