
A Theory of Dynamic Evolution in Petri Net
Models of Business Processes

Presynopsis presentation

by

Ahana Pradhan

under the guidance of

Prof. Rushikesh K. Joshi

Department of Computer Science and Engineering, IIT Bombay
August, 2016

Presynopsis: Dynamic Evolution in Petri Net Business Processes 1

• Complex Flow of activities to achieve a business goal of an
Organization

• Examples:

• Activities in business process: manual tasks, user assisted
automated tasks, web-services, other business processes etc.

Presynopsis: Dynamic Evolution in Petri Net Business Processes 2

Business Processes

Domain Business Process

Finance Billing Process

Human Resource Management Vacation Request/Approval Process

Banking Account Opening Process

E-commerce Product Delivery Process

Travel Ticket Booking Process

Manufacturing Product Assembly Process

Public Service Passport Application Process

Academic Admission Process

Presynopsis: Dynamic Evolution in Petri Net Business Processes 3

Business Processes Modeling

Common
Orientation

Talks

Product-range
acquaintance

Associate with
Customer talks

Associate with
requirement

collection team

Associate with
requirement

refinement team

Associate with
Project Initiator

team

Product
Introduction

Associate with
Modeling team

Associate with
testing team

Associate with
Interface Design

team

Common Exit
Talks

Training Process

For batch of Fresh Recruits

Marketing trainee

Design trainee

Ready to participate
In Project Initiation?

Yes

No

Presynopsis: Dynamic Evolution in Petri Net Business Processes 4

Dynamic Evolution in Business Processes

Common
Orientation

Talks

Product-range
acquaintance

Associate with
Customer talks

Associate with
requirement

collection team

Associate with
Project Initiator

team

Product
Introduction

Associate with
Modeling team

Associate with
testing team

Associate with
Interface Design

team

Common Exit
Talks

Evolved Training Process

Marketing trainee

Design trainee

Ready to participate
In Project Initiation? Yes

No

• Design trainees need to know requirement

• Separate training for testers

Testing trainee

Associate with
Bug report team

Associate with
Deployment

team

Associate with
requirement

refinement team

Requires migration of

old process

Instances to the new

one so that

Trainees continue in

the new program

With the partially

completed old training

Presynopsis: Dynamic Evolution in Petri Net Business Processes 5

Motivations
• Various approaches exist for model specific solutions

• Different situations require different notions of correctness

• Subtle interplays among notion of correctness, available algorithms and concepts not classified so far

• Requires consolidation of theoretical approaches to move forward in the research field

• Solutions not practice since theory has not developed enough

• Challenging problems in theory

Problem Statement
• Given old and new schema, explore the problem of state-transfer under different notions of

correctness

• Algorithmic solution to state-transfer that avoids state-space search

• Theoretical approach general enough to adapt in different modeling approaches

• Explore properties and proofs related to the problem

Scope and Assumptions
• Control-flow structure of business processes

• Schema structures are correct

• Original and Evolved schema are provided

• Well-formed schema

Presynopsis: Dynamic Evolution in Petri Net Business Processes 6

Not in Scope

Access control and user perspectives, Data-flow concerns, Methodology
involved in evolution, Unstructured workflows, Deployment issues

Presynopsis: Dynamic Evolution in Petri Net Business Processes 7

Contributions
Algorithms
YoYo algorithm for instance migration
Algorithm for weak lookahead
Accept/reject branching algorithm for strong lookahead
PSCR computation algorithm
Change region computation algorithm
Distributed change region computation algorithm

Taxonomy Framework for
Consistency Models
Structural equivalence
Trail-based models

history equivalence
trace equivalence
purged-history equivalence
purged-trace equivalence

Live model
Lookahead models

strong
accommodative
weak

Properties
YoYo compatibility, peer patterns
Generator of Concurrent Submarking (GCS)
Dysfunctional C-tree and Break-off Set
Marking Preserving Embedding (MPE)
Change properties
Perfect Member and Overestimation
Perfect Structural Change Region (PSCR)
Fragmentation

Proofs
Non-migratability lemma
Perfect Member lemma
Overestimation lemma
SCR & PSCR lemma
Proof of correctness for algorithms

Workflow Specification Languages
CWS, ECWS

Representation Techniques for
Analysis & Application
C-tree, Derivation Tree
Token transportation catalog
Token transportation bridge

New Consistency Models
Strong lookahead
Accommodative lookahead
Weak lookahead

Notions of Consistency

Presynopsis: Dynamic Evolution in Petri Net Business Processes 8

Consistency:
Formal criteria of correctness of instance migration
(state-transfer/token transportation)

State:
Marking in
Petri net models

Old and New markings
can be considered as
migration equivalent (consistent)
in various ways

Taxonomy and New Models of Consistency
Consistency Models Parameters

Past
based

Present
based

Future based Trace based Structure
basedequal subset superset Set

based
Sequence
based

purged

Structural equivalence

Trace equivalence

History equivalence

Purged-trace eq.

Purged-history eq.

Live

Strong lookahead

Accommodative
lookahead

Weak lookahead

Presynopsis: Dynamic Evolution in Petri Net Business Processes 9

Dynamic Instance Migration

Presynopsis: Dynamic Evolution in Petri Net Business Processes 10

State-transfer Approach Vs. Change Region Approach

Marking
Transfers as it is
Outside change region,
No consistent migration
Inside change region
(no explicit state-transfer)

Marking
Transfers
From old to new
Net explicitly
as per the
Chosen
Consistency
model Old ticket booking process

New ticket booking process

Dynamic Instance Migration

Presynopsis: Dynamic Evolution in Petri Net Business Processes 11

Citation to the
Literature

Consistency State-transfer Change Region

Ellis et al. 1995, ACM
COCS

Trace
Equivalence

Some marking
to Some
marking

Inside: non-migratable/ migration to different marking
Outside: migration as it is
Construction: Not specified (intuition given for SESE region)

Van der Aalst, 2001,
Info. Sys. Frontiers
(Springer)

Live Consistency Some marking
to
Same marking

Inside: non-migratable/migration as it is
Outside: migration as it is
Construction: minimal SESE region covering structural changes
(modified SESE reg. black box, same state-space outside)

Sun et al., 2009,
Info. Soft. Tech.
(Elsevier)

Purged History
Equivalence

Some marking
to Some
marking

Inside: non-migratable/ migration to different marking
Outside: migration as it is if every marking inside change region is migratable
Construction: minimal SESE region covering structural changes

Cicirelli et al., 2010, J.
Sys. Soft. (Elsevier)

History
Equivalence

Some marking
to
Same marking

Van der Aalst, 2001

Zou et al., 2010, IEEE
Advanced. Serv.
Comp.

Trace
Equivalence

Some marking
to Some
marking

Inside: non-migratable/ migration to different marking
Outside: migration as it is
Construction: Van der Aalst, 2001

Hens et al.,2014, J.
Sys. Soft. (Elsevier)

Live Consistency Some marking
to
Same marking

Van der Aalst, 2001

Migration to same
marking is Live
Consistency

migration to different
marking inside Change
region violates Live
consistency

Structural changes may
retain state-reachability,
e.g. loop to xor

For SESE change region,
Migration as it is
outside Change region
may violate
Trace/history based
consistency
e.g. downstream the
change region

State-transfer Approach

Presynopsis: Dynamic Evolution in Petri Net Business Processes 12

History: t1, t2, t3

History Equivalence Consistency Model

Consistency
preservation of history (done
tasks in old ↔ done tasks in
new)

Validity
reachability of marking in the
new net

Inconsistent! Invalid!

Correct

Done task tx

Done task ty
Missing token in
parallel branch

Presynopsis: Dynamic Evolution in Petri Net Business Processes 13

Yo-Yo Approach

Token transportation by: Folding, transport, Unfolding

Pre-computed transportation

Old Net:

New Net:

YoYo Approach

Presynopsis: Dynamic Evolution in Petri Net Business Processes 14

Yo-Yo Approach: Folding

Old Net:

New Net:

Folding

Presynopsis: Dynamic Evolution in Petri Net Business Processes 15

Transport: Step 1

Old Net:

New Net:

transport

Transport & Unfolding

Presynopsis: Dynamic Evolution in Petri Net Business Processes 16

Unfolding and Transport: Step 2

Old Net:

New Net:

transport

Transport & Unfolding

Presynopsis: Dynamic Evolution in Petri Net Business Processes 17

Unfolding and Transport: Step 3

Old Net:

New Net:
transport

Transport & Unfolding

Presynopsis: Dynamic Evolution in Petri Net Business Processes 18

Unfolding: Step 4

Old Net:

New Net:
No transport required

Transport & Unfolding

Presynopsis: Dynamic Evolution in Petri Net Business Processes 19

CW

SEQ: tx ty

AND: (tx) (ty)

XOR: [tx] [ty]

Pattern Specification Net Model

CWS Grammar

Folding steps

follow such

order of derivation..

Example:

Presynopsis: Dynamic Evolution in Petri Net Business Processes 20

Start SEQ;
SEQ SEQ t SEQ t SEQ

| SEQ AND SEQ
| SEQ XOR SEQ | e

AND (SEQ t SEQ) (SEQ t SEQ)
XOR [SEQ t SEQ] [SEQ t SEQ]

Acyclic Workflow nets
Even no. of transitions

Derivation Trees

Primitive Block Derivation Tree

p1

p1

p1

p1

p1

p1

p2

p2

p3

p3

p3

p3

p3

p3

q1 q2

q3 q4

q1

q1

q1

q2

q2

q2

q3

q3

q3

q4

q4

q4

Derivation Tree

Presynopsis: Dynamic Evolution in Petri Net Business Processes 21

Colored Derivation Trees

Node Type Description

Leaf/Non-leaf Unmarked folded/unfolded place

Leaf marked place in net

Non-leaf abstraction of null-executed subnet

Non-leaf abstraction of subnets where at least one
labeled transition has been fired

Red node:

Color parent red

Black node:

Check if any

transition Sibling

has color at

right,

If yes, color

parent red; Else

color parent

black

Colored Derivation Tree

Presynopsis: Dynamic Evolution in Petri Net Business Processes 22

Yo-Yo compatibility

t1 { t2 { t3, t4 } , { t5, t6 } t7 } t8 t1 t2 t3 t4 { t5, t6 } t7 t8

Both can generate the same sequence t1 t2 t3 t4 t5 t6 t7 t8 Folding order exists

r1 r2

Yield of r1 = Yield of r2 =

YoYo Compatibility

Presynopsis: Dynamic Evolution in Petri Net Business Processes 23

Folding order

P1

P2

P3 P4

P1`

P2`

P3`

P4`

+ =

P1 – P1`

P3 – P3`

P2 – P2`

P4 – P4`

P1

P2

P3 P4

P1`

P2`

P3`

P4`

Folding Order

Presynopsis: Dynamic Evolution in Petri Net Business Processes 24

Common derivation
Order w.r.t. peer patterns

Token Transportation CatalogToken Transportation Catalog

Presynopsis: Dynamic Evolution in Petri Net Business Processes 25

Every possible
Color-mapping
Between peer patterns

Yo-Yo Algorithm

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

F

YoYo Algorithm

Presynopsis: Dynamic Evolution in Petri Net Business Processes 26

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

F

YoYo Algorithm

Presynopsis: Dynamic Evolution in Petri Net Business Processes 27

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

F

YoYo Algorithm

Presynopsis: Dynamic Evolution in Petri Net Business Processes 28

Yo-Yo Algorithm

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

F

YoYo Algorithm

Presynopsis: Dynamic Evolution in Petri Net Business Processes 29

1. Color old tree
2. <p-q> be 1st peer patterns

to appear in folding order F
3. Color transfer between p, q
4. for each next <p-q> in F,

if q has colored root,
if p is colored,

color transfer between p, q
else
localPropagation(q)

false

F

YoYo Algorithm

Presynopsis: Dynamic Evolution in Petri Net Business Processes 30

Yo-Yo Algorithm

Input

Output

Token

transportation

Max. no. of Transportation Steps = no. of patterns (linear time complexity)

YoYo Algorithm

Presynopsis: Dynamic Evolution in Petri Net Business Processes 31

Catalog Completeness:

Token transportation catalog is complete w.r.t. the 6 change patterns

Lemma 1:

For two Yo-Yo compatible derivation trees, consistent coloring between the top peer patterns

guaranties consistent coloring between their immediate child peer patterns

Lemma 2:

Lemma 1 can be repeated for all parent-child peer pairs across two Yo-Yo compatible derivation

trees

Correctness Proof

Presynopsis: Dynamic Evolution in Petri Net Business Processes 32

Lookahead Trace based Consistency

Consistency Model Name Description

Strong Lookahead same lookahead trace sets of
consistent marking

Accommodative Lookahead old lookahead trace set preserved
in new

Weak Lookahead at least one old lookahead trace
preserved in new

accommodative

strong

Weak

Lookahead Consistency Models

Presynopsis: Dynamic Evolution in Petri Net Business Processes 33

State-transfer Algorithms:
1. Determine existence of Weak Lookahead
2. Inferences about Strong/Accommodative Lookahead
3. Given Accommodative Lookahead, enforce Strong Lookahead

Lookahead Trace based Consistency
Gist of State-transfer Approaches

Presynopsis: Dynamic Evolution in Petri Net Business Processes 34

Petri Net is not trace-accumulative model, needs some kind of trace-replay in order to obtain

trace-based consistent migrations

YoYo algorithm (for existing model of consistency)
Vertical trace-reply (through hierarchy of derivation tree) in comparison to traditional horizontal trace-replay (token game)

Efficient due to ready-made solutions (catalog)

Restricted scope to CWS-nets and pattern changes

Lookahead algorithms (for new models of consistency) based on trace-reply

Change Region Approach

Presynopsis: Dynamic Evolution in Petri Net Business Processes 35

p6

p1

p2

p3

p4 p5

p8

p7

p9

p10t1

t9

t7

t8
t6

t5t4t3

t2

p6

p1

p2

p3

p4 p5 p7

t7t6t5t4t3

t1 t2

Old Net

New Net

Live Consistency Model

Presynopsis: Dynamic Evolution in Petri Net Business Processes 36

Two consistent markings have the

Same set of Marked places

p6

p1

p2

p3

p4 p5

p8

p7

p9

p10t1

t9

t7

t8
t6

t5t4t3

t2

p6

p1

p2

p3

p4 p5 p7

t7t6t5t4t3

t1 t2

Change Region

Presynopsis: Dynamic Evolution in Petri Net Business Processes 37

When available

before

Migration of

hundreds of

active instances,

One can know

which of them

can be

Migrated safely

and immediately

Without

consulting the

state space!

p1 p2

p3
p4 p5

p6 p8
p7 p8

p10 p7 p9
p6 p9

t1 t2

t3 t4 t5

t7
t6

t7
t8

t8t9

p1 p2

p3
p4 p5

p6

t1 t2

t3 t4 t5

t7
t6

p7

Set of places that causes non-migratable markings

Old State Space

(green states are immediately migratable,i.e. have consistency mappings)

New State Space

Existing Approach

Presynopsis: Dynamic Evolution in Petri Net Business Processes 38

Change Region:

Smallest SESE region covering

Structural changes

(Reasoning:

Whatever change in happens to

State-space, remains confined in

This region)

No change in

Reachable states

In the state-space

False-negatives!

Our Approach

Presynopsis: Dynamic Evolution in Petri Net Business Processes 39

• Structural Model of all possible markings – C-tree

• Analyze causes of non-migratability – Change Properties

• When false-negatives are unavoidable? – overestimation

• Change region devoid of overestimation – PSCR

• Computation of PSCR through change properties

Sequence

Parallel (AND)

Choice (XOR)

Loop

p1

p2
p3 p1

p2

p2
p1

p1

p2
p3

p4 p5

p6

t1

t2t1

t1

t2

t2

t2

t1

t3

t4

p1 t1 p2 t2 p3

p1 [t1] [t2] p2

p1 t1 (p2 t2 p3) (p4 t3 p5) t4 p6 { p1 t1 p2 } { t2 }

ECWS Grammar for Workflow Nets

Presynopsis: Dynamic Evolution in Petri Net Business Processes 40

Net Pnet
Pnet PLACE

| Pnet TRANS PLACE
| Pnet TRANS loop TRANS Pnet
| Pnet TRANS and TRANS Pnet
| Pnet xor Pnet

Tnet TRANS | TRANS Pnet TRANS
loop { Pnet } { Pnet }
xor [Tnet] [Tnet] | [Tnet] xor
and (Pnet) (Pnet) | (Pnet) and

Conjoint Tree (C-tree) abstracts all markings structurally:

efficient to compare the old and the new set of markings

Hierarchy of Nested Concurrency

1. sequential places at root

2. Concurrent places at non-root

3. C-block (□) for every AND-block

4. Children of a C-block are AND-branches

5. Recursive structure for nested-AND

6. Places (and C-blocks) in parent-child nodes

are non-concurrent to each other

(also places in same node are non-concurrent)

Net Structure

C-tree

Structure

Presynopsis: Dynamic Evolution in Petri Net Business Processes 41

Generator of Concurrent Submarking (GCS):
captures the concurrent part of the net w.r.t. a place

Marking { p16, p15, p9 }

is reachable from

initial marking { p1 }

GCS is used to generate

Reachable Markings

GCS is the key to identify any

change happened in the

Concurrency when two nets

are considered

Presynopsis: Dynamic Evolution in Petri Net Business Processes 42

Dysfunctional C-tree & Break-off Set

Presynopsis: Dynamic Evolution in Petri Net Business Processes 43

p1 t1 {p2}{t2 p3 t3} t4 (p4 t5 (p5 t6 p7)(p6 t7 p8) t8 p9)(p10 t9 p11) t10 p12

Net Structure

ECWS spec

C-tree

Dysfunctional C-tree,

Break-off set:

{p1,p2,p3,p4,p6,p8,p9,p12}

If after removal of some

places from a C-tree, the

mutated C-tree cannot

generate a marking that

can be generated from

the original C-tree, the

mutated C-tree is called

dysfunctional, and the

set of places removal of

which renders the tree

dysfunctional is called as

a break-off set for that

C-tree.
Empty path from

Root to leaf

Marking Preserving Embedding (MPE)

Presynopsis: Dynamic Evolution in Petri Net Business Processes 44

Non-migratability Lemma:

Given two C-trees C and C’, if an MPE of C in C’ does not exists, then at least one marking constructible

from C cannot be constructed from C’. The converse is also true.

Definition:

An MPE of C in C’ is a

mapping from C to C’

defined recursively: (i)

places(root(C)) is subset

of places(root(C’)), and (ii)

C-blocks in root(C) are

injectively mapped to

C-blocks in root(C’)
such that within each

C-block to C-block

mapping pair (b,b’), there

is a bijective MPE of the

children C-trees of b to

those of b’.

Effect of Concurrency of a place on Migratability

Case id Concurrent in Old Net Concurrent in New Net Migratability

C1 Conditionally Migratable

C2 Non-migratable

C3 Non-migratable

C4 Migratable

C5 Don’t care Absent Non-migratable

Presynopsis: Dynamic Evolution in Petri Net Business Processes 45

Example:

C1: {p1,p2} {p1,p2}; {p1,p2} {p1,p2,p3}….

C2: {p1,p2} {p1}

C3: {p1} {p1,p2}

C4: {p1} {p1}

C5: {p1} or {p1,p2} no marking with p1 available

A concurrent place has more than

one marking in an ECWS-net

A non-concurrent place has only one

marking in an ECWS-net

Change Properties

Presynopsis: Dynamic Evolution in Petri Net Business Processes 46

(C1.2) Strong Reformed Concurrency

(i) p is in concurrent markings in N and N’ (p in non-root nodes both in C and C’)

(ii) all concurrent markings involving p in N are not reachable in C’. (either the set of places {places(GCS(p,C)) -
places(GCS(p,C’))} is a break-off set w.r.t. C-tree GCS(p,C), or the set of places {places(GCS(p,C’)) - places(GCS(p,C))}
is a break-off set w.r.t. C-tree GCS(p,C’).)

Justification: p in non-root nodes implies involvement in concurrency. When condition is satisfied, it means that the places which

are concurrent to p in both nets are not capable of generating any common valid marking involving p.

(C1.1) Weak Reformed Concurrency

(i) p is in concurrent markings in both N and N’ (p in non-root nodes in both C and C’)

(ii) at least one concurrent marking involving p in N is not reachable in N’ due to addition or reduction of

concurrency of p (GCS(p,C) does not have an MPE in GCS(p,C’).)

(C5) Removal

No marking involving p is reachable in N’. (p is present in C, p is absent in C’).

(C2) Lost Concurrency

Markings involving p are concurrent in N but not in N’ (p in a non-root node in C but in the root node in C’).

(C3) Acquired Concurrency

Only one standalone marking involving p in N, but concurrent markings in N’ (p is in root node of C but in a non-

root node in C’).

Old net N, New net N’,
Old C-tree C, New C-tree C’
p is the place to be inspected for its effect on non-migratability

Characterization of Change Region

Presynopsis: Dynamic Evolution in Petri Net Business Processes 47

Structural Change Region (SCR)

Given a migration net pair N and N’, SCR(N,N’) is a subset of places in N s.t.

for every non-migratable marking M from N to N’, M includes a member from SCR(N,N’).

Perfect Structural Change Region (PSCR)

Given a migration net pair N and N’, PSCR(N,N’) is a subset of places in N s.t.

i. for every place p in PSCR(N,N’), there exists a non-migratable marking from N to N’ involving p,

ii. for every non-migratable marking M from N to N’, M includes a member from PSCR(N,N’).

Perfect Member

A place p in the old net N is a perfect member in N, w.r.t. the new net N’ iff all markings in N involving p are non-

migratable.

Overestimation

A place p in the old net N is an overestimation w.r.t. the new net N’, iff there exists a migratable marking and also

a non-migratable marking involving p in N.

Safe Member

A place p in the old net N is a safe member w.r.t. the new net N’, iff every marking involving p in N is migratable.

Change Region Lemmas

Presynopsis: Dynamic Evolution in Petri Net Business Processes 48

SCR Lemma

The union of all overestimations and all perfect members in old net N w.r.t. new net N’ is SCR in N w.r.t. N’.

PSCR Lemma

PSCR exists in a given old net N w.r.t. new net N’

iff every non-migratable marking in N includes at least one perfect member.
(the proof constructs the set of perfect members as the PSCR)

Perfect Member Lemma

If a place p in old net N satisfies one of Removal, Lost Concurrency, Acquired Concurrency and Strong

Reformed Concurrency w.r.t. new net N’, then the place is a perfect member and vice-versa.

Overestimation Lemma

If a place p in old net N satisfies Weak Reformed Concurrency but not Strong Reformed Concurrency w.r.t. new

net N’, it is an overestimation w.r.t. N’ and the vice-versa.

Computation of PSCR

Presynopsis: Dynamic Evolution in Petri Net Business Processes 49

C has markings without

Perfect Members

C’ has markings without

Perfect Members

All markings without Perfect Members in C can

be generated from C’

PSCR

Exists

Perf is break-off set for C

Don’t care Don’t care

Perf is not break-off set for C

Perf is break-off set for C’

Don’t care

Perf is not break-off set for C

Perf is not break-off set for C’

delete(C,Perf) doesn’t have MPE in delete(C’,Perf)

Perf is not break-off set for C

Perf is not break-off set for C’

delete(C,Perf) has a MPE in delete(C’,Perf)

Old C-tree C, New C-tree C’, set of Perfect Members in C w.r.t. C’ be Perf.

If there is no overestimation in C, PSCR Perf.

Else if PSCR exists as per the following table, PSCR Perf.

Experimental Results

Presynopsis: Dynamic Evolution in Petri Net Business Processes 50

Training Process

Hypothetical Process

Claims Process

Distributed Business Processes

Presynopsis: Dynamic Evolution in Petri Net Business Processes 51

• Business processes often cross departments, organizations

• Distributed deployments lack centralized view

• Individual process-fragments may evolve independently

• Individual change regions can be globally conflicting

Employee Transfer Process

Fragmented Net has no Global View

C-tree nodes are split, but fan-out of C-blocks doesn’t change

Places with one

pre- and post-

transitions in the

global net are

Eligible to be

boundaries

Presynopsis: Dynamic Evolution in Petri Net Business Processes 52

Inspection of Places

1. { p3 } no marking with p3 available (deleted)

2. { p1 } { p1, _ } (root non-root)

3. { p2, _ } { p2 } (non-root root)

4. { q3, _ } { q3, _ }, but { q3, p2 } not available (places of old GCS missing in new)

5. { q8, _ } { q8, _ , _ } (new branches in GCS)

Change Region Computation when centralized view is available (includes overestimates)

p1
p2

p3

q1 q2

q3 q4 q5

q6 q7

q8 q9
q10

p1

p2 p4

p5 p6
q2q1 p7

q3 q4 q5
q6 q7

q8 q9

q10

p1 p3 q10

q1
p2 q2 q6

q7

q3
q4 q5

q8
q9

p2 p4 q10

q1 p7
p1 q2 q6

q7

q3
q4 q5

q8
q9

p5
p6

C
h

an
ge

 in

G
C

S

Presynopsis: Dynamic Evolution in Petri Net Business Processes 53

Assumptions

A place does not jump to another fragment (root non-root locally visible)

No boundary place becomes internal

Deletion of boundary is consistent between peer fragments

Effect of Fragmentation

p1

p1

p2

p2

p3

p4

p5 p6

q1 q2

q2q1 p7

q3 q5

q3 q5

q6 q7

q6 q7
q8 q9

q8 q9
q10

q10

p1 p3

q1
p2 q2 q6

q7

q3 q5 q8
q9

p2 p4

q1 p7
p1 q2 q6

q7

q3 q5 q8
q9

p5
p6

q3 q4 q5

q3 q4 q5

q8 q9

q8 q9

p3

p4

p10 p3

p10 p4

q8
q9

q8
q9

q3 q4 q5

q3 q4
q5

GCS change
not visible

GCS change visible

(place deletion locally visible)

Presynopsis: Dynamic Evolution in Petri Net Business Processes 54

Conflict resolution between fragments using boundaries

p1 p2 p3 p4

p5 p6 p7..

p1 p2 p3 p3 p4

p5

p4 p6

p7 …

Remaining

C-tree
Remaining

C-tree

p1 p2 p3 p4

p5 p6 p7..
p1 p2 p3 p3 p4

p5

p4 p6

p7 …

(bold labels are for boundaries)

Changed

Remaining C-

tree

Changed

Remaining

C-tree

O
ld

 N
e
t

N
e
w

 N
e
t

Detects

GCS

change

GCS change is same for

p1, p2, p3, p4, p5, p6, p7, …

since they are together

before and after the change

Global View Fragmented View

p1 p2 p3 p3p3 p4

p5

p4p4 p6

p7 …

Presynopsis: Dynamic Evolution in Petri Net Business Processes 55

Only Accounts and

Reporting Section

Receives change spec.

Presynopsis: Dynamic Evolution in Petri Net Business Processes 56

Fragmented Process:
Employee Transfer

The Distributed Algorithm using Asynchronous Events:
Hierarchical CPN based description

e n d

In itia tio n R o u n d

IR

R e c e iv e B o u n d a ry

N o tific a tio n s

R c v B NR c v B N

In itia l C R , B ro a d c a s t

B o u n d a ry N o tific a tio n s

IC B B NIC B B N

C o n flic t R e s o lu tio n

C o n flc tR

T e rm in a tio n

T e rm N tnT e rm N tn

C o n flc tR

IR

EVENT TYPES Color definitions.

Event parameters values in tokens

Presynopsis: Dynamic Evolution in Petri Net Business Processes 57

Event Substrate: example for EVOLVE event type

c o lo r E V O L V E is

IN T x IN T ;

v a r e id : IN T ,

re p re s e n ts

e v o lu t io n id ;

v a r c : IN T ,

re p re s e n ts

th e n u m b e r

o f c h a n g in g

fra g m e n ts ;

..o th e r

k -3 n o tif ic a t io n

b u ffe rs

. . . to o th e r

n o tif ic a t io n

 b u ffe rs

... to o th e r

n o tif ic a t io n

b u ffe rs

...o th e r k -2

b ro a d c a s t m e d iu m s

E V O L V E _

B ro a d c a s t_ m e d iu m _ 1

E B B M 1

E V O L V E

E B B M 1

E V O L V E _

N o tif ic a tio n _ b u ffe r_ 2

E N B 2

E V O L V E

E N B 2

E V O L V E _

N o tif ic a t io n _ b u ffe r_ k

E N B k

E V O L V E

E N B k

E V O L V E _

B ro a d c a s t_ m e d iu m _ k

E B B M k

E V O L V E

E B B M k

E V O L V E _

N o tif ic a t io n _ b u ffe r_ 1

E N B 1

E V O L V E

E N B 1

E V O L V E _

s u b s tra te _ 1

E V O L V E _

s u b s tra te _ k

(e id ,c)

(e id ,c)

(e id ,c)

(e id ,c)

(e id ,c)

(e id ,c)

Presynopsis: Dynamic Evolution in Petri Net Business Processes 58

Initiation Round (Module 1)

IN T

R E N

e n a b le d

R c v B N

O u tO u t

E V O L V E _

N o tific a tio n _ b u ffe r

(E N B)E N B 1

E V O L V E

E N B 1

IN IT IA T E _

N o tific a tio n _ b u ffe r

(IN B)

IN IT IA T E

e n a b le d

IC B B N

O u tO u t

N F

N e w F ra g

F R A G

N e w F ra g

E V O L V E _

B ro a d c a s t_ m e d iu m

(E B M)
E B B M 1

E V O L V E

E B B M 1E V O L V E

P A IR

p u b lis h

E V O L V E

[n = c ,n > 0]

(e id ,c)

(f ',e id ,c)

f'

c

c

(e id ,c)

(e id ,c) (e id ,c)

c

(n + 1 ,c)

(n ,x)

(n ,c)

1

1 `(0 ,0)

Rendezvous

Presynopsis: Dynamic Evolution in Petri Net Business Processes 59

Initiation Round (Module 1)

Presynopsis: Dynamic Evolution in Petri Net Business Processes 60

Initial Change Region, Broadcast Boundary Notifications (Module 2)

S h B is c o n s ta n t v a lu e , th e lis t o f b o u n d a ry p la c e s in th e o ld fra g m e n t.

B o u n d a ry

S A F E s

P L A C E S E T

B o u n d a ry

C R s

P L A C E S E T

C R _ B _

B ro a d c a s t_ m e d iu m

C R B B B M 1

C R _ B

C R B B B M 1

e n a b le d

IC B B N

InIn

IC B B N

c o m p le te

O u tO u t

S A F E _ B _

B ro a d c a s t_ m e d iu m

S B B B M 1

S A F E _ B

S B B B M 1

S A F E

L o c a lS a fe

P L A C E S E T

L o c a lS a fe

C R

L o c a lC R

P L A C E S E T

L o c a lC R

o ld

fra g m e n t

F R A G

n e w

fra g m e n t

N e w F ra g

F R A G

N e w F ra g

lo c a l

re s u lt

C R n S A F E

p u b lis h C R _ B

p u b lis h S A F E _ B

c rb s e t

s a fe b s e t

c rb s e t

s a fe b s e t

s

in te rs e c t

s S h B

in te rs e c t

s S h B

c o m p u te C R (f, f ')

f

f '

s

(c rs e t,s a fe s e t)

s a fe s e t

c rs e t

1
1 ` "y e s "

Can be empty set

Local
Change
Region
Computation

Presynopsis: Dynamic Evolution in Petri Net Business Processes 61

Receive Boundary Notifications (Module 3)

k is c o n s ta n t

v a lu e , th e to ta l

n u m b e r o f

p a rt ic ip a n ts

in th e a lg o

S A F E _ B _

N o tif ic a t io n _ b u ffe r

S B N B 1

S A F E _ B

S B N B 1

e n a b le d

R c v B N
InIn

R c v B N

c o m p le te
O u tO u t

C R _ B _

N o tif ic a t io n _ b u ffe r

C R B N B 1

C R _ B

C R B N B 1

C R _ e x t

C R e x t

P L A C E S E T

C R e x t

S A F E _ e x t

S F e x t

P L A C E S E T

S F e x t

re c e iv e d

C R _ B

re c e iv e d

S A F E _ B

(k -1)`()

(k -1)`()

s a fe b s e t

c rb s e t

in te rs e c t S h B (u n io n s c rb s e t)

in te rs e c t S h B (u n io n s s a fe b s e t)

s

s

1
1 `[]

1 1 `[]

p4, p8

p4
Records remote-status of

Local boundaries, ignores other

Incoming parameters

Presynopsis: Dynamic Evolution in Petri Net Business Processes 62

Initial Change Region, Broadcast Boundary Notifications,
Receive Boundary Notifications (Modules 2+3)

p4, p18, p12

p10, p18, p16

p8, p10

p16, p12

p4, p8

p4 p18

p12 p12

p16

p10

p18p16

p8

p4

p10p8

Conflict! (locally safe, remotely unsafe)

Presynopsis: Dynamic Evolution in Petri Net Business Processes 63

Conflict Resolution (Module 4)

P L A C E S E T

N O C H A N G E _

c o u n te r

N O C C

IN T

C H A N G E _

B ro a d c a s t_ m e d iu m

C B M 1

C H A N G E

N O C H A N G E _

B ro a d c a s t_ m e d iu m

N O C B M 1

N O C H A N G E

S A F E

L o c a lS a fe

P L A C E S E T

C R _ e x t

C R e x t

P L A C E S E T

C RL o c a lC R

P L A C E S E T

e n a b le d

C o n f lc tR

In

e n a b le d

T e rm N tn

O u t

[n o t (a = [])]

p u b l is h

N O C H A N G E

p u b lis h

C H A N G E

in te rs e c t

c rx s f

a

t

1 `0
x + 1x

s f

1 ` []

c h a n g e d

P L A C E S E T

re c t i fy C R (a)

P L A C E S E T

a

s

P L A C E S E T

s

P L A C E S E T

tin te rs e c t s S h B

a s

S A F E L o c a lS a fe

P L A C E S E T

c rs e t s a fe s e t

u n io n c rs e t (u n io n a s) u n io n s a fe s e t (u n io n a s)

c rx

N O C C

N O C B M 1

O u t

C B M 1

C R e x t

In

L o c a lS a fe

L o c a lC R L o c a lS a fe

1

1 `0

1

1 ` []

If a safe boundary & other relevant

places are made unsafe,

CHANGE event is published with

additional boundaries that

became unsafe

Can be
empty set

Presynopsis: Dynamic Evolution in Petri Net Business Processes 64

Termination (Module 5)

N O C H A N G E _

c o u n te r

N O C C

IN T

S A F E

L o c a lS a fe

P L A C E S E T

C R _ e x t

C R e x t

P L A C E S E T

C R e x t

N o t if ic a t io n

C o u n te r

e n d

O u t

N O C H A N G E _

N o tif ic a t io n _ b u ffe r

N O C N B 1

N O C H A N G E

e n a b le d

C o n f lc tR

O u tO u t

e n a b le d

T e rm N tn

In

c h o ic e o f

lo o p in g

C H A N G E _

N o tif ic a t io n _ b u ffe r

C N B 1

C H A N G E

re c e iv e d

N O C H A N G E

s ta rt o v e r

[x < k]

re c iv e d

C H A N G E

u n io n (in te rs e c t s f a e x t) c rx

s f

x + 1
x

x

c rx

1 `k

1 `0

(k -1)`()

a e x t

1 `0

N O C N B 1

N O C C

L o c a lS a fe

C N B 1

O u tIn

1

1 `0

1

1 `[]

Local boundaries

arriving with CHANGE event

are put in set CR_ext to

investigate further conflict

in next round of Module 4 (loop)

When everybody

sent NOCHANGE,

and the node itself

sent NOCHANGE in

Module 4,

Algorithm terminates

Presynopsis: Dynamic Evolution in Petri Net Business Processes 65

Conflict Resolution & Termination (Module 4+5)
(iteration 1)

Presynopsis: Dynamic Evolution in Petri Net Business Processes 66

Conflict Resolution & Termination (Module 4+5)
(iteration 2)

Presynopsis: Dynamic Evolution in Petri Net Business Processes 67

Result

In change reg.
Though no change
is made

Presynopsis: Dynamic Evolution in Petri Net Business Processes 68

Proof of Correctness

Presynopsis: Dynamic Evolution in Petri Net Business Processes 69

Lemma 1

The effect of deletion of a place in the change region in a fragment is fully covered by the fragment

in which the place is deleted.

Lemma 2

If there is any change in concurrency of a place in the global net, some fragment detects it.

Bounded Wait

Termination

Gist of Change Region Approach

Presynopsis: Dynamic Evolution in Petri Net Business Processes 70

• Focus on Marking Reachability (effect of changes) rather than structural changes

• Structural Modeling of markings through C-tree

• Capturing non-migratability through properties

• Approach restricted to structured nets (ECWS grammar)
structured AND is mandatory for C-tree construction, unstructured XOR, LOOP can be handled in C-tree since they are all sequential (w.r.t.

token game) regions. Specification through balanced parenthesis is convenient for programming.

• Centralized and Distributed Computation algorithms developed

Future Work

Presynopsis: Dynamic Evolution in Petri Net Business Processes 71

• Distributed instance migration

• Interplay among consistency models and change operations

• Extending the theory for unstructured workflows

• Implementation Issues

Publications

Presented Works:

• Distributed Change Region Detection in Dynamic Evolution of Fragmented Processes by Ahana Pradhan and
Rushikesh K. Joshi in the International Workshop on Petri Nets and Software Engineering 2016, co-located with the 37th International
Conference on Application and Theory of Petri Nets and Concurrency Petri Nets 2016 and the 16th International Conference on Application of
Concurrency to System Design ACSD 2016, Torun, Poland, June 20-21, 2016.

• Lookahead Consistency Models for Dynamic Migration of Workflow Processes by Ahana Pradhan and
Rushikesh K. Joshi in the International Workshop on Petri Nets and Software Engineering 2015, co-located with the 36th International
Conference on Application and Theory of Petri Nets and Concurrency Petri Nets 2015 and the 15th International Conference on Application of
Concurrency to System Design ACSD 2015, Brussels, Belgium, June 22-23, 2015.

• Catalog-based Token Transportation in Acyclic Block-Structured WF-nets by Ahana Pradhan and Rushikesh K.
Joshi in the International Workshop on Petri Nets and Software Engineering 2015, co-located with the 36th International Conference on
Application and Theory of Petri Nets and Concurrency Petri Nets 2015 and the 15th International Conference on Application of Concurrency to
System Design ACSD 2015, Brussels, Belgium, June 22-23, 2015.

• Token transportation in Petri net models of workflow patterns by Ahana Pradhan and Rushikesh K. Joshi in the 7th
India Software Engineering Conference 2014, Chennai, ISEC 2014, Chennai, India, February 19-21, 2014.

Unpublished Works:

• A Structural Approach to Dynamic Migration in Petri Net Models of Structured Workflows by Ahana Pradhan
and Rushikesh K. Joshi [under review in IEEE TSE]

• A Survey of Consistency Models for Dynamic Workflow Migration by Ahana Pradhan and Rushikesh K. Joshi [in
preparation]

Presynopsis: Dynamic Evolution in Petri Net Business Processes 72

Thank You

Presynopsis: Dynamic Evolution in Petri Net Business Processes 73

Presynopsis: Dynamic Evolution in Petri Net Business Processes 74

Outcomes
Algorithms
YoYo algorithm for instance migration
Algorithm for weak lookahead
Accept/reject branching algorithm for strong lookahead
PSCR computation algorithm
Change region computation algorithm
Distributed change region computation algorithm

Taxonomy Framework for
Consistency Models
Structural equivalence
Trail-based models

history equivalence
trace equivalence
purged-history equivalence
purged-trace equivalence

Live model
Lookahead models

strong
accommodative
weak

Properties
YoYo compatibility, peer patterns
Generator of Concurrent Submarking (GCS)
Dysfunctional C-tree and Break-off Set
Marking Preserving Embedding (MPE)
Change properties
Perfect Member and Overestimation
Perfect Structural Change Region (PSCR)
Fragmentation

Proofs
Non-migratability lemma
Perfect Member lemma
Overestimation lemma
SCR & PSCR lemma
Proof of correctness for algorithms

Workflow Specification Languages
CWS, ECWS

Representation Techniques for
Analysis & Application
C-tree, Derivation Tree
Token transportation catalog
Token transportation bridge

New Consistency Models
Strong lookahead
Accommodative lookahead
Weak lookahead

