
LiT MAC: Addressing The Challenges of Effective Voice
Communication in a Low Cost, Low Power Wireless Mesh

Network

Vijay Gabale, Bhaskaran Raman, Kameswari Chebrolu, and Purushottam Kulkarni
Dept. of Computer Science, IIT Bombay

Mumbai, Maharashtra, India
vijaygabale@cse.iitb.ac.in, br@cse.iitb.ac.in, chebrolu@cse.iitb.ac.in,

puru@cse.iitb.ac.in

ABSTRACT

In this work, we consider the goal of enabling a local voice
communication system, within a village, using a low cost
and low power wireless mesh network. The design of an
appropriate MAC is a major challenge in this context. To-
wards this goal, we present LiT: a full-fledged TDMA-
based MAC protocol for real-time applications over such
networks. We showcase the practicality of such a system
through implementation-based evaluation of LiT on an in-
expensive, low power 802.15.4 platform.

While there is plentiful literature on the use of TDMA
for wireless mesh networks, a practical multi-hop TDMA
system remains elusive. In this regard, LiT addresses sev-
eral practical concerns. It has built-in support for time-
synchronization, has a flexible interface with routing, and
has a dynamic TDMA schedule dissemination mechanism.
LiT is multi-channel capable and is centrally controlled. It
achieves robustness in the face of wireless packet errors by
making extensive use of soft-state mechanisms. With ap-
propriate duty cycling, LiT can make nodes run for several
weeks without power off the grid. Evaluation of LiT on
outdoor testbed shows quick flow setup (latency < 1s), low
packet delay (< 240ms) and negligible data path jitter (me-
dian 0ms), essential for real-time applications.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Centralized networks, Wireless com-
munication

General Terms

Design, Experimentation

Keywords

802.15.4, TDMA-based multi-hop MAC, Voice applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM DEV’10, December 17–18, 2010, London, United Kingdom.
Copyright 2010 ACM 978-1-4503-0473-3-10/12 ...$10.00.

1. INTRODUCTION
In this work, we consider the goal of enabling a local voice

communication system in a village-like setting, in develop-
ing regions. The design of any such a commuication system
poses unique challenges in terms of cost and power opti-
mizations [4]. In this regard, cellular technology (GSM) is
quite costly and power hungry (high base station cost ($10-
100K), high power requirements (0.5-1kW)) requiring huge
power backup and cooling systems. Specifically in India, this
is evident from the fact that, the rural teledensity at the end
of December 2009 was just 20%, even though 70% of 1.2 bil-
lion population resides in villages [1]. Hence, a question of
importance is, how low can one scale down cost and power
and still have an effective communication system? Recently,
802.11 WiFi is being explored as a popular choice for pro-
viding connectivity to rural areas. However, a comparison
(Tab. 1) of 802.11 with 802.15.4 shows that 802.15.4 fits well
to build a low-cost, low-power network.

In this respect, authors in [15] envision Lo3: an 802.15.4-
based low-cost, low-power, local-voice multi-hop mesh net-
work to provide voice applications in villages in developing
regions. Such a network can enable applications like two-
way interactive voice, stored voice messaging and commu-
nity alerts. For rural settings in developing regions, where
literacy levels are low, voice-based applications gain spe-
cial importance in comparison to traditional web applica-
tions [5]. In this context, it is well known that CSMA-based
multi-hop MAC gives poor throughput [14] and results in
high delay and jitter, unsuitable for real-time applications.
(Sec. 6.2 explicitly compares our MAC with CSMA to cor-
roborate this.) Hence there is significant literature which
has considered a TDMA-based approach. Past work has
considered both TDMA scheduling algorithms ([17] and ref-
erences thereof) as well as protocol design (e.g. [13, 19, 11]).
However practical multi-hop TDMA systems are few and far
between.

A multi-hop TDMA MAC, if it has to effectively support
real-time applications as envisioned in Lo3, has to address
the following challenges. It has to: (a) achieve and maintain
multi-hop time-synchronization, the basis for any TDMA
mechanism, (b) disseminate and maintain TDMA schedules
(output of scheduling algorithm), (c) interface with the rout-
ing mechanism (d) provide real-time end-to-end flow setup
and flow maintenance mechanisms, (e) do all of the above
well, despite wireless losses. To our knowledge, the above
questions have not been addressed comprehensively by prior

Table 1: Comparing 802.15.4 and 802.11

work on multi-hop TDMA MAC protocols. More impor-
tantly, the MAC should be light-weight to be implementable
on low-cost platforms and should have intrinsic support for
power savings without compromising on the performance of
real-time applications.

To address these challenges, we present LiT, a light-weight
(a) TDMA-based, (b) centralized (c) multi-channel (d) con-
nection oriented MAC protocol, for operation in a wireless
multi-hop mesh network. In this regard, this paper makes
the following contributions.
• LiT has in-built support for time-sync over multi-hop

networks. Our mechanism is simple, yet effective: we achieve
and maintain low clock synchronization error of ≃ 60µs ≃ 2
clock-ticks per hop on an 802.15.4 platform.
• LiT makes extensive use of soft-state mechanisms to

maintain schedule-state, network-state and flow-state. This
achieves robustness in the face of wireless errors. The use
of soft-state for such MAC level connection management is
novel. Our evaluations show that the soft-state overheads
are minimal, even in the presence of wireless packet losses.
Simple time-sync mechanism coupled with soft-state makes
the working of TDMA multi-hop MAC light-weight.
• Our implementation on 802.15.4-based Tmote platforms

serves as a stringent test case for the MAC design since the
radio is impoverished (250Kbps). Evaluation on an outdoor
testbed shows that our prototype can handle dynamic flow
setup (latency < 1s), and real-time flows effectively (median
data path jitter of ≃ 0ms). This indicates that our MAC is
suitable for real-time applications for Lo3.
• We evaluate the scalability aspects of LiT through a

custom-built simulator and show that control overheads (e.g
schedule dissemination) are not bottlenecks for the MAC
operation.
• Our simulation further shows that, with aggregate call

duration of 2 hours per day and 20% duty cycling due to
MAC, a node can effectively operate for 84 days with 4.5AH,
12 V battery.

To our knowledge, LiT is the first system to implement
and extensively evaluate a multi-hop TDMA system for real-
time applications. The rest of the paper is organized as fol-
lows. The next section (Sec. 2) compares prior work in MAC
design for multi-hop mesh networks. Sec. 3 describes usage
scenarios in Lo3 system. Sec. 4 details the design of LiT.
We extensively evaluate the LiT on an 802.15.4 prototype
in Sec. 5, while Sec. 6 presents a simulation study. We brief
future work in Sec. 7 and conclude the paper in Sec. 8.

2. RELATED WORK
Our design of multi-hop TDMA MAC, LiT, is an integral

part of Lo3 system [15]. Although MAC design for multi-
hop wireless networks has received considerable attention
so far, there are several differences between LiT MAC and

Table 2: Comparison of prior Work

these. A glance at Tab. 2 gives a comparison of LiT with
four prominent types of MAC protocols in the literature.

LiT’s significant contributions are: (1) the consideration
of built-in time synchronization, (2) the use of a soft-state
framework for dynamic schedule dissemination and other
state maintenance; this handles wireless losses gracefully and
without undue complexity, and (3) the consideration of real-
time applications. Such a comprehensive consideration is
absent in the prior work. For instance, TDMA MAC proto-
cols proposed for sensor networks, such as TRAMA [13] or
LMAC [19], do not consider real-time applications or other
heavy network traffic. RT-Link [16] considers real-time ap-
plications, but employs an out of band time-sync mechanism
and assumes support for schedule dissemination. The var-
ious multi-channel MAC protocols in [11] do not consider
support for TDMA schedule dissemination, nor do they ex-
plicitly evaluate real-time application performance.

Comparing with WiMAX mesh standard [2], LiT has sev-
eral crucial differences. First, WiMAX does not clearly spec-
ify what happens in the case of wireless errors in control
packets. Second, state maintenance mechanisms are not
discussed in-depth in WiMAX. For these two aspects, LiT
has soft-state based mechanisms which function gracefully
despite wireless losses. Third, WiMAX has a complex dis-
tributed election process for control slot selection, which is
absent in LiT. Fourth, WiMAX allows data transmissions
only along the (single) tree rooted at the central node. LiT
on the other hand allows efficient data paths, and in fact
there is flexibility of having any data path.

Finally, since currently there are no prototype-based eval-
uations of WiMAX mesh mode operation, we believe that
lessons from our LiT prototype study would be valuable for
future WiMAX systems too.

3. THE LO3 SYSTEM
As envisioned in [15], the Lo3 system can be viewed as a

PABX (private automatic branch exchange), for use within
a village. Fig. 1 depicts the Lo3 mesh architecture and the
usage model. There are two types of nodes in Lo3: infras-
tructure nodes acting as relay nodes for data communication,
and client nodes acting as data originators or terminators.
The infrastructure nodes may be deployed on rooftops (5-
10m height) and as reported in [6], a range of over 400m
can be achieved for 0dBm transmit power and 8dBi omni-
directional antenna mounted at a height of less than 3m.
Given this, an area of about 3km diameter can be (hotspot)
covered by a mesh of about 20-30 infrastructure nodes. The

Figure 1: Lo3 Architecture
use of mesh network helps reduce the cost of the network
and the authors envision the overall infrastructure cost to
be about U.S.$1-2K. In terms of usage volume, Lo3 intends
to support a user population of a 150-200, among a total
village population of 1000+ with 5-10 simultaneous calls on
an average. As the system usage grows, capacity can be in-
creased by addition of more infrastructure nodes. Note that,
cellular technologies do not scale down in terms of cost and
power for operation on such a lower scale.

In the context of Lo3, there is no known full-fledged
design or implementation of a multi-hop TDMA MAC, es-
pecially tuned to support real-time applications and power
savings, in wireless mesh networks. Thus, to enable effective
support for such a set of applications, we have devised the
LiT MAC protocol.

4. DESIGN OF THE LIT MAC
What is challenging in the design of LiT? We have to

support real-time applications, in the face of several non-
trivial requirements, as given below. (1) For TDMA-based
operation, time-synchronization support must be built-into
the MAC. (2) The MAC should support dynamic routing;
i.e. nodes joining and leaving the system. (3) Similarly, it
should support dynamic flow setup and tear-down. (4) The
MAC must be flexible enough to allow the data flow for each
connection to happen through an“efficient” path. The MAC
must be independent of the scheduling algorithm itself. (5)
The MAC mechanisms must be robust to wireless errors;
any message loss should be handled gracefully, while at the
same time keeping the protocol simple and low overhead.
(6) Nodes should be able to duty-cycle; only a necessary set
of nodes should be awake at any time.

We now describe how LiT is designed to address the above
challenges. We first describe the overall design choices (Sec. 4.1),
followed by the detailed design (Sec. 4.2).

4.1 Overall design choices
There are four important design choices in LiT. This set of

design choices is subtle and this is what enables a practical
implementation of LiT.

(1) TDMA versus CSMA: The default CSMA pro-
tocol in much of prior work allows for an easy distributed
implementation, but it is known to suffer from poor perfor-
mance in multi-hop networks [14], especially for real-time
applications [16]. Self-interference, i.e. simultaneous trans-
missions across hops of a path, results in capacity reduc-
tion and delay unpredictability. In this respect, TDMA is
known to perform better. In fact, our evaluation for 802.15.4

setting (Sec. 6.2) shows that CSMA performance degrades
rapidly when number of bi-directional voice calls increase
beyond just one call. While TDMA is suitable for opera-
tion in licensed spectrum (as WiMAX does), our evaluation
shows that even in an interference-prone campus environ-
ment, in an unlicensed band, LiT performs well. Impor-
tantly, a TDMA-based approach also provides good support
for duty-cycling and power savings in the network nodes. 2

(2) Centralized versus distributed: For effective real-
time application support, especially for features such as delay-
aware scheduling or call-admission control, a centralized ap-
proach is intuitively better. While we do not rule out a
distributed approach, we have currently used a centralized
architecture for LiT; which gives significant leverage in effec-
tively addressing the challenges listed earlier. For instance,
the centralized coordination of time-slots and multiple chan-
nels lends itself to a simpler design, as compared to a dis-
tributed approach, in a multi-hop network. Although cen-
tralized approach is frowned upon for lack of scalability, we
show in our evaluation of LiT; that the control overheads
are not scaling bottlenecks in practice. 2

(3) Multi-channel versus single-channel: 802.11b/g
has 3 non-overlapping channels of operation, and 802.15.4
has 16 different channels in the 2.4GHz ISM band. Clearly,
the use of multiple channels has better potential through-
put, if the channel coordination can be done efficiently. Our
centralized-TDMA-based approach eases the issue of multi-
channel coordination significantly. The same slotting mech-
anism used by the TDMA frame is also used as the gran-
ularity of any channel switching (i.e. slot level switching).
Channel switching does add a small but noticeable overhead,
but the benefits of multi-channel operation far outweigh this.
2

(4) Connection-oriented versus connection-less: A
connection-oriented MAC means that a higher layer can use
it only after a connection formation phase. Most MAC pro-
tocols are connection-less, with the notable exceptions of
Bluetooth and WiMAX [2]. In LiT, the MAC provides a
multi-hop connection-oriented interface to the layer above.
This fits in well with our choice of using a TDMA-based
multi-channel approach. With central control, the connec-
tion formation phase is used to specify the time-slot and
channel of operation of each node in a data flow path. 2

4.2 The LiT MAC mechanisms
We now discuss various terminologies and functions of LiT

that address the MAC’s requirements. In addressing the
requirements, the MAC makes extensive use of soft-state.
Soft-state is a technique for state maintenance where peri-
odic messages are used to create as well as maintain state.
The state is timed-out if not refreshed. In such a scheme,
message loss, node/link failure, and other such problems re-
quire no special mechanisms: the periodic refresh, and the
time-out are sufficient to handle all situations correctly. In
the description below of the various aspects of the MAC, we
explain where we use soft-state and the trade-offs involved.

Frame structure

Given our overall choice of TDMA-based operation, we have
a time-slotted system. A time-slot (or simply, a slot) is a unit
of resource allocation. In the context of LiT, central control
implies that a central node, which we call the root node,
decides: (a) who transmits in what slot, and to whom, and

(b) which channel is to be used for this transmission. A
frame is a repeating pattern of slots. We have three kinds
of slots: control, contention, and data slots. This is shown
in Fig. 2.

...

Ctrl. sched. Ctrl. sched.

Ctrl.

slot

Contn.

slot

Data

slot

...

F1 F2

Logical seq. of

infinite ctrl. slots

Data sched. Data sched.

From F1 From F2 From F3

...
Logical seq. of

infinite data slots

Figure 2: Frame structure
Control slots: We designate a tree rooted at the root node

to transmit packets in control slots. These are slots assigned
by the root, for control packets to flow down the tree. There
are three kinds of information which flow down the tree: (1)
time-synchronization information, (2) information about the
tree structure, so that each node is aware of its children and
parent on the tree, and (3) the data schedule itself. 2

Contention slots: These slots are for control packets to
flow up the tree. The packets are forwarded from child to
parent so that it eventually reaches root. They are mainly
used for (a) node join requests, (b) new flow requests, and
(c) any routing status messages. Such use is intended to
be relatively infrequent and the transmissions may not be
collision-free. For contention slot transmissions, we do not
use carrier-sense or back-off mechanisms, since such mech-
anisms would be difficult to accommodate within a limited
sized-slot1. Instead, each node simply transmits probabilis-
tically within its contention slot. Within a contention slot,
we have time included for an immediate ACK. If no ACK is
received, then the node retries probabilistically in the next
contention slot until it gives up after threshold number of
retries. 2

Data slots: These are used for the actual data flow; they
are allocated for each link along the flow from source to
destination. Note that, the path taken by the flow is the
concern of the routing module and the MAC is independent
of it. 2

Channel usage

The control slot is always in a pre-decided default channel.
This acts as a fail-safe fall-back mechanism in case anything
goes wrong: such as a node going out of synchrony, or a
parent node failure, etc. The contention slots are also used
in the default channel. That is, all nodes in the network
potentially contend for it. Any channel reuse happens natu-
rally in “far-away” parts of the network. The data slots use
non-default channels to allow efficient data transport. Since
we expect the bulk of the slots to be data slots, this reflects
in overall efficient operation.

The control schedule

The control information flows from the root, down the tree,
along the tree edges. An important point to note is that
1In case of 802.15.4 radio, it takes 128µs to sample the chan-
nel. Further, accomodating a timeout and a back-off mech-
anism in a 6ms slot is inefficient.

we do not intend that the information flow from the root
to all the nodes be completed within a frame. Quite to the
contrary, the nodes in the network take turns in transmitting
in their respective assigned control slots. We call the order
in which the nodes take turns in using the control slots, as
the control schedule. The notion of the control schedule is
easily understood by visualizing a logical, infinite stream of
control slots, from successive frames as shown in Fig. 2. The
root node decides the control schedule in terms of a routing
tree, represented as an array of parent-child relation. The
order in which nodes appear in this array is implicitly taken
to be the control schedule.

In LiT, all infrastructure nodes (nodes which serve as in-
termediate hop, usually static) transmit control packets, in-
cluding those which do not have children. This is necessary,
since even nodes which do not currently have a child in the
tree, may have new nodes join them as children. However,
the client nodes (which can be mobile), which will never
serve as intermediate hop, need not transmit control pack-
ets.

The data schedule

The data schedule computation itself is the concern of the
scheduler module, and is independent of the LiT MAC. The
data schedule specifies the usage of the data slots. The MAC
has a notion of a logical infinite sequence of data slots from
consecutive frames. And the data schedule is specified as a
repeating pattern in this sequence of data slots (Fig. 2).

A subtle aspect to note is that the above abstraction al-
lows us to keep the following two parameters independent
of one another: (a) the number of data slots in a frame
(dictated by overhead of control slots and delay due to long
frame lenght), and (b) the length of the data schedule (dic-
tated by number of flows, their paths and interference graph
etc).

Rx Tx Chnl.
dst

e2e e2e

src spec.

flow

id

slot(s)

Figure 3: The data scheduling element

The data schedule is specified in terms of scheduling ele-
ments. Each scheduling element (Fig. 3) consists of (a) the
slot(s) of operation (slot spec.), (b) the transmitting node,
the receiving node, and the channel of operation, and (c)
the end-to-end destination, the end-to-end source, and a the
flow-id; these three uniquely identify a flow, and are present
in the header of all data packets. Note that the flow-id by
itself is not globally unique; this is so that a flow-id can
be chosen by the flow’s source, while originating the flow
request.

Soft-state for control and data schedules

How should the control and data schedule be disseminated
and maintained? Should we disseminate the schedule only
when there is an update? In a network of several nodes over
several hops, it is difficult to design an acknowledgement
mechanism for the root to learn that all nodes have indeed
learnt the schedule (control or data). This is especially true
in a wireless network where losses can happen frequently.

To tackle this, in LiT, the control and data schedule in-
formation is maintained based on soft-state. That is, the
root and infrastructure nodes, broadcast schedule periodi-
cally even when the schedule does not change. Each node

has a time-out associated with the schedule it has learnt.
After time-out, nodes stop following the schedule, become
orphan assuming the parent is down and start network-join
procedure. This timeout is set to be much larger than the
time-period with which the nodes broadcast the schedule
information. Although this approach has the overhead of
having to send the information periodically, we consciously
avoided a non-soft-state based approach due to the funda-
mental problem of designing the appropriate acknowledge-
ment mechanism.

Soft-state for network management

How should the network connectivity be managed in a cen-
tralized architecture? In LiT, the connectivity information
of nodes is maintained as a soft-state at the root by us-
ing periodic topology updates. This implies that if the root
does not receive a topology update from a particular node
within timeout, the root removes that node from the tree
and flushes it’s network state. Thus, the usage of topology
updates at the root is two-fold: (1) periodically refresh the
routing state of the node (2) periodically refresh the neigh-
borhood information of the node for the network and the
interference graph data structures. A topology update can
also be used to convey node-specific parameters like remain-
ing battery-power for energy-aware routing.

Soft-state for flow management

What should be the bandwidth request mechanism to main-
tain an ongoing flow? Whether the root should poll the nodes
or the nodes should periodically renew the flows? In LiT, we
use soft-state for flow maintenance too.

When a node wants to start a flow (e.g. voice call request),
it sends a flow request to the root. Forwarded along the tree
edges, when the root receives this request, it consults the
scheduling module to see if the flow can be accommodated.
The modified data schedule, if any, serves as an implicit
ACK for the flow request originator. The flow request has
no explicit ACK from the root. In fact, if the flow were
rejected, there is no explicit negative-ACK either!

In our soft-state mechanism, the flow-requests are sent
periodically even after the flow is established. These serve
the purpose of renewing the request at the root. The root
maintains a flow only so long as it keeps getting flow-request
renewals. If it stops receiving such renewals, the root times
out the flow, and deallocates the relevant data slots in the
subsequent data schedule. As an optimization, the original
flow-request originator may send an explicit flow termination
(using contention slots). But we have no special mechanism
to handle the loss of the flow termination message: we simply
fall back on the time-out at the root.

As compared polling mechanism, the above soft-state mech-
anism makes flow maintenance very easy, but at the cost of
the overhead of sending the periodic flow request renewals.
There is also the additional overhead of extra time for which
a flow’s data slots remain allocated, if the flow termination
were to be lost. However our evaluation shows that the soft-
state mechanism is not a performance bottleneck.

Temporary schedule inconsistencies

During the time of multiple frame durations it takes for a
schedule (control or data) to reach from the root to the
remaining nodes, over several hops, the network is in a tem-
porarily inconsistent state. That is, some nodes are follow-

Figure 4: LiT MAC operation: an illustration

ing the old schedule while some others have learnt the new
schedule. Inconsistency in the data schedule may potentially
cause unintended collisions (and packet losses) in the data
slots. To avoid such inconsistencies, the data schedule has
a valid-from field (much like the use of sequence numbers
in DSDV) that specifies a time instant from which the new
schedule is valid. The valid-from value is an expectation of
the time taken for the new schedule to reach all the infras-
tructure nodes.

We could still have inconsistencies if there were any mes-
sage losses in propagating the schedule information. But
because of periodic schedule dissemination, such a incon-
sistent state lasts only for a few frame durations. For the
worst case scenario (e.g repeated collisions), we fall back
on oursoft-state mechanism where the nodes simply timeout
their current control schedule if they do not continue receiv-
ing periodic renewals of that schedule. Eventually all nodes
learn the new and correct schedule.

4.3 Example of LiT MAC operation
We now present a simple example to illustrate how the

LiT MAC operates. The scenario we consider is shown in
Fig. 4. The framing structure we have assumed is: 2 control
slots, 1 contention slot, and 4 data slots in each frame. R is
the root node, and we start our example after nodes A, B,
and C have joined the network. The control schedule at this
point is [R, A, B]. In this example, we have assumed that C
is a client node, and hence does not transmit control packets.
Note how the control schedule operates independent of the
frame boundaries; that is, in some frames R transmits in the
first control slots, while in others it transmits in the second
control slot. The data schedule is initially empty.

D is a node which wishes to join the network. Right
after boot up, it enters the orphan state where it is not-
synchronized with the network and does not have parent in
the tree. It waits until it hears control packets from some
node; it happens to hear from B. From the control packet,
D knows the time-synchronization information as well as
the slotting structure. It then uses B to send a join request
(marked J) toward R. We also assume that D is a client
node. Thus, after getting the join request from D, R hence
does not have to change the control schedule. If D had been
an infrastructure node, R would have changed the control
schedule to include D. After joining, it goes into the joined
state. D then originates a flow request (marked F). This
flow is a bi-directional flow between D and C. In the exam-
ple, we have assumed that the chosen path for the data flow

is D − B − C. After getting the flow request, R computes
an appropriate data schedule. In this case, four slots are
assigned to each of the links, in both directions.

The data schedule reaches A, B, and C in frame-7, while
it reaches D only in frame-8. D then goes to the called state
and once the call is teared down, it goes back to the joined
state. In frame-7, D does not yet schedule and hence cannot
transmit or receive data packets. This is indicated with a
cross in the last data slot of frame-7. From frame-8 onwards,
the data schedule continues until tear-down (or timeout). In
the joined and the called states, nodes send periodic topology
updates and particularly, in the called state, call originator
sends flow-renewal requests in contention slots (not shown
in the Fig. 4 for clarity).

4.4 Further Details of LiT
Centralized routing : LiT’s approach of central control for

the MAC leads naturally to a centralized routing mecha-
nism. As the part of the join request or topology update, a
node sends its neighborhood information to the root, which
is then used by the routing module at the root to decide the
node’s forwarding tables. The keen reader may have noted
that our data scheduling elements in fact carry implicit for-
warding table information. The scheduling element specifies
the next-hop for each flow: this is the “rx” (receiver) field
in Fig. 3. The periodic topology updates in the design of
the LiT aid the centralized scheduler to maintain network
connectivity graph and to make scheduling decisions. 2

Control and data schedule fragmentation: During schedule
dissemination, it could happen that the amount of informa-
tion to be sent exceeds what can fit in these set of slots. In
such a scenario, the information is simply fragmented across
the control slots in successive control schedule rounds. Such
fragmentation can happen for whatever is conveyed in the
control packets: this could be the control schedule informa-
tion itself, or it could be the data schedule information. 2

Hop-by-hop ACKs: For contention slots, we enable hop-
by-hop ACKs as a mechanism for improving efficiency in the
presence of wireless channel errors. To allow this, we ensure
that the slots used by a node have enough time to include an
immediate ACK from the receiver. It is worth noting that
the MAC does not have any special slots to accommodate
potential retransmissions. Such an approach would waste
slots in the common case when there is no wireless error.
Instead, any retransmission is attempted only on the next
available transmission opportunity; i.e. the next contention
slot for contention slot loss, or the next designated data slot
for data slot losses. 2

2

Fault tolerance: In a centralized approach, if the central
node fails, the network cannot operate. We can however
overcome this by having a pre-designated root node backup,
or even a dynamic root selection algorithm, like that in Eth-
ernet switched networks. This is part of future work. 2

4.5 A scheduler for LiT
As mentioned earlier, LiT itself is independent of the sched-

uler module, and any centralized scheduler can be used. To
evaluate LiT, we have implemented a simple greedy sched-
uler. This scheduler is custom-fit for voice applications,

2For real-time applications, having data slot retransmissions
may be inefficient and is left as a policy decision to the higher
layer.

which we envision to be one of the important applications
for LiT-MAC based networks.

The scheduler takes four different inputs: the connectiv-
ity graph, the interference graph, the data schedule for the
current set of flows, and the new flow request. The path
between the source and destination is computed by shortest-
hop metric over the network connectivity graph. As output,
it gives a schedule including the new, or it rejects the flow.
The flow request is assumed to be bi-directional.

New schedule
Scheduler OR flow rejected

LiT

Current flows
& current schedule New flow: src, dst, path

Network graph

Interf. graph

Figure 5: The LiT scheduler

The above scheduler works under the constraint that the
schedule corresponding to the current set of flows is not mod-
ified. That is, their slot allocation does not change. Such
an approach ensures that new flows do not disturb the old
flows in any way; not even due to the introduction of any
temporary inconsistency during the propagation of the new
schedule. Our scheduler also simplifies things by consider-
ing the number of data slots in a frame to be the same as
the data schedule length, although this does not have to be
the case in a generic scheduler. For a path with l hops, 2l
links have to be scheduled (each link in both directions). For
each link, we consider the transmitter-receiver pair, and the
scheduling involves two steps:

(1) Allocation of time-slot: Since an intermediate node
needs to receive and transmit in each direction, it requires 4
slots per frame for single radio nodes. As pointed out in [8],
the sequence in which links are scheduled decides the end-
to-end delay, crucial for real-time applications. Hence, for
a path A-B-C, considering the scheduling of slots for node
B, we schedule A-B link before B-C (similarly for reverse
direction). During scheduling, we check each of the slots in
the data schedule to find one in which both the transmitter
and the receiver node are free. If we cannot find such a
common free slot, the scheduler reports failure and does not
admit the flow.

(2) Allocation of channel: Once a time-slot is chosen, a
channel has to be chosen. Now, at the link’s transmitter,
a set of channels are not allowed; the channels that would
cause interference to a nearby, already admitted flow. Simi-
larly, at the link’s receiver, a set of channels are not allowed;
the channels in which transmissions are happening for the
already admitted flows in the interference neighborhood of
the receiver. The scheduler seeks to find a common allowed
channel between the transmitter and the receiver. If it can-
not, it reports failure and rejects the flow.

Although simple, extensive simulations show that the above
scheduler has good performance in practical settings. It is
intuitive to see why this is the case, in the context of channel
allocation in 802.15.4. Suppose that the degree of a node X
in the interference graph is dX . Then, in the above channel
allocation step, at most dT channels are disallowed at the
transmitter T , and at most dR channels are disallowed at
the receiver R. So if dT + dR < NChnl where NChnl is the
number of available channels, then the channel allocation
step will not fail. In practice, NChnl = 16 for 802.15.4, and
is large enough to exceed dT + dR in most cases.

4.6 Analysis of LiT MAC performance

We now examine LiT with respect to some important per-
formance metrics. This serves as a basis for our prototype
evaluation. Tab. 3 summarizes our notation.

Notation Description
h The max. node depth (from root)

Ns Number of static (infrastructure) nodes
Nm Number of mobile (client) nodes

S Slot duration = Sused + Sguard

nctl Num. control slots in a frame
ncon Num. contention slots in a frame
ndat Num. data slots in a frame

F Frame durn. = (nctl + ncon + ndat) × S
nf Number of flows in the system
hf Number of hops in a flow

Table 3: Notation for various LiT parameters
Flow-setup and node-join delay: These involve two steps:

(S1) the request has to go up the tree, and (S2) the modi-
fied data or control schedule has to come down the tree. S1
involves a delay of h frames, assuming no collisions in the
contention slots. And, assuming no wireless losses, and as-
suming that the data/control schedule involve no fragmen-
tation, S2 involves Ns

nctl

frames in the worst case. So the

worst-case flow-setup and node-join delays are: (h+ Ns

nctl

)F .

Delay in the data path: In our scheduler (Sec. 4.5), the
worst case data path delay can be bounded. In each direc-
tion, each intermediate node gets at least two slots: one each
for reception and transmission. Thus a packet can traverse
at least two hops in each data schedule round, even in the
worst case. Under the special condition that the data sched-
ule length is the same as the number of data slots in a frame,
the above worse case data path delay would be (hf/2) × F .

Duty-cycling: By design, a node in LiT is required to
be operational only during the control and contention slots,
unless there is a data flow through that node. So we have
a duty cycle of (nctl + ncon)/(nctl + ncon + ndat), with any
additional requirement arising only due to data flow load.

The next three sections evaluate LiT extensively using
prototype implementations as well as simulations.

5. PROTOTYPE-BASED EVALUATION
We have implemented a prototype of the LiT MAC on an

802.15.4 platform based on the CC2420 chip. We have cho-
sen the Tmote Sky platform, which uses an MSP430 micro-
controller. Our software platform is TinyOS v2.1.0. We use
this 802.15.4 platform in the 2.4GHz frequency, which gives
a PHY data rate of 250 Kbps. Note: In the Tmote Sky
platform, one clock tick ≃ 30.5µs, since it uses a 32 KHz
clock. We report many of our measurements in terms of
these ticks.

5.1 Micro-benchmarks: Guard Time Deter-
mination

In any TDMA system, we need a guard time for each
transmission. In LiT, we define guard time as the duration
given as leeway prior to each transmission. There are several
components which contribute to the guard time. (1) Time
synchronization error: (1a) error right after synchronization,
and (1b) further error due to drift between successive time-
synchronization events. (2) Inaccuracy in timer fire: we
may set a timer to fire at time t, but it fires at t ± δ. (3)

Processing jitter: we expect an operation to complete within
a certain time, but it could take longer. (4) Finally, the
channel switching time.

Component Measured value
Time-sync error

(a) right after sync ±1 tick, per hop
(b) drift error < 1.5 ticks per sec

Inaccuracy in timer fire 1-2 ticks
Processing jitter 1-2 ticks

Channel switching time ≃ 10 ticks

Table 4: Components of guard time
Table. 4 summarizes the above four values, as measured

on our prototype. The time synchronization error values
are consistent with those reported in [6, 18]. If we wish
to support a network depth of say up to 5 hops (network
diameter of 10 hops), then we can compute the guard time
for this as follows. (1a) In the worst case, two adjacent nodes
in the data path could both be 5 hops from the root, and
the maximum synchronization error is 2×5 = 10 ticks. (1b)
As we shall see shortly, the duration between two successive
time-sync events is about 1-2 sec in practice; so the drift
error is about 3 ticks. Adding the other components, we get
a guard time of about 27 ticks.

5.2 Parameters to support real-time voice
To examine the parameter settings to support real-time

voice, we consider the G.723.1 codec. This codec needs 24
bytes to be transmitted every 30 ms. We choose a slot-
duration of 6 ms by empirical measurements. With a guard
time of 27 ticks, we have Sused ≃ 5.18ms, which can ac-
commodate about 66 bytes at 250 Kbps along with system
overheads. This means that we can easily accommodate
60 ms worth of codec data (i.e. 48 bytes) within a slot.

What should be the frame duration F? A large F is good
for efficiency, but bad for the above computed delays. If we
choose F = 60 ms, we have 10 slots/frame. A voice flow
will generate 48 bytes in each direction every frame. We
have already mentioned that an intermediate node needs to
receive and transmit in each direction, a flow will require
4 slots per frame. Thus, if we have nctl = 1, and ncon =
1, we are left with ndat = 8, which can support 8/4 = 2
voice calls through a bottleneck intermediate node. For F =
60 ms, the data path delay in an 8-hop path would only be
(8/2) × F = 240 ms (this is because, due to our scheduling
algorithm, a data packet traverses two hops, in each frame),
which is good for real-time voice. In the absence of data
flows, the above set of parameters results in a duty cycle of
(1 + 1)/(1 + 1 + 8) = 20%.

5.3 Testbed Evaluation Setup
With the Tmote-based prototype, we used two different

environments for evaluation: (1) an indoor setup, and (2) an
outdoor setup around a residential area. The outdoor set-
ting had some nodes placed near trees and buildings. The
routing tree for control and contention packet in the out-
door setting had two variations—fixed and dynamic. In the
former case, the routing tree was imposed and the parent-
child relationships between nodes were fixed. In the dy-
namic case, these relationships were formed using an RSSI-
threshold based shortest hop metric: shortest path to root
using links with RSSI greater than −84dBm.

In the indoor setup, we used 19 nodes within a circular

2 3

4

98

18

15

0

5

17

7

16

13

6

1

12

11

10

Data path

Fixed tree link

Obstruction

Vegetation

RSSI−based tree link (dynamic)

14

Figure 6: Outdoor network topology.
room about 20m in diameter. The room was an active lab
with people using it for work; and there was also WiFi in
the vicinity which we did not attempt to control. The out-
door setup, as shown in Fig. 6, had 19 nodes, each placed
on a wooden stand, at a height of about 4 feet from the
ground. For our setup, we used a transmit power −7 dBm,
which gives a transmission range of about 15-20m. This was
largely for ease of experimentation. The nodes were spread
over an area of about 50mx50m. In the outdoor setup too,
there was noticeable WiFi interference. Each unique run of
the experiment lasted for around 20 minutes. We use two-
way CBR traffic to represent a voice-call (without silence
suppression). In the testbed setup, of the 19 nodes, 15 were
used as infrastructure nodes, and 4 were used as portable
end clients, as end-points for voice-calls.

5.4 Prototype Parameters
The primary parameters of concern are the slot and frame

durations. Now, in the Tmote Sky platform, apart from the
radio, there is another bottleneck, as identified in [12]: the
SPI (Serial Peripheral Interface) bus. Every packet needs to
go through the SPI, for transfer from radio chip to the CPU,
or from the CPU to the radio chip. In a multi-hop setting,
every intermediate node has to transfer the entire packet
back and forth from/to the radio chip. The work in [12]
describes how to eliminate this bottleneck, by pipelining SPI
and radio operations. We have implemented such a pipeline
in TinyOS (which gives a data slot of 6ms), but have not
yet integrated it with the LiT MAC code.

Although in our protocol description in Sec. 4, we have
used equal slot lengths, we have found it convenient to use
different slot lengths for control, contention, and data slots.
This is to accommodate different sized packets in these 3
kinds of slots. This does not change the protocol operation
in any way.

SPI (ticks) Radio (ticks) Processing (ticks)

TX 93 154 ≃20-35
RX 94 138 17

Table 5: Components of slot time for 126 byte packet

Tab.5 lists the various delays involved in the control slot
calculation. With the SPI bottleneck, a control slot has
to accommodate: (a) time to transfer a 126-bytes (size of
radio transmit buffer is 128-bytes) control packet from the
CPU to radio (93 ticks) (b) radio transmission time (154
ticks), including 16 ticks for sending a “strobe” signal to
radio to commence transmission; radio reception at the re-
ceiving node happens in parallel with transmission (c) time
to transfer the packet from the radio to the CPU at the

receiving node (94 ticks), and (d) any processing jitter in-
volved (≃52 ticks). Thus, we chose control slot duration to
be 393(93 + 154 + 94 + 52) + 27 = 420 ticks, considering
27 ticks for the guard band as given earlier. Similarly, we
compute the slot time for contention and data slots as 320
ticks (contention packet size of 40 bytes) and 330 ticks (≃
10ms, data packet size of 48 bytes) respectively. Further,
we have chosen nctl = ncon = 1 and ndat = 4, to have a
frame length of 2060 ticks (approximately 63ms).

Although we use 10ms as slot duration in prototype, we
have already noted that with pipeline optimization [12], we
can get slot duration of 6ms.

5.5 802.15.4 Evaluation Results
For the results in this section, unless mentioned otherwise,

we have used the fixed topology in outdoor setting. We have
very similar results for the dynamic version.

Time-synchronization: What is the worst-case clock
drift error of LiT’s time-synchronization mechanism? In
LiT, during the transmission of control packets by infras-
tructure nodes, we timestamp the packet with global clock
(i.e. root’s clock) at the hardware level by capturing the
SFD (Start Frame Delimiter) interrupt. The receiving node
also timestamps the packet at the time of SFD reception.
Now, the receiver node uses the information from its parent
to update its own notion of the global clock (by calculating
clock offset). Thus with each control packet received, there
is an associated clock correction value at each node. This
measures the relative clock drift between the sending and
receiving nodes. This is a measure of the effectiveness of the
multi-hop synchronization mechanism: if this value is large,
then it means that the receiving node had been working with
a large error so far.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 1 2 3 4 5 6

F
ra

c
ti
o
n
 o

f
O

c
c
u
re

n
c
e
s

Clock Correction Offset (ticks)

Outdoor (fixed tree)
Outdoor (dynamic tree)

Indoor

Figure 7: PDF of clock correction values
Fig. 7 plots the PDF of the various clock correction values,

in units of clock ticks. We can see that most of the clock cor-
rections are within 1-2 ticks. So the light-weight multi-hop
synchronization mechanism is indeed effective, and we are
able to make do without any sophisticated message exchange
based synchronization [7] or drift estimation [10].

Soft-state performance: What is the overhead and ef-
fectiveness of LiT’s soft-state based mechanisms? In our
implementation, we have used the contention slot (one slot/
frame) for periodic topology updates and flow renewal re-
quests, to maintain soft-state, along with node-join and flow-
setup requests. All information flow is from a node towards
the root. So a natural concern is the usage of this contention
slot since nodes nearer the root could get congested.

In the absence of flow setup requests, the primary usage
of the contention slots is for topology updates. In our im-
plementation, we have used a topology update period of 20
sec. The root times out a node X if it does not hear a topol-
ogy update from X for over 100 sec and removes it from the

routing tree. This choice of values works stably in practice.
In this setting we log the number of topology updates for-
warded (or originated) by each node toward the root, in each
30-sec period. This is shown in Tab. 6 for a subset of nodes.

Table 6: Node stats: samples at various tree-levels

The average number of updates forwarded by level-1 nodes
(nodes 1, 2, 3 and 4) is 297, whereas that sent by level-4
nodes (nodes 16, 17 and 18) is 58. The number of avail-
able contention slots are 1000/64×30 ≃ 470 slots per 30-sec
interval and 470 ×

20min
30sec

= 18800 for the 20-minute dura-
tion. Hence, the usage of the contention slots for level-4
and level-1 nodes is 58

18800
≃ 0.3% and 297

18800
≃ 1.6% respec-

tively, in both cases quite low; this includes any potential
retransmissions required. Further, we observed very few (1
or 2) node-disconnections at the root; even these were con-
firmed to be due to a weak wireless signal, and not due to
LiT’s control overhead. The above results not only indicate
that sufficient contention slots are available for flow requests
and for scaling the network but also that the overhead of
topology update messages, required for network soft-state,
is negligible.

During active calls, the flow-renewal requests are sent at
the period of 30 sec with 90 sec time-out. For none of the
calls, termination occured at the root due to non-receipt of
flow-renewal requests. This shows that flow soft-state works
effectively.

Node join latency, as shown in Tab. 6, varied between
a best case of 1 frame duration to a worst case of 19 frames
(about 1.2s) which is very much tolerable in practical set-
ting.

Data flow measurements: What is the flow-grant la-
tency of a voice call? The call originator sends a flow re-
quest toward the root, the root runs the scheduler, and if
successful, sets up the flow by disseminating the updated
data schedule. All the relevant nodes in the chosen data
path then follow the stipulated schedule, i.e., using the stip-
ulated time-slot and the channel. Other parameters are as
follows: exponentially distributed call duration with mean
of 2 min, exponential inter-call time with mean of 2 min.
Thus in the network, at any given time, we have 0, 1, or 2
flows active.

As shown in Tab. 7, the flow setup latency is mostly under
a second, 0.3 − 1.1 seconds. The CBR flow generates one
data packet per frame (in each direction). So the number
of packets shown is also indicative of the flow duration, in
terms of number of frames. The packet loss percentage, in
next column, is quite small, which indicates that there are
no collisions due to loss of time synchronization, or undue
data schedule losses.

Data path delay and jitter: Is the data path delay
and jitter tolerable to effectively support a voice call? Data
path delay, as mentioned earlier, is (hf/2) × F (Sec. 4.6),
which is 128ms for 4-hop flows. This is quite acceptable for
real-time voice. For the G.723.1 codec, a delay of 128ms, a
packet loss of 1%, and a jitter of 1.5ms represents a MOS [3]

Table 7: Data flow statistics (I=indoor, O=outdoor)
(Mean-Opinion-Score) of 3.8, which is considered “good” in
practice. Note that, our scheduler has notion of delay con-
straint (maximum hops up to 10 corresponding to 300 ms),
and thus rejects those calls which exceed the end-to-end de-
lay limit.

The last columns in Tab. 7 report the measured jitter val-
ues: maximum and average. The median jitter was always
0ms (i.e. the TDMA slotting is working well). Jitter is
caused when there is a packet loss in a particular data-slot.
The average jitter is quite small (1-2ms); this demonstrates
suitability of MAC for real-time voice. The maximum jitter
scenario happens when there is a train of wireless losses in
a node’s data slot; this happens quite rarely.

6. SIMULATION-BASED EVALUATION
To answer the questions of scalability and control-overhead,

we simulated LiT using a custom discrete event simulator.
We evaluate LiT for voice based wireless mesh setting envi-
sioned in [15] over an area of 1.5 km x 1.5 km, with a total
of 100 nodes: 25 infrastructure nodes and 75 client nodes.
The duration of one simulation run is 12 hrs. The evaluation
parameters considered are: 250m transmission and 350m in-
terference range, 16 channels, calls between random source-
destination pairs, exponential inter-call duration with mean
of 1 hour, exponential call duration with mean of 2 min with
parameters to support real-time voice as mentioned in Sec.5.

6.1 LiT Performance
Tab. 8 shows the performance of scheduler in terms of

number of accepted and rejected calls for different wireless
loss rates. The loss rate was simulated on each link in the
network. We note that the MAC’s control messages are
getting through, and the soft-state based flow maintenance
is not a bottleneck. This is indicated by the fact that there
are very few calls falsely dropped (last column). In fact,
even when the loss rate of all links in the network is 10%,
only about 7% of the calls are falsely dropped.

Table 8: Call statistics

Now, there are three possible reasons why a flow request
could be rejected: (1) the flow request did not reach the root
(2) the scheduler could not accommodate the flow either due
to no free scheduling slots or no overlapping free slots at two
nodes or no free channel and (3) the acceptance information

did not reach the relevant nodes in the network. We ob-
served that in all the cases of rejected flows, it was always
the scheduler which was rejecting the flow. Thus, the MAC
related control overhead was not the bottleneck. Also, even
with a high call generation rate (mean call time of 0.5 hrs)
from each client, the scheduler rejects 1.8% (32 out of 1725)
calls which shows that they system is scalable and that the
voice-aware multi-channel scheduling is quite effective.

In terms of latency involved, for more than 95% flows,
the flow setup latency is < 5s (median 2.4 s, for 2% error
rate) which is quite tolerable. The median, minimum and
maximum path length (number of hops) is 6, 2 and 10 which
gives worst case delay of 300ms, a tolerable value in practice.

Further, we observed that the scheduler could only accept
634 calls for single channel as compared to 1693 calls for 16
channels when mean call time was 0.5 hrs, which shows ad-
vantage of multi-channel MAC. In terms of soft-state, even
for such a large network, when we simulated a 5% error rate
on all links, we neither observed any tree disconnections nor
any accidental flow revocations. The errors due to schedule
inconsistencies in data slots were less than 2%. This sup-
ports the design choice of soft-state for MAC level connection
management.

Power consumption: Consider a aggregate call dura-
tion of 2 hours a day and a 20% effective duty-cycling. The
Tmote platform consumes about 60mW while transmitting
and receiving (0dBm). Thus assuming a node power con-
sumption of 100mW when it is active, the power consump-
tion per day is: 100mW × 2H + 20% × 100mW × 22H
= 640mWH. If we use 4.5AH, 12V battery at each infras-
tructure nodes, a node can effectively operate for 4.5AH ×

12V/640mWH ≈ 84 days. Thus the system can operate
without relying on the power off the grid for several weeks.

6.2 LiT vs. CSMA

Figure 8: CSMA vs TDMA comparison topology

What would have been the performance of voice calls, had
we used the default distributed CSMA MAC protocol (for
the 802.15.4 multi-hop network)? To answer this question
and thus to gauge the performance benefits of LiT, we sim-
ulate the distributed CSMA MAC for a multi-hop network.
The topology instance used for simulation is shown in Fig. 8.
For CSMA operation, 802.15.4 standard specifies following
parameters which we use in our simulations: symbol period
= 16 us, max backoff exponent = 5, max retry limit = 3,
SIFS of 12 symbols, LIFS of 20 symbols, back off unit (slot)
of 20 symbols, CCA detection in 8 symbols. We also sim-
ulate the Tmote Sky platform environment which has SPI
speed (with DMA enabled) 350kbps, bottleneck in packet
transmissions and receptions, as seen in our implementation.
We use the 6.3 kbps codec (same as used in the LiT imple-
mentation) which generates a 48 byte packet every 60 ms
(CBR flow). We send 1000 packets (60 sec worth data) for
a flow from source handset to destination handset. We keep

Table 9: CSMA vs TDMA comparison for voice calls
a buffer of 3 packets at the source (without this buffer, the
packets will get dropped if the previous packet is pending
to be transmitted) and a buffer of 3 packets at the desti-
nation (this is the playback buffer). Further we maintain
transmission range of 250 meters and interference range of
350 meters, just like in LiT MAC simulator.

Now, with this set of parameters, a packet takes approx-
imately 8ms to get transmitted and received over a single
link. All packets flow through the intermediate nodes I1
and I2 (Fig. 8). Now, we start a single uni-directional flow
from handset M1 to handset M4 (we refer to the flow from
M1 to M4 as forward flow). The first row in Tab.9 shows the
packet loss percentage, the average delay and the average jit-
ter values for the flow, which is 0%, 25ms, 0ms respectively.
Now, we start the traffic from M4 to M1 (backward flow,
through same intermediate nodes, I1 and I2). This models
a real-time bi-directional voice call. As the rows 2.1 and
2.2 show, both the forward flow and the backward flow of
the call experience 0% packet loss with the average delay of
less than 30 ms & 42 ms respectively and the average jitter
of less than 1ms. This is conceivable as both the forward
and the backward flows are getting sufficient channel time
(overall 60 ms) to transmit packets end-to-end from source
to destination. Next, we start one more bi-directional flow
from M2 to M5. As we expected, this overwhelmed the lim-
ited channel capacity and as the rows from 3.1 to 3.4 show,
both the calls suffer heavily with 25% packet loss and the
average jitter of 45ms. To stress test, we started a third
bi-directional voice call between M3 and M6 through I1 and
I2. The performance of this call was not only poor due to
already ‘congested’ channel but it also degraded the quality
of existing voice calls. This shows the requirement of admis-
sion control in multi-hop network. While admission control
is not ruled out in CSMA, it requires more complex capacity
estimation techniques [9].

Now, we apply the same setting to LiT MAC. We have
already noted that with the pipeline optimization (which
gives us slot duration of 6ms), we can support two simul-
taneous calls in 60ms frame of LiT MAC. By the very un-
synchronized nature of packet clocking, such a pipelining
optimization is not possible in CSMA MAC. As we can see
in right-half of Tab.9, the average delay of two bi-directional
calls is 60ms with the average jitter of 0ms. Due to the time-
slotted scheduling of transmissions in LiT, the calls do not
experience any packet loss due to the packet collisions. For
two simultaneous calls, the MOS score for CSMA MAC is
very poor whereas it is quite satisfactory for TDMA MAC.
In fact, the drop in MOS from 5 to 3.95 is primarily due
to the choice of 6.3Kbps. The table also shows (rows 4.5

and 4.6) that the centralized admission control of LiT MAC
rejects the third call due to non-availability of channel re-
sources. This justifies the choice of TDMA multi-channel
access and centralized admission control in LiT for a mesh
network setting, especially for capacity limited network.

7. FUTURE WORK
We have developed a portable 802.15.4-based handset by

interfacing TI’s C5505 USB stick module with CC2520 radio.
We have integrated the license-free Speex codec with the
C5505 USB stick module to encode and decode the voice
samples. We established successfully a voice call over a 4-
hop network running on LiT MAC.

Going forward, we are working on deploying a backbone
network of 20 nodes in the CSE department to run for a
period of several days. The 802.15.4-based handsets will be
used to establish the voice calls. In such a setting, our goal
is to measure and quatify the performance of the network in
terms of the power efficiency (i.e. longevity of the network)
and voice call quality. Such a deployment will give us in-
sights into an operational mesh network. As the subsequent
step, we want to deploy the Lo3 system in an outdoor set-
ting in a nearby village with few handsets. We envision that
the users will be able to communicate with each other over a
network which would run for several days without battery re-
placement. Apart from bi-directional real-time voice, there
are several applications that can be built in Lo3 system.
Such applications include community radio and broadcast-
ing for real-time information dissemination. Building such
applications is also part of future work. To support text-
based applications, we can reserve a part of network capac-
ity and can have a scheduler which schedules both text and
voice-based flows, in an opportunistic fashion.

8. CONCLUSION
In [15], authors envisioned Lo3: a low-cost, low-power,

local-voice communication system to support real-time ap-
plications in a village-like setting, in developing regions. In
this work, we described an end-to-end design, implementa-
tion and evaluation of an 802.15.4-based prototype to en-
able voice communication in wireless mesh networks. This
prototype is a significant step to deploy Lo3 in practice.
To achieve the goal of supporting real-time voice applica-
tions, we devised LiT: a light-weight TDMA based multi-
hop MAC protocol. LiT is novel in its use of soft-state for
dynamically maintaining the topology, and various MAC-
level connections. The MAC has a built-in multi-hop time-
synchronization mechanism, dynamic schedule dissemina-
tion, and flexible support for scheduling algorithms. The
control overheads in LiT are minimal even under realistic
wireless loss scenarios. We achieve low flow setup delays,
and data path delay/jitter are small too. This bodes well for
real-time application support envisioned in Lo3. Our sim-
ulation based study strengthens our confidence that LiT’s
soft-state based approach, or the centralized architecture,
do not present scaling bottlenecks in practice.

Acknowledgement

This project is being carried out under the IU-ATC project
funded by the Department of Science and Technology (DST),
Government of India and the UK EPSRC Digital Economy
Programme. This work is supported in part by IBM faculty

award (2008). The Speex implementation on C5505 plat-
form was provided to us by CouthIT, Hyderabad. Thanks
to Swanand and Victor for their help during outdoor exper-
iments.

9. REFERENCES
[1] Department of telecommunication,

http://www.dot.gov.in/.

[2] IEEE 802.16 WirelessMAN,
http://www.ieee802.org/16/.

[3] Mean Opinion Score Calculator,
http://www.davidwall.com/MOSCalc.htm.

[4] P. Bhagwat, B. Raman, and D. Sanghi. Turning
802.11 Inside-Out. In HotNets-II, Nov 2003.

[5] K. Chebrolu and B. Raman. FRACTEL: A Fresh
Perspective on (Rural) Mesh Networks. In NSDR, Sep
2007. A Workshop in SIGCOMM 2007.

[6] K. Chebrolu, B. Raman, N. Mishra, P. K. Valiveti,
and R. Kumar. BriMon: A Sensor Network System for
Railway Bridge Monitoring. In MobiSys, Jun 2008.

[7] P. Djukic and P. Mohapatra. Soft-TDMAC: A
Software TDMA-based MAC over Commodity 802.11
hardware. In INFOCOM’09, Apr 2009.

[8] P. Djukic and S. Valaee. Delay aware link scheduling
for multi-hop TDMA wireless networks. IEEE/ACM
Transactions on Networking, 2009.

[9] A. Kashyap, S. Ganguly, S. Das, and S. Banerjee. Voip
on wireless meshes: Models, algorithms and
evaluation. In INFOCOM, 2007.

[10] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The
Flooding Time Synchronization Protocol. In SenSys,
Nov 2004.

[11] J. Mo, H.-S. W. So, and J. Walrand. Comparison of
Multichannel MAC Protocols. IEEE Transactions on
Mobile Computing, May 2007.

[12] F. Osterlind and A. Dunkels. Approaching the
Maximum 802.15.4 Multi-hop Throughput. In
HotEmNets, Jun 2008.

[13] V. Rajendran, K. Obraczka, and J. GarciaLunaAceves.
EnergyEfficient, CollisionFree Medium Access Control
for Wireless Sensor Networks. In SenSys, Nov 2003.

[14] B. Raman and K. Chebrolu. Design and Evaluation of
a new MAC Protocol for Long-Distance 802.11 Mesh
Networks. In 11th Annual International Conference on
Mobile Computing and Networking paper
(MOBICOM), Aug/Sep 2005.

[15] B. Raman and K. Chebrolu. Lo3: Low-cost,
Low-power, Local Voice and Messaging for
Developing Regions. In NSDR’09, Oct 2009.

[16] A. Rowe, R. Mangharam, and R. Rajkumar. RT-Link:
A Time-Synchronized Link Protocol for
Energy-Constrained Multi-hop Wireless Networks. In
SECON, 2006.

[17] A. Sen and M. L. Huson. A New Model for Scheduling
Packet Radio Networks. In INFOCOM, 1996.

[18] H.-S. W. So, G. Nguyen, and J. Walrand. Practical
Synchronization Techniques for Multi-Channel MAC.
In Mobicom, Sep 2006.

[19] L. van Hoesel and P. Havinga. A Lightweight Medium
Access Protocol (LMAC) for Wireless Sensor
Networks. In INSS, 2004.

