SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 27(6), 677-699 (JUNE 1997)

Message Filters for Object-oriented Systems

RUSHIKESH K. JOSHI, N. VIVEKANANDA AND D. JANAKI RAM

Department of Computer Science and Engineering, Indian Institute of Technology, Madras-600036, India,
(email: {rushi, vivek, djram} @lotus.iitm.ernet.in)

SUMMARY

Inthe conventional object model, encapsulated objectsinter act by messagesthat result in method invocations
on the destination object. A message is delivered directly at the destination object. As a result of the
direct deliveries, the message control code performing intermediate message manipulations cannot be
abstracted out separ ately from the message processing codein the destination object without sacrificingthe
transparency of theinter mediate messagecontrol. Weproposethefiltered delivery model of messagepassing
for object-oriented languagesto provide the separation of message control from message processing in a
transparent manner. An inter classrelationship, called afilter relationship, isintroduced. Asa consequence, a
filter object can intercept and manipulate messagessent to another object called its client via filter member
functions. A filter member function in afilter object can intercept a particular member function invocation
on itsclient object. Thefiltered delivery model supportsboth upward and downwar d filtering mechanisms,
facilitating inter ception of an upward messageand itsreturn messagevalue. Filter objectscan be plugged or
unplugged at runtime. Binding of filter member functionsto corresponding member functionsin the client
is selective and dynamic. Thefiltered delivery model is developed for the C++ object-oriented language; its
applications are described and implementation is discussed. [11997 by John Wiley & Sons, Ltd.

KEY WORDS: direct messagedelivery; filtered messagedelivery; filter object; filter relationship; object-oriented programming
INTRODUCTION

Objects form the basic building blocks of an object-oriented program. Objects interact by
sending messages to each other. Messages are in turn mapped to invocations of member
functions. When a sender object prepares the contents of amessage and sel ectsthe destination
object for that message, the messageis said to have been generated. When a message is ready
for the destination to be read, we say that the message has been delivered. In the traditional
object model, message delivery is modeled as an activity that isdirectly triggered by message
generation. We term this model of message passing as the direct delivery model. The direct
delivery r?odel iswidely adopted in the existing object-oriented |anguages such as Smalltalk?
and C++.

A response to a message can be divided into two stages of message control and message
processing. Message control code is the code that performs intermediate message manipul a
tions before messages are delivered at the destination object. Message processing code is the
actual code in the destination object that processes the messages to achieve the functionality
desired by the caller. There can be many situations in which a finer control over messages
is desired. For example, message contents might have to be checked against concerns such
as validity and security. Similarly, an application may require a message preprocessing stage
as in the case of an intermediate stage that implements a cache to improve the performance

CCC 0038-0644/97/060677—23 $17-50 Received 17 July 1995
111997 by John Wiley & Sons, Ltd. Revised 15 October 1996

678 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

of read requests sent to a server object. Separating message control from message processing
can be very advantageous. The actual message processing becomes independent of message
control, thereby providing the capability to modify the functionality of a message processing
object in a transparent way by means of the separate message control stage. The separation
makesit possibleto devel op message control policiesin amodular way.

In the direct delivery model, the message control code is coupled with the message pro-
cessing code. Asaresult, the message control code cannot be abstracted out without breaking
its transparency. An application may require its message control policy to be changed dy-
namically. In such a case, the destination object needs to be modified owing to the coupling
between message control and message processing. For example, for a dictionary object, a
message control policy may cache items in order to lower the search time. A new policy for
routing the search requests to another dictionary object may have to be added when a new
dictionary server becomes available. In this case, the dictionary object needs to be modified
to incorporate the new message control policy.

Ontheother hand, aforced abstraction of themessage control code destroysitstransparency.
For example, a security object might be separated out from the message processing object.
However, the calling semantics of direct deliveries require that the message be explicitly sent
to the security object, which subsequently forwardsit to the message processing object. Thus,
the transparency of message control is destroyed.

We propose a new model for inter-object message communication called filtered delivery
that achieves separation between message processing and message control in a transparent
way. In this model, as opposed to direct deliveries, messages sent to a destination object can
be intercepted by special objects called filter objects. Whilefilter objects intercept messages,
the calling semantics at the source object do not change. We incorporate the filtered delivery
message passing model in the sequential object-oriented programming language C++.2 A new
interclass relationship called afilter relationshipisintroduced. Using thisrelationship, afilter
object can be empowered to intercept messages sent to an ordinary object. Both upward calls
and their return values can be intercepted.

OVERVIEW OF THE FILTERED DELIVERY MODEL

Figure 1 showsthe conventional direct delivery message passing model. An object User sends
amessagei nsert () toaResour ceQobject. Object User isthe source object for message
i nsert (). Themessageis delivered directly at object Resour ceQ which is the destination
of the message as chosen by the source object itself. As a result of message delivery, the
corresponding method is invoked at the destination object.

Since messages are directly delivered, any intermediate message control has to be accom-
modated within the destination object. We cannot abstract out the message control part without
disturbing the actual destination and without sacrificing its transparency. For example, con-
sider the case of inserting an intermediate object in Figure 1 to route the user requests to
another resource. In this case, the User object has to be modified to send requests to the
new intermediate object. Another problem is that, when the intermediate object needs to be
replaced or removed, the code in source object needs to be modified. For example, an addition
of a second intermediate object requires the source object to refer to the new object instead
of the old one. If the intermediate objects are removed, the message should go directly to the
destination object. We propose the filtered delivery model that provides a modular way to de-
velop objects that act as messagefiltersfor their client objects. Filter objects act transparently.
Removal, addition or replacement of filter objects do not require any modification of code,

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 679

JobQueue. insert (job) invoke insert ()

Object User Object ResourceQ
Figure 1. Thedirect delivery model

either at the source object or at the destination object.

Filters as message manipulators are used in various applications ranging from distributed
agorithms® to multi-media collaborative applications.* However, the existing object oriented
languages do not provide aformal support for designing filter objects for developing filters as
modul ar and transparent entities. We have earlier proposed a primitive language construct for
filtering called capture specification for ShadowODbjects,> a mode! for control replication in
distributed systems. Shadow objects are replicas of an object, which provide the same set of
services as that of the original object. The replicas can be hidden behind the original object or
exposed to the network. When the replicas are hidden, the capture specification is employed
to intercept the service requests sent to the original object and schedule them on-the-fly on
one of the replicas. The drawbacks of the capture specification are that it is closely coupled
withaclass, itis statically declared, and it cannot be changed or enhanced during runtime.

In the composition filter model ,® input and output filters are specified within an interface of
aclass. Filters belong to specialized filter classes depending on their usage. Dispatch filters
are used to conditionally accept messages. Meta filters can delegate messages to abstract
communication types. In contrast to the composition filter model, we provide the separation
between message processing and message control by means of dynamically pluggable filter
objectsthat are separate entitiesfrom the destination of messages. We achieve thisby aspecial
interclass relationship called afilter relationship.

Our filter model has similarities with the filter mechanism provided in the Orbix Corba
product.” Orbix alows programmers to supply filter code for clients and servers mainly for
packaging requirements such as authentication, debugging, performance statistics, auditing
and encryption. The main purpose of thefilter mechanismisto keep the Orbix implementation
flexible and lightweight. Our filter model is provided at the language level by introducing a
filter relationship between classes. Themain features of our model include dynamic creation of
filter relationship between objects, per message and sl ective filtering and dynamic changing
of filtering policies.

Some design patterns® such as decorator and proxy provide some functionalities of the
filtered delivery model. However, the filters introduced in this paper are at the programming
languagelevel, and themainintent isto glueclient object and server object using afilter object
in atransparent way. Design patterns are at the level of structuring object-oriented systems. It
ispossibleto construct specific design patterns based on the thefilter object model, especially
for gluing objectstogether.

Now we take a closer look at the filtered delivery model. Figure 2 shows the conceptual
view of thefiltered delivery model. A messagefilter functions as a message manipul ator for its

680 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

Object NewResouceQ

invoke newlnsert ()

messages to
external objects

JobQueue.insert(job)

invoke insert ()

return

downfilter
Object User Object ResourceQ

Filter Object
Figure 2. The filtered delivery model

client object. In the figure, Resour ceQis afilter-client object for the filter object. Messages

sent to object Resour ceQ pass through thefilter object. User calls the member functions of

Resour ceQdirectly. Thefilter object intercepts these messages when they are on their way.
The filter object can take the following actions upon interception of a message:

(8 Interception of upward messages: upward messages are messages from a source object to
a destination object that has afilter. The filtering function that filters an upward message
is called an upfilter.

(b) Manipulation of messages: an upfilter may change the arguments of amessage and process
an arbitrary code.

(c) Bounce: an upfilter returnsaval ueto the source of the message on behalf of the destination.

(d) Pass: the upfilter passes the message on to thefilter-client after a possible manipulation of
the message contents.

(e) Intermediateinvocationson other objects: afilter object may send requeststo other objects
as part of its control code.

(f) Interception of downward messages: downward messages are the return values from the
destination. A downward message can al so befiltered. The function that filters adownward
message is called a downfilter.

The above actionsand the various paths that a message can take in presence of afilter object
are shown in the figure. Various properties of filter objects can be described from the point

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 681

of view of their functionality and usage. We divide these properties into two categories of
essential and extended properties. Essential properties concentrate on the basic functionality
of filter objects. They describe a bare minimum filter object model. The extended properties
explore their flexibility from the point of view of their usage.

The essential properties of filter objects

We define the following properties as essential properties for filter objects:

(8) Supportfor basicfilteringactions: filter objectsare specified to intercept messagesarriving
at an ordinary object called a filter-client. Filters may manipulate the messages. They
eventually pass or bounce them. Bounce is areturn performed by the filter. Whereas, pass
specifies forwarding of the message to its client. This property provides elegant language
constructs to enable the design of objects that carry out tasks related to message control
such as range checking, security checking, data conversions, message preprocessing and
message routing.

(b) Modularity: specification of a filter object is separate from the specification of its client
object. Neither a filter object breaks the encapsulation of its client, nor the client breaks
the encapsulation of itsfilter.

(c) Transparency: sender may not know the existence of afilter object. Hence, direct delivery
call semantics are preserved for the source of a message. Since the sender does not know
the existence of afilter, it directly sends messages to the destination. No code changesin
the source object are required when afilter object is added, removed or replaced. Hliters
can thus be used to act on-the-fly.

(d) Selective filtering: filters can intercept messages selectively. Some of the methods may
remain unfiltered, whereas some may be filtered. This property enables afilter object to
implement independent message control codes for multiple messages.

The extended properties of filter objects

(8 Group filtering: group filtering allows multiple filter-clients to be served by a singlefilter.
This property defines an obvious extension to the power of afilter object. A filter object
may intercept messages sent to anumber of its client objects that are instances of the same
client class.

(b) Dynamicfiltering: filterscan bechanged for aclient overitslifetime. Thisproperty specifies
the dynamic binding capability of filters. Binding is done at two levels. At the first level,
the filter objects may be removed and replaced. At the second level, individual member
functions within a filter object that filter their corresponding counterparts in the client
object may be changed at runtime.

(c) Layered filtering: this property specifies that filters can be nested. With this property,
multilevel filters can be designed by specifying filters to filters. Multilevel filters can be
used for designing multilevel message processing. For example, one filter may take care
of security whereas another may be attached to function as a router to redirect messages
to other servers.

As can be seen from the above properties, the basic filter object model provides support for
oneto onefilter relationship between afilter object and afilter-client object. The the extended
model providessupport for oneto many (group filtering), and many to one (layeredfilters) filter

682 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

relationships. In the following section, we describe the basic filter object model in detail. The
basic model consists of various mechanisms that provide support for the essential properties
discussed above. The support for the extended properties is discussed in the subsequent
section. The base language used is C++. We have emphasi zed examples rather than syntactic
specifications in our description.

BASIC FILTER OBJECT MODEL

The basic filter object model covers the essential properties of filter objects. Filter objects are
specified separately from their client objects by a new interclass relationship called afilter
relationship. A filter relationship is different from other relationships such as inheritance,
aggregation, association, using, instantiation and metaclass relationships (see Booch® for a
detailed description of these). As aresult of afilter relationship between two classes, their
instances, which are obj ects, al so acquirethefilter rel ationship. We define thefilter relationship
as.

the ability given by one object (filter-client object) to another object (filter object)
to intercept, manipulate and forward or bounce the messages sent to it.

A filter relationship isfirst established at class level. An instance of afilter class that isin
afilter relationship with afilter-client class is given the ability to filter messages sent to an
instance of the filter-client class. Subsequently during runtime, the instances may be plugged
together to act in the filter relationship.

Specifying afilter relationship

In the following example, a filter relationship is established between a client class Re-
sour ceQand afilter classFil ter Q

cl ass ResourceQ {

}.

class FilterQ: filter ResourceQ {

=

The relationship enables an instance of the filter classFi | t er Qto intercept messages sent
to aninstance of itsclient class Resour ceQ Two special operators, plug and unplug are used
to specify thefilter relationship between the instances of these classes.

The operators plug and unplug

Specification of afilter relationship at classlevel doesnot automatically start therelationship
between their instances. The plug operator is used to bind two objects in filter relationship.
For example, the following code binds filter object cache toitsclient di cti onary.

mai n () {
Dictionary *dictionary = new (Dictionary);
Cache *cache = new (Cache);

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 683

plug di cti onary cache;

Similarly, theunpl ug operation isused to break thefilter relationship between objects. The
operation

unpl ug di cti onary;

breaks the filter relationship between cache and di ct i onar y. After an unplug operation is
performed on afilter-client, itisonits own, and receives further messages as direct deliveries.

A filter object can selectively intercept messages sent to its client object. For example, it
may intercept only one single member function among many others defined in the public
interface of its client. Selective filtering is possible with the help of beta messages, which are
described subsequently.

Organization of afilter class

A filter class defines an interface called a filter interface apart from the usua private
and public interfaces. A filter interface defines filter member functions that are invoked
automatically when their corresponding member functionsin the client object are intercepted
by thefilter object. Thus, themembers of thefilter interface areinvoked only by the system that
executes the program. Filter member functions defined in thefilter interface are not accessible
as private or public members.

The filter interface

Thefilter interfaceissplitinto upfilter and downfilter interfaces. Themember functionsof the
upfilter interface can intercept the upward messages going towardsthefilter-client, whereas the
downfilter member functions can intercept the return values from the client. Both interfaces
are independent, and the presence of one is not mandatory for the presence of the other.
Each interface specifies a mapping from filter member functions in afilter class to member
functionsin aclient class. Asan example, thefoll owing code specifiesan upward filter member
function sear chCache() and adownfilter member functionr epl eni shCache(), infilter
class Cache for the member function sear chWor d() definedinclient classDi cti onary.

class Dictionary {

publi c:
Meani ng searchWrd (Wrd); // returns neaning of a word
}.

class Cache : filter Dictionary {

upfilter:
Meani ng searchCache (Wrd) filters searchWrd,
/[returns neaning if hit

downfilter:
Meani ng repl eni shCache (Meaning) filters searchWrd,;

684 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

/[updat es cache if miss

=

An assignment of afilter member functiontoamember functioninitsclient classisspecified
using the keyword filters. An assignment gives the capability to a particular filter member
in the filter class to intercept a particular member function in its client class. An assignment
does not automatically mark the commencement of the filtering action, but the filter member
functions have to be explicitly enabled to actually commence filtering. In the above example,
if a message sear chword() for an instance of class Di cti onary is generated, it can be
made to go through sear chCache() in an instance of class Cache. The upfilter member
returnsthe meaning of theword on itself, if itisfound in the cache. The messageis not passed
on to dictionary object in that case.

The downfilter members can aso be specified in a similar way. The only difference in this
case is that a downfilter member function takes one argument and returns one argument. A
downfilter member function receives the return value from the client, and also hasto return a
value of the sametypeto the source of the message. Hence, the type of the input and thereturn
arguments for a downfilter is the same as the return type of the corresponding client member
function. In the above example, thefilter r epl eni shCache() canintercept the return values
of calls to searchwor d() inits client. When a meaning is on its way, the cache may be
replenished by the downfilter member function.

The beta messages enable and disable

We introduce beta messages that function as messages to filter member functions. Ordi-
nary messages such as class messages or instance messages are modeled as invocations of
member functions. On the other hand, beta messages are modeled as directives to member
functions themselves. Beta messages can be sent to a filter member only from within the
corresponding filter object. Two standard beta messages, enable and disable, are provided to
mark the commencement and termination of a filtering action. These beta messages can be
applied selectively to individual upfilter and downfilter member functions. For example, if a
beta message sear chCache. enabl e is sent to a filter member sear chCache(), it starts
intercepting its peer member function sear chWor d() inits client class. The restriction of
sending beta messages from within a filter object protects the encapsulated behavior of the
filter object. Any member function (public or private) can send a beta message to a filter
member function. Two additional beta messages are provided to know the current state of a
filter member function. They are explained in the section on the dynamic binding of filters.

The following code demonstrates the use of beta messages. A public member invocation
start filtering() enablestheupfilter sear chCache() andthedownfilter r epl eni sh-
Cache(), whileend filtering() disables them. After disabling, the filter relationship
between the objects terminates and messages do not go through the cache filter.

class Dictionary {

publi c:
Meani ng searchWrd (Wrd);
}.

class Cache : filter Dictionary {

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 685

upfilter:
Meani ng searchCache (Word) filters searchWrd,
downfilter:
Meani ng repl eni shCache (Meaning) filters searchWrd;
publi c:
start filtering () { searchCache. enable; replenishCache.enable; };
endfiltering () { searchCache.disable; replenishCache.disable; };
h
main () {
Dictionary *dictionary = new (Dictionary);
Cache *cache = new (Cache);

plug di cti onary cache;
cache- >start filtering()

cache- >end_filtering()

unpl ug di cti onary;

Actions of an upfilter member function

The upfilter member function are specified like any other member function of a class
except that they can perform two additional actions, pass and bounce, which are explained
below. The prototype of an upfilter member function should match with its corresponding
member function in the client class. For example, if an upfilter member in a filter class F
has to be specified for a client member function nyRet ur nType C:: func2(nyType) in
aclient class C, its specification can be given asnyRet ur nType F::filter2(nyType).
This requirement reflects the ability of a filter member to receive the message sent to its
client as it is, and also return a value on behaf of its client. Moreover, in the presence of
an overloaded client member function, this type information within the declaration of afilter
member gives its corresponding overloaded meaning.

Once an upfilter is enabled, the corresponding upward messages are intercepted and the
upfilter member function is invoked. All arguments in the message to the client object arrive
at the upfilter as corresponding arguments. The contents of the message can be manipulated
inside the filter member function. The filter member can aso invoke member functions on
the same or other objects just as any other ordinary member function can. It takes one of the
following two actions upon completion of its message manipulation activity:

(a) Passthe message: the message can be passed on to the client object after the desired filter
action is performed. The pass action is specified by apass statement.

(b) Bounce the message: the filter can return a value on behalf of its client by a special return
statement bounce() . Thetype of the bounced value isthe same as that of the return value
specified by its client. The receiver abject is kept unaware of the interception unless this
information is explicitly encoded in the return value.

Thefollowing codeis an example of afilter member function that bounces areturn val ue of
—1if theargument x isnegative. The message is passed on asit isfor al non-negative values
of x lessthan 100. For higher valuesof x, itisheld at the threshold of 100 and then passed on.

686 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

int aFilter :filterl (intx) {
if (x < 0) bounce (-1);
if (x > 100) x = 100;
pass;

=

Actions of a downfilter member function

A downfilter member function intercepts the return messages from a client object. To inter-
cept areturn message, it isnot required that the upward message be intercepted. A downward
filter takes exactly one argument, which is the return message to be intercepted. Within the
filter, thisreturn value can be manipulated. A bounce from the downward filter returnsavalue
to the calling object. In the following example, the downfilter code unconditionally adds a
value of 2 to every return message and then returnsit to the caller.

aFilter : filter C{
downfilter:

h

int aFilter :: downl (int x) {
bounce (X+2);

h

int downl (int) filters funcil,

EXTENDED FILTER OBJECT MODEL

The extended filter object model supports the extended properties of filter objects. The group
filtering construct facilitates multiple filter-clients to be served by one filter object. Dynamic
bindingsof filters are possibleat twolevels. A filter object may be changed and individual filter
member function may also be changed for a filter-client member function over its lifetime.
Filtersto filters provide support for designing multilevel filters.

Support for group filtering

It is possible to plug multiple client objects within a single filter object. Group filters thus
define a one to many relationship. In such a case, a beta message on a filter member acts as
a group beta message. Figure 3 shows a group configuration for upward messages. Similar
configuration is possible for downward messages al so.

In thefigure, objectsfil el,fil e2 andfil e3 areinstancesof classFi | e and are clients
of thefilter object fi | eFi | t er. A beta message enabl e enables the filtering action by a
particular filter member function such asreadFil ter () orwiteFilter() fortheentire
group of clientsat atime. Similarly thedi sabl e betamessagedisablesfiltering for all clients.
Thepl ug and unpl ug operationscan be performed on individua client objects. For example,
objectf i | el can be selectively unplugged | eaving the other two objects plugged. Any number
of clients can be plugged or unplugged to afilter at any time, but al of them must belong to
aclassthat isinfilter relationship with the class that defines the objectfi | eFi | t er . Group
filters can aso be used for shared administration of messages sent to a group of objects. It is

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 687

Object filel
O read
filel.read () .)
write
D Object file2
. .] to respective
file2write () readFilters filter-olients @ read

writeFilters

/ fileFilter
file3.write () O
read
. write
Object file3

Figure 3. Group filtering

possible to design group multi-cast filters to address the specific problems of multi-casting®
such as late-comers joining a multi-cast group.

Dynamic binding of filters

At filter object level

A filter-client may change itsfilter object over itslife time. A filter-client may bein filter
relationship with many filter classes, but at the level of instantiation, a client object can be
in filter relationship with only one filter object at a time. The following example shows the
dynamic binding of filter objects for a client object, which is adesign object. A design object
such as a machine part undergoes different levels of design process, and at each level, the
design process has to satisfy different constraints. Readers are referred to the section on
applications of filter objects for a detailed treatment on this application.

688 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

cl ass DesignObject { ...};

class Constraint-A : filter DesignObject { ... };
class Constraint-B : filter DesignObject { ... };
main ()

Desi gn(hj ect *desi gn(bj ect ;
Constraint-A *constraint-A;, // a filter for designCbject
Constraint-B *constraint-B; // another filter for designQObject

pl ug desi gnChj ect constraint - A
../l design level 1

unpl ug desi gnQbj ect ;

pl ug desi gnChj ect constraint - B;
../l design level 2

unpl ug desi gnQbj ect ;

At filter member function level

It is possible to specify multiple upfilter or downfilter member functions for one client
member function at compile time, and bind at runtime only one of them as a filter for the
corresponding client member function. In the following example, a filter object implements
two caching policies cachePol i cy1() and cachePol i cy2() . Either of the policies can
be used as an acting upfilter for member r ead() in the client object. Two additional beta
messages, i s_enabl e and i s_di sabl e, are provided for testing purposes. They return a
boolean result as per the status of the corresponding filter member. A public member function
enabl e1() can be invoked to initialize the upfilter to cachePol i cy1() . Subsequently, a
public member function swi t chfilter () can beinvoked to switch the upfilter member
function from cachePol i cy1() tocachePol i cy2(), or vice versa.

cl ass Cache:filter Dictionary {

upfilter:
cachePolicyl(..) filters read {...};
cachePolicy2(..) filters read {...};
public:
enabl el { cachePolicyl.enable; }
switchfilter ();
h
Cache :: switchfilter () {
if (cachePolicyl. is_enable){cachePolicyl.disable;
cachePol i cy2. enabl e}
el se
{ cachePol i cy2. disabl e; cachePolicyl.enable; }

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 689

to other objects

X

call Server.service () Q service ()

Object User Object Server

Filter Object Filter Object
Router Security

Figure 4. The Multilevel filters

Filterstofilters

It is possible to design nested multilevel filters by specifying them asfilters to filters. Mul-
tilevel filters can be useful in protocol software development in networking. In the following
example corresponding to Figure4, aSecur i t y filter filtersan object Ser ver . A Rout er fil-
ter isspecified to intercept the Secur i t y filter. Thus, Securi ty isafilter-client for Rout er .
Filter Rout er may intercept the public and filter members of itsclient Securi ty. Filtering
thefilter member functionsleads to multilevel filtering.

class Server {...};
class Security: filter Server {...};
cl ass Router: filter Security {...};

Figure 4 pictorially captures the multilevel filter relationship. The ser vi ce requests sent
to the Ser ver object may be captured by the Rout er and routed to other objectsinstead. If a
reguest is passed on, it goesthrough the Secur i t y filter before it reaches the object Ser ver .

APPLICATIONS OF FILTER OBJECTS

In this section, we discuss some applications of filter objects in detail, which were used as
examplesin developing thefilter object model inthe earlier sections. Thefirst application uses
filter objectsfor implementing the constrai nt meta-obj ect model for collaborative applications.
The second application implements access control mechanism for replicated objects using
filters. Requests to an object can be rerouted to one of its replicas by capturing the calls
on-the-fly. Finally, a database application implements an on-the-fly cache on a host using a
filter object. The filter object can change the cache policy by changing the filter members.
These applications give aflavor of the applicability of filter objects.

690 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

Node 1 Node 2
Piston Object Crank Object
. A
anstramt \ Constraint
object S Object

09 <= H/D<= 13 cooperation 0.45< lcp/dep <= 0.65

verify D from Piston

notify D to Crank

%g é.g’ %
5 g A
5 g 58 ST P
58 y =8 I
7 filtered message)/ filtered message
4 (real path) D , (real path)
’ i
Designerl Designer 2

Figure 5. Filter objectsin the constraint meta-object model

Filtersin the constraint meta-object model, amodel for distributed collabor ativedesign-
ing

This application demonstrates the use of filter objects for maintaining the consistency of
design objects. It also uses the dynamic binding feature of filter objects.

The Constraint Meta-Object model! has been proposed to develop collaborative design
applications. The constraint meta-object model for a mechanical design application is shown
in Figure 5. In thismodel, designers collaboratively design through a design space consisting
of design objects. The design space captures collaboration via interdependencies between
design objects. Each design object has several constraints that have to be satisfied when
changes are made to the design object. Due to the interdependent nature of design objects,
other dependent design objects need to be notified when a change is made to a design
object. Constraint meta-objects capture the constraints on the design parameters of design
object. They transparently intercept the design operations on design objects, validate these
operationsagainst the constraints, and al so perform the necessary notify operations. Constraint
meta-objects are implemented as filter objects since the filter mechanism allows transparent
interception of messages.

An upfilter member is generated for a constraint meta-object to make a temporary copy
of its filter-client, the design object. The temporary copy is used in recovering the design
object back when a completed design operation does not satisfy the constraints. A downfilter

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 691

.
y

Filter object

Replica 1

|
|
|
|
|
\

Replicate-agent

\
N
N
~
-
s
7
/
I
|
|
|
|
I

/
/

Replica 2 /" filtered call

Figure 6. The ShadowObjects model

performs the validation of the object against the constraints and restores the original state of
the object if necessary.

Dynamic plugging and unplugging of the filter to an object helps in capturing a dynami-
cally changing constraint environment such as during the migration of a design object from
designer’s environment to manufacturer’s environment.

Filtersin the ShadowObjects model

The ShadowObjects model® demonstrates the applicability of filter objectsin routing cap-
tured messages to other desired objects. The model is developed for control replication in
distributed systems. Figure 6 depicts the use of filter objects for the ShadowObjects mode.
In this model, an object can replicate itself into a number of replicas at any point of time.
The replicas are hidden behind the original object called the replicate-agent. Requests to a
replicate-agent can be routed to one of the replicas. Routing is performed by capturing the
callsto the replicate-agent by a router modeled as afilter object.

The calls from outside are still made to the origina object providing the replicate-agent
the ability to encapsulate its replicas. The ShadowObjects model aso provides a mechanism
to selectively expose the hidden replicas, in which case, the outside objects can contact the
exposed replicas directly. A filter may be disabled when a replica is exposed and enabled
when it is hidden.

692 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

cl ass DB {// databasefront end

publi c:
voi d connect t o_backend ();
record *read (int rid);
void wite (record *rec, int rid);

class Cache : filter DB { // filters read and wite requests
private: ...
cache_obj ect CO

float hit_ratio;
upfilter:/laccess through cache

record *directCache (int rid) filters read;

void invalidateentry(record *, int rid) filters wite;
downfilter://i npl ements repl acenent policies

record *replenishLIFO (record *) filters read,

record *repl eni shFIFO (record *) filters read,
public: ...
Cache () {hitratio=0; };

switch_policy ();
I
Cache :: switchpolicy () {

if (replenishLIFO isenable) {

repl eni shLI FO. di sabl g;
r epl eni shFl FO. enabl e;
}else if (replenishFIFO isenable) {
repl eni shFl FO. di sabl g;
repl eni shLI FO. enabl e;
} el se repl eni shFI FO enable; // default action

Figure 7. Filters for on-the-fly caching

Filtersfor on-the-fly caching

Thisapplication demonstratesthe capability of filter objectsto add functionalitiesto existing
messages on-the-fly. It also demonstrate the applicability of switching between various filter
member functions. A filter object functions as a cache with multiple cache policies for a
database front-end server. Caching is performed on-the-fly. The filter object captures read
requests and caches their answers transparently when required. If aread request can bereplied
by detecting a cache hit, the filter answers the request by itself.

Figure 7 shows afilter object Cache, which implements different cache replacement poli-
cies. Thefilter object can change the active policy on receipt of amessageswi t ch_pol i cy.
Class DB isthe front-end sever classto the actua database. Thefilter object filtersr ead and
wri t e queries. If awrite query arrives, it invalidates the cache entry if one exists for that
record. Read queries are intercepted by an upfilter member, and if an entry existsin the cache,
itisserved by thefilter itself without having to go through the data base server. In the case of

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 693

a cache miss, the read request is forwarded to the data base front and when the result ison its
way home, it is intercepted by a downfilter member. The downfilter member replenishes the
cache by invoking the cache replacement policy.

The filter object mechanism models the on-line cache conveniently without having to
modify the front end object. Cache is an added functionality to the front end. A filter object
conveniently captures an added functionality. Experimentation with varying cache policies
would require changes only to thefilter object keeping the front end intact. Another advantage
of modeling the cache as a filter object is that the cache object can easily accommodate
multiplefront ends by means of the group filtering mechanism.

The above examples show how filters can be used to control messages. Filter objects are
developed independently of their clients in a modular way. The message processing code
remains with filter-clients whereas the message control is abstracted by the filter objects.
Various functionalities can be programmed as a part of the message control code. A filter can
dynamically tuneits characteristics.

Experience with filter objects

We have been able to extensively use the filter object model in developing different ap-
plications such as those discussed above. We generally found that the filter object model
provides ease of programming especially in the context of distributed program devel opment.
Our experience aso showed that the most attractive features of the model are its ability to
dynamically plug filter objects, group filtering and layered filtering. Though we have not been
able to apply layered filtering to practical problems, we foresee their use in the context of
protocol software engineering. We have also observed that the filter overhead is practically
negligiblein these applications.

IMPLEMENTATION OF FILTER OBJECTS

We describe a user level implementation schemefor filter objectsin C++. Dueto theflexibility
of C++, it was possiblefor us to convert a C++ code that uses filtersto a plain C++ code. We
use various features of C++ such as function pointers, inheritance, polymorphism, parameter
passing by reference, and the ability to specify oneto one association using buried pointers.'?
The code conversion is achieved with the following steps:

1. Identify all classesthat areinfilter relationship with aclient class. Consider thefollowing
relationshipsas shown in Figure 8.

class JobM x1 : filter JobServer ...;
cl ass JobM x2 : filter JobServer ...;

Inthisexample, JobM x1 and JobM x2 arethefilter classesfor client classJobSer ver .

2. Form ahierarchy of thesefilter classes rooted at a new special filter class. For the above
example, anew class JobSer ver Fi | t er isdefined, and JobM x1 and JobM x2 are
made subclassesof classJobSer ver Fi | t er . Thus, wetransl ate the above rel ationships
in the following hierarchy, which is pictorialy shown in Figure 8 by dotted lines.

694

R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

onetoone Class JobServer
association

Class
JobServerkFilter

inherits_,,»"

Class JobMix1 Class JobMix2

LEGEND

A/ vira filtersfor serviceA and serviceB
‘ ﬁ filter members for serviceA and serviceB

Figure 8. Hierarchy of filters

The new hierarchy

cl ass JobServerFilter {...};
class JobM x1 : public JobServerFilter {...};
class JobM x2 : public JobServerFilter {...};

We know that, at any time, either an instance of JobM x 1 or aninstance of JobM x2 can
be plugged to the client object. JobM x1 and JobM x2 may implement different codes
for the actual filtering actions, but both of them filter only the member functions defined
inthe client. Hence, thisbehavior isearned by treating an instance of JobM x1 or Job-
M x2 as an instance of their super class JobSer ver Fi | t er by means of i ncl usi on
pol ynor phi sm*®

All thefilter members are defined as virtual functionsin classJobSer ver Fi | t er. The
number of virtua functions in class JobSer ver Fi | t er is equd to the total number
of member functions in JobSer ver that are filtered by JobM x1 or JobM x2. The
subclasses JobM x1 and JobM x2 define the actua filter member functions. In the

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 695

figure, class JobM x1 provides two member functions for ser vi ceA. Class JobM x2
has two filter member functions for ser vi ceB. Whenever there are multiple filter
membersfor oneclient member, one of themisbound at runtime. Thebindingisachieved
by making the appropriate function call through a function pointer from a function that
overridesthevirtual function defined inthesuperclassJobSer ver Fi | t er . Theenabl e
and di sabl e betamessages assign and remove these function pointers.

4. Theclient classJobSer ver declares apointer to an instance of classJobSer ver Fi | -
t er . Thispointer specifiesaone to one associ at i on relationshipwith aninstance
of class JobServer Fi | t er and an instance of class JobSer ver . The relationship is
shown by athick linein thefigure. Whenever aninstanceof classJobSer ver isplugged
to afilter object that is an instance of JobM x1 or JobM x2, this pointer is made to
point to the corresponding instance.

5. Now, every member functioninJobSer ver thatisupwardfiltered, ismadeto gothrough
the corresponding upfilter member function defined as virtual in JobServerFil ter.
All parameters except pointersare passed by reference to thefilter member. This scheme
allowsthefilter member function to manipul atethe messagearguments. A pass statement
in the filter member brings back the control to the member function of JobSer ver . On
the other hand, a bounce statement returns the control to the caller object.

Similarly, in the case of an enabled downfilter, the return statement in the client member
function relinquishes control to thefilter by sending the return value as a parameter to it.
The downfilter subsequently returns a value to the caller on behalf of the client object.

6. The same steps are followed for filters to filters. In such cases, a filter that intercepts
method invocations of another filter considersit as itsfilter-client.

7. Provisions are made for checking possible runtime errors regarding the usage of filter
objects. Some of the possible runtime error messages are the following:

Cannot enable two filter members at a time for one client member
Cannot enable a filter member of an unplugged filter object
Cannot plug two filter objects for one client object

Performance test

The performance test was carried out on a Sun Sparc machine to observe various overheads
involved in thefilter object model. The test setup was configured as shown in Figure 9. Five
different kinds of messages are shown in the figure. Message A is a direct message from a
source object to a destination object that has no filter specified even at the class definition
level. Message B is a message to an object that has afilter class but does not have the filter
object instance plugged. Message C goes through a filter object that is only plugged but not
yet enabled. Message D is the filtered message that goes through a filter member function.
In the configuration for message E, the action that a filter member takes is embedded as a
function call into the destination object itself. Table | showsthe absolutetimingsfor thesefive
configurations. The number of argumentsis varied from noneto 4, where each argument isan
integer taking 4 bytes.

Various overheads are computed from these absol ute figures and are presented in Table I1.
The comparison between the timingsfor messages A and B gives the overhead of declaring a
filter class. In Tablell, thisoverhead is shown asfilter declaration overhead. All thefiguresin
Tablell are quoted in termsof null body, null argument direct member function call, measured
to 0.527 micro seconds as shown in Table I. For example, the filter declaration overhead is

696 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM
i : : il > @
G E @

Q QC
v (v
® ©®

A: Direct call to an object which has no filter D: Call to an object which has a filter enabled
B: Call to an object which has an unplugged filter E: Call to an object which has no filter,
C: Call to an object which has a filter plugged, but the filtering action is embedded

but not enabled

Figure 9. Performancetest setup

computed as (B — A)/0.527. The filter declaration overhead, a constant, involves checking
of acondition whether the destination object has afilter object specified. As can be observed
from thetable, it does not depend on the number of arguments, and on average, remainswithin
0.2 times the direct null member function call.

Message C, when compared with message A, givestheplug overhead. Thisoverhead checks
whether the corresponding filter member is enabled. The plug overhead is shown in the table.
It does not depend on the number of arguments, and is also a constant. On an average, it
remains less than one direct null member function call.

When message D is compared with message E, we get the total overheads of afilter object
that performs its intermediate action and passes the arguments to the the destination. The
overhead is given as filter overhead in the table. As can be observed from the table, these
overheads sum up to around three times a direct null member function call. It is observed
that with an increase in the number of arguments, there is a slight increase in this overhead.
However, this overhead does not depend on the the body of the destination member function
or the body of itsfilter member since both get canceled while comparing D with E.

EVALUATION AND FUTURE WORK

The filter object model provides a flexible mechanism for devel oping dynamically pluggable
filters for object oriented systems. Filter objects can be developed independently from their
clients. A filter class does not break the encapsul ation of its client, nor doesthe client need any
modification to its code to agree with an added filter class. Only one restriction on the type

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 697

Tablel. Timings for the five configurations

No. of Arguments A B C D E

[SEC. pSEC. pSEC. p4 SeC. p SeC.
0527 0628 1033 1963 0.727
0.607 0.710 1.054 2258 0.870
0.866 0.958 1301 2724 1.260
1274 1370 1730 3630 1910

A NPEFLO

declarationshasto bemaintained. The declarationsof thefilter-client member functionsand the
corresponding filter member decl arations should match. However, between the corresponding
arguments, it is possibleto have ordinary subtyping relationships. The matching declarations
arerequired, since afilter member takes and returns arguments of the same type as that of its
client member function. The typeinformation for filter membersis also required to give them
the overloaded meaningsfor their corresponding overloaded client members.

Filter objectscan be maintai ned separately from their clients sincethe encapsul ation between
them isensured. The codein afilter class can be reused by other classes at the level of class
inheritance, since a filter class is treated at par with any other class. Methods defined in a
filter class may be reused to design a new filter for a new or a derived class. However, filter
relationships are not reusable. Reuse of filter relationships to obtain polymorphicfiltering is
atopic for further research.

Theimplementation of filtersisat theuser level, which invol vesoverheads of apreprocessing
stage during compilation and aso involves run time overheads. A filter class has to be
recompiled with itsfilter-client when it undergoes changes.

In thiswork, we have restricted oursel ves to the design and devel opment of filter objectsfor
a sequentia object-oriented paradigm. We are carrying out research work in order to achieve
smooth integration of the filtered delivery model with concurrent distributed systems. The
filtered delivery model finds several applicationsin distributed systems. A server object can
be equipped with afilter to restrict requests depending on the current load on the server. A
filter may reroute the requests to a new server making this decision transparent to the clients.
We have used filtersin our earlier work on control replication in distributed systems.® Filters
act as schedulersto the replicas of a server.

The sequential and the distributed object modelsdiffer over the function call semantics. Ina

Table 1. Performance Overheadsin Terms of Null Member Call
No. of arguments Filter declaration overhead Plug Overhead Filter Overhead

(B - A)/0.527 (C-A)0527 (D -E)0527
0 0.192 0.96 2.34
1 0.195 0.85 2.63
2 0.175 0.83 278
4 0.182 0.87 3.26

698 R.K. JOSHI, N. VIVEKANANDA AND D.J. RAM

sequential object oriented language like C++, sending of amessage is replaced by a blocking
functioncall. Thereturn valueistreated asan implicit messagethat arrives at the originator and
not as an explicitly programmed message. Whereas, in concurrent object oriented |languages
such as Charm++* and Mentat,’® a sender object may be located in a different address
space on a different processor than that of the destination object. The concurrency available
is exploited by various non-blocking message passing mechanisms. The sender continues
processing immediately after dispatching a message and does not have to block until areturn
message arrives. In such a case, if the return address is known, any object may return avalue
to the caller object on behalf of the destination object. A filter object can exploit the non-
blocking call semantics by supporting forwarding of member function calls. For example,
a filter may forward a Remote Procedure Call (RPC) request to a lightly loaded machine
and permanently forget about it. Filters can serve various purposes in distributed systems
such as fault tolerance, forwarding, routing, and load balancing. For example, afilter object
may implement a redundant invocation mechanism or areinvoke upon timeout mechanism to
providefault tolerance to messageinvocations. Filtersto filters have applicationsin multilevel
security architectures and in the development of layered network protocols.

CONCLUSIONS

We have discussed the filtered delivery model for message passing between objects. In this
model, the messages can be intercepted and manipulated by specia objects called filter
objects. Aninterclassrelationship called afilter relationshipisintroduced. A filter relationship
empowers afilter class to provide filter member functions that can intercept messages sent to
another classinatransparent manner. Filter objectscan bedynamically plugged and unplugged
to their clients. The model supports selective filtering of member function invocations. Beta
messages, which act as directives to member functions are introduced to achieve dynamic
and selective filtering. The filter object model was developed for the C++ object-oriented
programming language, and a scheme was discussed to implement filter objectsin C++ itself.
Thefiltered delivery model separates the message control code from the message processing
code in a transparent manner. Three practical applications for the filter object model were
discussed. The model supports modular design of transparent filter objects. It is possible to
design application specific filters and plug them to their client objects on demand.

ACKNOWLEDGEMENTS

Wethank T. N. Shrikantawho wrote a part of the translator. We thank the anonymous referees
whose comments and suggestions have improved the quality of the work.

REFERENCES

A. Goldberg and D. Robson, Smalltalk-80, Addison-Wesley, 1989.

B. Stroustrup, The C++ Programming Language, 2nd Ed., Addison-Wesley, 1991.

G.R. Andrews, ‘Paradigms for process interaction in distributed programs, ACM Computing Surveys, 23(1)
49-90, (March 1991).

4. J. Reidl, V. Mashayekhi, J. Schnepf, M. Claypool and D. Frankowski, ‘ SuiteSound: a system for distributed
collaborative multimedia, |IEEE Transactions on Knowledge and Data Engineering, 5(4) 600-610 (August
1993).

S

o

12.

13.

14.

15.

(SRS

MESSAGE FILTERS FOR OBJECT-ORIENTED SYSTEMS 699

R.K. Joshi and D. Janaki Ram, ‘ ShadowObjects, a programming model for control replication in distributed
systems', Technical Report I TM-CSE-DOS-95-003, 1995.

M. Aksit, K. Wakita, J. Bosch, L. Bergmansand A. Yonezawa, ‘Abstracting object interactions using compo-
sition filters', Proceedings of ECOOP-1993, LNCS-791, Springer-Verlag, 1993, pp. 152—-184.

IONA TechnologiesLtd., Dublin, Ireland, The Orbix Architecture, January 1995.

E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns, Addison-Wesley, 1995.

G. Booch, Object-oriented Analysis and Design, 2nd ed., Benjamin/Cummings, 1994

D. Janaki Ram and L. Rajesh Kumar, ‘ Multimedia multicast routing algorithm’,, Proceedingsof Networks-96,
Bombay, India, 1996, pp. 1-10.

D. Janaki Ram, Vivekananda, Ch. S. Rao and Krishna Mohan, ‘ Constraint Meta-object: a new object model
for distributed collaborative designing’, IEEE Transactions on Systems, Man and Cybernetics (PART A),
27(2), 208-221 (March 1997).

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen, Object-Oriented Modeling and Design,
Prentice-Hall, 1991.

L. Cardelli and P. Wegner, ‘On understanding types, data abstraction and polymorphism’, ACM Computing
Surveys, 17(4), 471-522, (December 1985).

L. Kaleand S. Krishnan, ‘ Charm++: a portable concurrent object oriented system based on C++, 8th Annual
Conf. on Object-oriented Programming Systems, Languages and Applications, ACM SIGPLAN Notices,
28(10), 91-108 (October 1993).

A.S. Grimshaw, ‘ Easy-to-use object-oriented parallel processing with Mentat’, |EEE Computer 39-51 (May
1993).

	INTRODUCTION
	OVERVIEW OF THE FILTERED DELIVERY MODEL
	The essential properties of filter objects
	The extended properties of filter objects

	BASIC FILTER OBJECT MODEL
	Specifying a filter relationship
	The operators plug and unplug
	Organization of a filter class
	The filter interface
	The beta messages enable and disable

	Actions of an upfilter member function
	Actions of a downfilter member function

	EXTENDED FILTER OBJECT MODEL
	Support for group filtering
	Dynamic binding of filters
	At filter object level
	At filter member function level

	Filters to filters

	APPLICATIONS OF FILTER OBJECTS
	Filters in the constraint meta-object model, a model for distributed collaborative designing
	Filters in the ShadowObjects model
	Filters for on-the-fly caching
	Experience with filter objects
	IMPLEMENTATION OF FILTER OBJECTS
	The new hierarchy

	Performance test
	EVALUATION AND FUTURE WORK
	CONCLUSIONS
	acknowledgements
	REFERENCES

