Breaking through the syntax barrier: Searching with entities and relations

Soumen Chakrabarti IIT Bombay

www.cse.iitb.ac.in/~soumen

Wish upon a textbox, 1996

Wish upon a textbox, 1998

"A rising tide of data lifts all algorithms"

A9/Amazon Chakrabarti 2005 3

Wish upon a textbox, post-IPO

- Indexing 4,285,199,774 8,058,044,651 pages
- Same interface, therefore same 2-word queries
- Mind-reading wizard-in-black-box saves the day

If music had been invented ten years ago along with the Web, we would all be playing one-string instruments (and not making great music).

> Udi Manber, A9.com Plenary speech WWW 2004

A9/Amazon Chakrabarti 2005

Telegraphic queries, music not great

- Which produces better responses?
 - Opera fails to connect to secure IMAP tunneled through SSH
 - opera connect imap ssh tunnel

configuring an application to connect to a ... work required by the maintenance opera-tions ... servers Business application protection Secure remote administration ...

I load the signed applet it can still not connect to any ... simple local tunnels, such as to use imap, smtp etc ... to run ... an applet in Opera

- Unable to express many details of information need
 - Opera the email client, not a kind of music
 - The problem is with Opera, not ssh, imap, applet
 - "Secure" is an attribute of imap, but may not juxtapose

Why telegraphic queries fail

- Information need relates to entities and relationships in the real world
- But the search engine gets only strings
- Risk over-/under- specified queries
 - Never know true recall
 - No time to deal with poor precision
- Query word distribution dramatically different from corpus distribution
 - Query is inherently incomplete
 - Fix some known info, look for unknown info

A9/Amazon Chakrabarti 2005

Past the syntax barrier: early steps

- Taking the question apart
 - Question has known parts and unknown "slots"
 - Query-dependent information extraction (IE)
- 2 Searching entity-relationship graphs
 - Identify (personalized) information networks from semi-structured textual content
 - Enable "mildly-typed" query languages
- Compiling basic relations from the Web
 - is-instance-of (is-a), is-subclass-of
 - is-part-of, has-attribute

Atypes and ground constants

- Specialize given domain to a token related to ground constants in the query
 - What animal is Winnie the Pooh?
 - instance-of("animal") NEAR "Winnie the Pooh"
 - When was television invented?
 - instance-of("time") NEAR "television" NEAR synonym("invented")
- FIND x NEAR GroundConstants(question)
 WHERE x IS-A Atype(question)
 - Ground constants: Winnie the Pooh, television
 - Atypes: animal, time

Taking the question apart

- Atype: the type of the entity that is an answer to the question
- Problem: don't want to compile a classification hierarchy of entities
 - · Laborious, can't keep up
 - Offline rather than question-driven
- Instead
 - Identify spans of question as "atype informers"
 - Set up a very large basis of features
 - "Project" question and corpus to basis

A9/Amazon Chakrabarti 2005 11

Marking atype informer spans

In which ocean did the *Titanic* sink?

How much RAM can the X40 Thinkpad support?

What is Kofi Annan's son's profession?

Atype extraction results

Scoring tokens for correct Atypes

- FIND x "NEAR" GroundConstants(question)
 WHERE x IS-A Atype(question)
- No fixed question or answer type system
- Convert "x IS-A Atype(question)" to a soft match
 DoesAtypeMatch(x, question)

Features for Atype matching

- Question features: 1, 2, 3-token sequences starting with standard wh-words
 - where, when, who, how X, ...
- Passage surface features: hasCap, hasXx, isAbbrev, hasDigit, isAllDigit, lpos, rpos,...
- Passage IS-A features: all generalizations of all noun senses of token
 - Use WordNet: horse→equid→ungulate, hoofed mammal→placental mammal→animal...→entity
 - These are node IDs ("synsets") in WordNet, not strings

A9/Amazon Chakrabarti 2005 15

Learning q—a feature connections

- Surface and WordNet features complement each other
- General concepts get negative params: use in predictive annotation
- Learning is symmetric (Q↔A)

D 1 C		D 11	** // // 4
E. how_far		F. linear_unit#n#1	
entity#n#1	-0.007	what	-0.007
object#noun#1	-0.006	how_many	-0.005
hasCap	-0.005	what_city	-0.004
hasXxx	-0.004	when	-0.004
measure#n#3	0.01	whom	-0.002
linear_unit#n#1	0.02	how_long	0.003
linear_measure#n#1	0.02	what_speed	0.005
hasDigit	0.02	where_is	0.009
nautical_mile#n#2	0.02	how_far	0.02
G. location#n#1		H. hasDigit	
who -0.178		who	-0.21
name -0.113		where	-0.10
when -0.043		name	-0.09
l .		city	-0.05
how -0.0314		company	-0.03
year -0.0230		how_far	0.02
what_tourist 0.004		how_hot	0.02
what_state 0.012		which_date	
country 0.015			0.03
province 0.029		how_much	
city 0.109		how_many	0.16
where 0.249		what_year	.18
where 0.249		when	0.65

A9/Amazon Chakrabarti 2005 1

Taking the question apart

- ✓ Atype: the type of the entity that is an answer to the question
- Ground constants: Which question words are likely to appear (almost) unchanged in an answer passage?
- Arises in Web search sessions too
 - Opera login fails
 - problem with login Opera email
 - · Opera login accept password
 - Opera account authentication

• ...

A9/Amazon Chakrabarti 2005 17

Spotting ground constants: sample result

- @-1, @0, @+1...features at token positions
- NumSense: how many WordNet senses does the word have?
- NumLemma: how many other words describe the same concept?
- F1 score: 71–73% with local features, 81% with local and global (NumSense, NumLemma)

Overall search and ranking architecture

Evaluation: Mean reciprocal rank (MRR)

- n_a = smallest rank among answer passages
- MRR = $(1/|Q|) \sum_{q \in Q} (1/n_q)$
 - Dropping passage from #1 to #2 as bad as dropping it from #2 to not reporting it at all

Experiment setup:

- 300 top IR score passages
- If Pr(Y=1|token) < threshold reject token
- If tokens rejected reject passage
- Points below diagonal are good

SPIN: Searching Personal Information Networks

The Web within

- Personal/desktop search: the first step
 - Corpus = email, files, contacts
 - Anachronism given Web search history
- The second step: searching with entities and relations (people, organizations, papers, time, works-for, wrote-email, advised, ...)
 - Need to exploiting clean, non-adversarial data
 - Expose search with fine-grained structure
 - Exploit entity and relation types when possible
 - ...without burdening user with schemaenforcing query languages

Benefits of connectionist search

A9/Amazon Chakrabarti 2005 23

More example scenarios

- Student "Ravi" graduated two years ago, is looking for industry jobs
 - type=person NEAR person=Ravi org=.com
 - Connections: person...paper...person...org
- This paper is suited for which conference?
 - type=conference NEAR paper=[uploaded file]
 - Connections: text...old papers...conference or text...citations...authors...committees... conference
- Given a list of accepted papers, locate and watch Web pages where they might appear

Compiling fragments of soft schema

Extracting is-instance-of info

- Which researcher built the WHIRL system?
 - WordNet may not know Cohen IS-A researcher
- Google has over 8 billion pages
 - "william cohen" on 86100 (p_1 =86.1k/4.2B)
 - researcher on 4.55M (p_2 =4.55M/4.2B)
 - +researcher +"william cohen" on 1730: 18.55x more frequent than expected if independent
- Pointwise mutual information PMI
- Can add high-precision, low-recall patterns
 - "cities such as New York" (26600 hits)
 - "professor Michael Jordan" (101 hits 6")

Bootstrapping lists of instances

- Hearst 1992, Brin 1997, Etzioni 2004
- A "propose-validate" approach
 - Using existing patterns, generate queries
 - For each web page w returned
 - Extract potential fact e and assign confidence score
 - Add fact to database if it has high enough score
- Example patterns
 - NP1 {,} {such as|and other|including} NPList2
 - NP1 is a NP2, NP1 is the NP2 of NP3
 - the NP1 of NP2 is NP3
- Start with NP1 = researcher etc.

A9/Amazon Chakrabarti 2005 27

System details

- The importance of shallow linguistics working together with statistical tests
 - China is a (country)_{NP} in Asia
 - Garth Brooks is a (country_{ADJ} (singer)_N)_{NP}

"Head" of phrase

- Unary relation example
 - NP1 <u>such as</u> NPList2 & head(NP1)=plural(name(Class1)) & properNoun(head(each(NPList2))) ⇒ instanceOf(Class1, head(each(NPList2)))

Bootstrapping performance

- Recall-vs-precision exposes size and difficulty of domain
 - "US state" is easy
 - "Country" is difficult
- To improve signal-tonoise (STN) ratio, stop when confidence score is lower than threshold
 - Substantially improves recall-vs-precision

A9/Amazon Chakrabarti 2005

Concluding messages

- Work much harder on questions
 - · Break down into what's known, what's not
 - Find fragments of structure when possible
 - Exploit user profiles and sessions
- Perform limited pre-structuring of corpus
 - Difficult to anticipate all needs and applications
 - Extract graph structure where possible (e.g. is-a)
 - Do not insist on specific schema

Design indices and ranking strategies for matching strings and semantics annotations

"Tip of the iceberg" under very complex ranking functions

Chakrabarti 2005