
Handling Dynamic Changes in Petri
Net Models of Workflow Processes

Third Annual Progress Seminar
By

Ahana Pradhan
(113050039)

Working under the guidance of
Prof. Rushikesh K. Joshi

Department of Computer Science & Engineering
Indian Institute of Technology Bombay

Powai, Mumbai-400076, India

3
rd

APS

3
rd

APS

Dynamic Migration of Workflows

Dynamic instance migration needs to be facilitated
for workflows in order to reflect real-world
changes in automated processes.

Consistency model:
Equivalence mapping from current state of old
workflow to the migrating state of the new
workflow.

Dynamic Evolution of Workflows

3
rd

APS

Reimbursement Workflow in an Academic Institute

Old process:

New process:

Token Transportation

3
rd

APS

Given a marking in the old net (running instance), goal is to obtain a marking
in the new net (migrated instance)

Old Net:

New Net:

3
rd

APS

History-based Consistency

History equivalence

History: t1, t2, t3

(Compliance) [Ellis et al. COCS’95, Rinderle et al. ER’08]

3
rd

APS

History-based Consistency

Delete-purged Compliance [Rinderle et al. ER’08]

Delete-purged History: t1, t3

3
rd

APS

History-based Consistency

Loop-purged Compliance [Rinderle et al. ER’08, Sun et al., IST’09]

Common Reduced History: t1, t3

3
rd

APS

Valid transfer [Van der Aalst, ISF 01]

Marking-based Consistency

Marking { p2, p5 }

Notable Existing Solution Approaches

3
rd

APS

Change region [Van der Aalst, ISF’01; Sun et al., IST’09]

State Space [Agostini et al., CSCW’00]

3
rd

APS

1. Algorithm for Trace equivalence token transportation

2. Lookahead Trace based consistency models

3. Conclusion

4. Future works

Outline

3
rd

APS

Yo-Yo Algorithm

Token Transportation: Correctness

Consistency
preservation of history (done tasks in old ↔ done tasks in new)

Validity
reachability of marking in the new net

Inconsistent! Invalid!

Correct

3
rd

APS

Done task tx

Done task ty
Missing token in
parallel branch

Yo-Yo Approach

3
rd

APS

Token transportation by: Folding, transport, Unfolding

Pre-computed transportation

Old Net:

New Net:

Yo-Yo Approach: Folding

3
rd

APS

Old Net:

New Net:

Folding: Original Nets

3
rd

APS

Pre-computed transportation

Old Net:

New Net:

Folding: Step 1

3
rd

APS

Old Net:

New Net:

Folding: Step 2

3
rd

APS

Old Net:

New Net:

Folding: Step 3

3
rd

APS

Old Net:

New Net:

Transport: Step 1

3
rd

APS

Old Net:

New Net:

transport

Unfolding and Transport: Step 2

3
rd

APS

Old Net:

New Net:

transport

Unfolding and Transport: Step 3

3
rd

APS

Old Net:

New Net:
transport

Unfolding: Step 4

3
rd

APS

Old Net:

New Net:
No transport required

Yo-Yo Approach: ingredients

3
rd

APS

Transportation between which two
patterns

Peer patterns

When such hand-in-hand folding of
nets are possible

Yo-Yo compatibility

Which pattern to fold when Folding order, obtained from
Derivation Trees

What all pre-computed
transportations cover the scope

Token transportation Catalog

Input nets

SEQ: tx ty

AND: (tx) (ty)

XOR: [tx] [ty]

silent transitions
model gateway logic

3
rd

APS

Pattern Specification Net Model

Input nets

Composition of primitive patterns: sequence or nesting

Start  SEQ
SEQ  SEQ t SEQ t SEQ | SEQ AND SEQ | SEQ XOR SEQ | e
AND  (SEQ t SEQ) (SEQ t SEQ)
XOR  [SEQ t SEQ] [SEQ t SEQ]

3
rd

APS

Start  SEQ  SEQ t1 SEQ t8 SEQ  t1 AND t8
t1 (SEQ t2 SEQ) (SEQ t7 SEQ) t8
t1 (t2 SEQ AND SEQ) (SEQ AND SEQ t7) t8
t1 (t2 (SEQ t3 SEQ) (SEQ t4 SEQ)) ((SEQ t5 SEQ) (SEQ t6 SEQ) t7) t8
 t1 (t2 (t3) (t4)) ((t5) (t6) t7) t8

Example derivation

Input nets

Start  SEQ  SEQ t1 SEQ t8 SEQ  t1 AND t8
t1 (SEQ t2 SEQ) (SEQ t7 SEQ) t8
t1 (t2 SEQ AND SEQ) (SEQ AND SEQ t7) t8
t1 (t2 (SEQ t3 SEQ) (SEQ t4 SEQ)) ((SEQ t5 SEQ) (SEQ t6 SEQ) t7) t8
 t1 (t2 (t3) (t4)) ((t5) (t6) t7) t8

3
rd

APS

Folding steps
follow such
order of derivation..

Derivation Trees

3
rd

APS

SEQ

AND

XOR

Grammar
Non-terminals

Primitive Block Derivation Tree

p1

p1

p1

p1

p1

p1

p2

p2

p3

p3

p3

p3

p3

p3

q1 q2

q3 q4

q1

q1

q1

q2

q2

q2

q3

q3

q3

q4

q4

q4

Triplets:
Left-right positioning
w.r.t. parent does not
matter

Derivation Trees

3
rd

APS

Colored Derivation Trees

3
rd

APS

Node Type Description

Leaf/Non-leaf Unmarked folded/unfolded place

Leaf marked place in net

Non-leaf abstraction of null-executed subnet

Non-leaf abstraction of subnets where at least one
labeled transition has been fired

Red node:
Color parent red

Black node:
Check if any
transition Sibling
has color at right,
If yes, color
parent red; Else
color parent black

Pattern Alterations

3
rd

APS

Old Net:

New Net:

Peer Patterns

3
rd

APS

Yo-Yo compatibility

3
rd

APS

t1 { t2 { t3, t4 } , { t5, t6 } t7 } t8 t1 t2 t3 t4 { t5, t6 } t7 t8

Both can generate the same sequence t1 t2 t3 t4 t5 t6 t7 t8  Folding order exists

r1 r2

Yield of r1 = Yield of r2 =

Folding order

3
rd

APS

P1

P2

P3 P4

P1`

P2`

P3`

P4`

+ =

P1 – P1`

P3 – P3`

P2 – P2`

P4 – P4`

P1

P2

P3 P4

P1`

P2`

P3`

P4`

Pre-computed Token Transportation

3
rd

APS

Compatible yields
s1 s2 tx s3 s4 ty …

s3 = s4 = ε

s3 = ε

s1

s1

s1

s2

s2

s2 s3

s3

s3

s4

s4

s4

s1 s2

s1 s2

s1 s2

s3 s4

s3 s4

s3 s4

Token Transportation Catalog

3
rd

APS

Yo-Yo Algorithm

3
rd

APS

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

F

Yo-Yo Algorithm

3
rd

APS

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

F

Yo-Yo Algorithm

3
rd

APS

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

F

Yo-Yo Algorithm

3
rd

APS

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

F

Yo-Yo Algorithm

3
rd

APS

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

false

F

Yo-Yo Algorithm

3
rd

APS

Input

Output

Token
transportation

Max. no. of Transportation Steps = no. of patterns (linear time complexity)

Yo-Yo Algorithm

3
rd

APS

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

Red root  color rightmost child

Yo-Yo Algorithm

3
rd

APS

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

Black root  color leftmost child

Correctness

3
rd

APS

Catalog Completeness:
Token transportation catalog is complete w.r.t. the 6 change patterns

Lemma 1:
For two Yo-Yo compatible derivation trees, consistent coloring between
The top peer patterns guaranties consistent coloring between their
immediate child peer patterns

Lemma 2:
Lemma 1 can be repeated for all parent-child peer pairs across two Yo-Yo
compatible derivation trees

Correctness: Catalog Completeness

3
rd

APS

Type of Node Marking Status Execution Status Color

Folded Unmarked Null/full-executed Uncolored

Unfolded Unmarked NA Uncolored

Folded Marked Null executed Black

Unfolded Marked NA Black

Folded Marked Partially executed Red

Folded Marked Full executed Red

6
 s

it
u

at
io

n
s!

3
 c

o
lo

r
co

d
e

s

1 marking, 2 x 4 x 4 = 32 situations
2 x 2 = 4 colorings

Correctness: Catalog Completeness

3
rd

APS

Pattern # valid
markings

actual
situations

colorings
In derivation
trees

non-
migratable
colorings

colorings
where node
type changes
mapping

SEQ 3 28 6 0 0

AND 6 420 20 3 2

XOR 6 116 12 2 2

38 -5 +4

37 colorings in catalog

s1

s2

s3 s4

s5

s6

Yield is
s1 { s2 tx s3, s4 ty s5 } s6
SEQ:
s1 s2 tx s3 s4 ty s5 s6
XOR:
s1 s2 tx s3 s6 or s1 s4 ty s5 s6

e.g. non-migratable e.g. node type changes mapping

Correctness: Lemma 1

3
rd

APS

Roots of two derivation trees are yield compatible.
Consistent color transfer between the top patterns P and P’  consistency
ensured between their child peers Q and Q’

P P’

Q Q’

tx ty tx ty
Same relative
Positions of Q and Q’
w.r.t. P and P’

Root of Q Red Black uncolored

Root of Q’ Red/uncolored Black/uncolored uncolored

Possible to refine root colors of Q and Q’ consistently

Old tree: New Tree:

Correctness: Lemma 2

3
rd

APS

.

.

.

.

.

.

.

.

.

.

.

.
Preservation of yield compatibility through folding order

.

.

.

.

.

.

Old tree: New tree: Old tree: New tree:

Lemma 1

Lemma 1 Lemma 1

3
rd

APS

Lookahead Consistency Models

3
rd

APS

Lookahead Trace based Consistency

Consistency Model Name Description

Strong Lookahead same lookahead trace sets of
consistent marking

Accommodative Lookahead old lookahead trace set preserved
in new

Weak Lookahead at least one old lookahead trace
preserved in new

accommodative

strong

Weak

Lookahead trace: t2,t3

3
rd

APS

Strong lookahead

Polythene pack, sealing, label, transport; Cardboard pack, sealing, …

Milk-products packaging:

Chocolate packaging:

Dry fruit packaging:

Polythene pack, sealing, label, transport

Polythene pack, sealing, label, transport

3
rd

APS

Accommodative lookahead

Orientation, reg., X, ob. grades

Orientation, reg., X, ob. Grades; Orientation, reg., Y, ob. Grades

Academic program:

Home university Semester:

Foreign university Semester:

3
rd

APS

Weak lookahead

gr1, gr2, gr3, sup. alloc., project, report; …
gr1, gr2+backlog, gr3, sup. alloc., project, report; …

Old Curriculum:

New Curriculum:

3
rd

APS

Algo 1: Computing weak lookahead marking

1. Acyclic nets
2. No duplicate transitions

3
rd

APS

Algo 1: Computing weak lookahead marking

{t1t3, t2t3}

3
rd

APS

Algo 1: Computing weak lookahead marking

{t1t3, t2t3}

t3t1

3
rd

APS

Algo 1: Computing weak lookahead marking

{t1t3, t2t3}

t3t2

3
rd

APS

Algo 1: Computing weak lookahead marking

Traces = { t1t3, t2t3 } lookahead traces
L = { t1t3, t2t3 } preserved lookahead traces
S = { {p1’}, {p2’} } weak lookahead consistent marking

3
rd

APS

Algo 2: Accept/Reject Branching

L = Polythene pack, sealing, label, transport

3
rd

APS

Algo 2: Accept/Reject Branching

L = Polythene pack, sealing, label, transport

3
rd

APS

Algo 2: Accept/Reject Branching

L = Polythene pack, sealing, label, transport
PXOR = { p }

3
rd

APS

Algo 2: Accept/Reject Branching

L = Polythene pack, sealing, label, transport
PXOR = { p }
Tpotential = { cardboard pack, polythene pack }

3
rd

APS

Algo 2: Accept/Reject Branching

L = Polythene pack, sealing, label, transport
PXOR = { p }
Tpotential = { cardboard pack, polythene pack }
Tblock = {cardboard pack}

3
rd

APS

Inferences

Traces of lookahead traces
L preserved lookahead traces
S weak consistent markings
Tblock contradictory head-transitions

L ≠ { }  weak
+ |S| = 1, L = Traces  accommodative
+ Tblock = { }  strong
S = { }  no lookahead

|s|>1  no single
marking can fire all

preserved lookahead
traces

PNSE’15

Practical Example: Resource Acquisition
D

e
p

ar
tm

e
n

ta
l P

ro
ce

ss C
e

n
tral Lib

rary P
ro

ce
ss

3
rd

APS

Practical Example: Resource Acquisition
D

e
p

ar
tm

e
n

ta
l P

ro
ce

ss
 In

st
an

ce

R
e

-e
n

gin
e

ered
 P

ro
cess

3
rd

APS

Practical Example: Resource Acquisition
D

e
p

ar
tm

e
n

ta
l P

ro
ce

ss
 In

st
an

ce

M
igrate

d
 In

stan
ce

(Algo 1)
L = negotiate price,
Payment,
Recv. delivery & invoice,
Record details

3
rd

APS

Practical Example: Resource Acquisition
D

e
p

ar
tm

e
n

ta
l P

ro
ce

ss
 In

st
an

ce

M
igrate

d
 In

stan
ce

(Algo 1)
L =
negotiate price, Payment,
Recv. delivery & invoice,
Record details

(Algo 2)
Tblock =
Negotiate
price & license,
Activate
e-resource

3
rd

APS

Practical Example: Resource Acquisition
D

e
p

ar
tm

e
n

ta
l P

ro
ce

ss
 In

st
an

ce

M
igrate

d
 In

stan
ce

(Algo 1)
L =
negotiate price, Payment,
Recv. delivery & invoice,
Record details

(Algo 2)
Tblock =
Negotiate
price & license,
Activate
e-resource

Inferences:
Accommodative
Lookahead
Consistency
by schema

Conclusion

3
rd

APS

New approach to the token transportation problem by Catalog based modular
solution by YoYo algorithm.

Embedding history in the catalog results in history equivalent solutions without
computing them in runtime.

Novel approach of derivation tree and its coloring for representing net, markings
along with the hierarchy of composition.

Structural analysis pushed to the schema level and linear runtime complexity for
token transportation at instance level for trace equivalent migration.

Developed lookahead trace based consistency models with varying flexibility

Demonstrated dynamic migration scenarios requiring future-based consistency
notion, in contrast to trace based models

Algorithms for computing lookahead consistent markings, and inferences regarding
the class of consistency

Support vs. enforcement of lookahead trace executions;
Practical migration situation requiring lookahead enforcement

Future Works

3
rd

APS

Consistency Models and Change Regions

Extending the scope of Yo-Yo Algorithm

Dynamic instance migration in distributed execution
environment

Publications & Paper Presentations

3
rd

APS

1. [Full paper] Lookahead Consistency Models for Dynamic Migration of Workflow Processes
: In Proceedings of the International Workshop on Petri Nets and Software Engineering (PNSE'15), A
satellite event of the conference: 36th International Conference on Application and Theory of Petri
Nets and Concurrency 2015, Brussels, Belgium, pp: 267-286, June 22-23, 2015.

2. [Full paper] Catalog-based Token Transportation in Acyclic Block-Structured WF-nets
: In Proceedings of the International Workshop on Petri Nets and Software Engineering
(PNSE'15), A satellite event of the conference: 36th International Conference on Application and
Theory of Petri Nets and Concurrency 2015, Brussels, Belgium, pp: 287-307, June 22-23, 2015.

3. [Poster] Architecture of a light-weight non-threaded event oriented workflow engine
: In Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems, DEBS
'14, Mumbai, India, pp: 342-345, May 26-29, 2014.

4. [Short paper] Token transportation in Petri net models of workflow patterns
: In Proceedings of the 7th India Software Engineering Conference, Chennai, ISEC '14, Chennai, India,
pp: 17:1-17:6, February 19-21, 2014.

3
rd

APS

THANK YOU

