CS310 : Automata Theory 2019

Lecture 37: Efficiency in computation

Instructor: S. Akshay

IITB, India

08-04-2019

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem
3. Applications: showing (un)decidability of other problems
(i) A string matching problem: Post's Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

Recap

Turing machines and computability

1. Turing machines
(i) Definition \& variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis
2. Undecidability
(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice's theorem
3. Applications: showing (un)decidability of other problems
(i) A string matching problem: Post's Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata
4. Efficiency in computation: run-time complexity.

Running Time Complexity

Given M a halting TM, running time of M is the function $f(n): \mathbb{N} \rightarrow \mathbb{N}$, which counts the maximum number of steps that M uses on any input of length n.

Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$. A language $L \subseteq \Sigma^{*}$ is said to be in $\operatorname{TIME}(t(n))$ if there exists a deterministic (halting) Turing machine M such that $\forall x \in \Sigma^{*}$ of length n, M halts on x within time $O(t(n))$.

Running Time Complexity

Given M a halting TM, running time of M is the function
$f(n): \mathbb{N} \rightarrow \mathbb{N}$, which counts the maximum number of steps that M uses on any input of length n.

- Worst-case complexity - longest running time of all inputs of length n (in this course, we consider this)
- Average-case complexity - average running time over all inputs of length n.

Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$. A language $L \subseteq \Sigma^{*}$ is said to be in $\operatorname{TIME}(t(n))$ if there exists a deterministic (halting) Turing machine M such that $\forall x \in \Sigma^{*}$ of length n, M halts on x within time $O(t(n))$.

Running Time Complexity

Given M a halting TM, running time of M is the function
$f(n): \mathbb{N} \rightarrow \mathbb{N}$, which counts the maximum number of steps that M uses on any input of length n.

- Worst-case complexity - longest running time of all inputs of length n (in this course, we consider this)
- Average-case complexity - average running time over all inputs of length n.

Let $t: \mathbb{N} \rightarrow \mathbb{R}^{+}$. A language $L \subseteq \Sigma^{*}$ is said to be in $\operatorname{TIME}(t(n))$ if there exists a deterministic (halting) Turing machine M such that $\forall x \in \Sigma^{*}$ of length n, M halts on x within time $O(t(n))$.
TIME $(t(n))$ is set of all languages decidable by a $O(t(n))$ TM

Multi-tape to single tape

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time multitape det TM has an equivalent $O\left(t^{2}(n)\right)$ time 1-tape det TM.

Multi-tape to single tape

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time multitape det TM has an equivalent $O\left(t^{2}(n)\right)$ time 1-tape det TM.
Proof: Given k-tape TM M running in $t(n)$ time, define 1-tape TM S :

Multi-tape to single tape

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time multitape det TM has an equivalent $O\left(t^{2}(n)\right)$ time 1-tape det TM.
Proof: Given k-tape TM M running in $t(n)$ time, define 1-tape TM S :

- Store k-tapes of M in 1-tape of S, with head positions marked.
- To simulate one-step of M,

Multi-tape to single tape

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time multitape det TM has an equivalent $O\left(t^{2}(n)\right)$ time 1-tape det TM.
Proof: Given k-tape TM M running in $t(n)$ time, define 1-tape TM S :

- Store k-tapes of M in 1-tape of S, with head positions marked.
- To simulate one-step of M,
- S scans all info on its tape to check all head positions
- then makes another pass over tape to update tape contents and head positions.
- If some head moves rightward into previously unread portion of tape in M, then in S, space allocated for that tape is increased by a right-shift of all content to right.

Multi-tape to single tape

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time multitape det TM has an equivalent $O\left(t^{2}(n)\right)$ time 1-tape det TM.
Proof: Given k-tape TM M running in $t(n)$ time, define 1-tape TM S :

- Store k-tapes of M in 1-tape of S, with head positions marked. $O(n)$
- To simulate one-step of M,
- S scans all info on its tape to check all head positions $O(t(n))$ steps
- then makes another pass over tape to update tape contents and head positions. $O(t(n))$ steps
- If some head moves rightward into previously unread portion of tape in M, then in S, space allocated for that tape is increased by a right-shift of all content to right.

Multi-tape to single tape

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time multitape det TM has an equivalent $O\left(t^{2}(n)\right)$ time 1-tape det TM.
Proof: Given k-tape TM M running in $t(n)$ time, define 1-tape TM S :

- Store k-tapes of M in 1-tape of S, with head positions marked. $O(n)$
- To simulate one-step of M,
- S scans all info on its tape to check all head positions $O(t(n))$ steps
- then makes another pass over tape to update tape contents and head positions. $O(t(n))$ steps
- If some head moves rightward into previously unread portion of tape in M, then in S, space allocated for that tape is increased by a right-shift of all content to right. k tapes $=k$ heads $=k \times O(t(n))$ steps

Multi-tape to single tape

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time multitape det TM has an equivalent $O\left(t^{2}(n)\right)$ time 1-tape det TM.
Proof: Given k-tape TM M running in $t(n)$ time, define 1-tape TM S :

- Store k-tapes of M in 1-tape of S, with head positions marked. $O(n)$
- To simulate one-step of $M, O(t(n))$
- S scans all info on its tape to check all head positions $O(t(n))$ steps
- then makes another pass over tape to update tape contents and head positions. $O(t(n))$ steps
- If some head moves rightward into previously unread portion of tape in M, then in S, space allocated for that tape is increased by a right-shift of all content to right. k tapes $=k$ heads $=k \times O(t(n))$ steps

Multi-tape to single tape

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time multitape det TM has an equivalent $O\left(t^{2}(n)\right)$ time 1-tape det TM.
Proof: Given k-tape TM M running in $t(n)$ time, define 1-tape TM S :

- Store k-tapes of M in 1-tape of S, with head positions marked. $O(n)$
- To simulate one-step of $M, O(t(n))$
- S scans all info on its tape to check all head positions $O(t(n))$ steps
- then makes another pass over tape to update tape contents and head positions. $O(t(n))$ steps
- If some head moves rightward into previously unread portion of tape in M, then in S, space allocated for that tape is increased by a right-shift of all content to right. k tapes $=k$ heads $=k \times O(t(n))$ steps
- $t(n)$ steps of M implies $t(n) \times O(t(n))=O\left(t^{2}(n)\right)$ steps

Multi-tape to single tape

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time multitape det TM has an equivalent $O\left(t^{2}(n)\right)$ time 1-tape det TM.
Proof: Given k-tape TM M running in $t(n)$ time, define 1-tape TM S :

- Store k-tapes of M in 1-tape of S, with head positions marked. $O(n)$
- To simulate one-step of $M, O(t(n))$
- S scans all info on its tape to check all head positions $O(t(n))$ steps
- then makes another pass over tape to update tape contents and head positions. $O(t(n))$ steps
- If some head moves rightward into previously unread portion of tape in M, then in S, space allocated for that tape is increased by a right-shift of all content to right. k tapes $=k$ heads $=k \times O(t(n))$ steps
- $t(n)$ steps of M implies $t(n) \times O(t(n))=O\left(t^{2}(n)\right)$ steps
- Overall: $O(n)+O\left(t^{2}(n)\right)=O\left(t^{2}(n)\right)($ since $t(n) \geq n)$

What about non-determinism?

Running time of a non-det halting TM
The running time of a non-det halting TM N is the function $f(n: \mathbb{N} \rightarrow \mathbb{N})$, where $f(n)$ is the max number of steps that N uses on any branch of its computation on any input of length n.

What about non-determinism?

Running time of a non-det halting TM
The running time of a non-det halting TM N is the function $f(n: \mathbb{N} \rightarrow \mathbb{N})$, where $f(n)$ is the max number of steps that N uses on any branch of its computation on any input of length n.

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time non-det 1-tape TM N has an equivalent $2^{O(t(n))}$ time det 1-tape TM D.

What about non-determinism?

Running time of a non-det halting TM

The running time of a non-det halting TM N is the function $f(n: \mathbb{N} \rightarrow \mathbb{N})$, where $f(n)$ is the max number of steps that N uses on any branch of its computation on any input of length n.

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time non-det 1-tape TM N has an equivalent $2^{O(t(n))}$ time det 1-tape TM D.

- Recall that computation of N is viewed as a tree.
- Each branch is of length at most $t(n)$.
- What is the max number of leaves of the tree?

What about non-determinism?

Running time of a non-det halting TM

The running time of a non-det halting TM N is the function $f(n: \mathbb{N} \rightarrow \mathbb{N})$, where $f(n)$ is the max number of steps that N uses on any branch of its computation on any input of length n.

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time non-det 1-tape TM N has an equivalent $2^{O(t(n))}$ time det 1-tape TM D.

- Recall that computation of N is viewed as a tree.
- Each branch is of length at most $t(n)$.
- What is the max number of leaves of the tree? $b^{t(n)}$ where b is from transition fn.
- What is the max number of nodes of tree?

What about non-determinism?

Running time of a non-det halting TM

The running time of a non-det halting TM N is the function $f(n: \mathbb{N} \rightarrow \mathbb{N})$, where $f(n)$ is the max number of steps that N uses on any branch of its computation on any input of length n.

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time non-det 1-tape TM N has an equivalent $2^{O(t(n))}$ time det 1-tape TM D.

- Recall that computation of N is viewed as a tree.
- Each branch is of length at most $t(n)$.
- What is the max number of leaves of the tree? $b^{t(n)}$ where b is from transition fn.
- What is the max number of nodes of tree? less than twice no. of leaves.
- Do bfs on tree - what is the complexity of this?

What about non-determinism?

Running time of a non-det halting TM

The running time of a non-det halting TM N is the function $f(n: \mathbb{N} \rightarrow \mathbb{N})$, where $f(n)$ is the max number of steps that N uses on any branch of its computation on any input of length n.

Theorem

Let $t(n)$ be a function such that $t(n) \geq n$. Then every $t(n)$ time non-det 1-tape TM N has an equivalent $2^{O(t(n))}$ time det 1-tape TM D.

- Recall that computation of N is viewed as a tree.
- Each branch is of length at most $t(n)$.
- What is the max number of leaves of the tree? $b^{t(n)}$ where b is from transition fn.
- What is the max number of nodes of tree? less than twice no. of leaves.
- Do bfs on tree - what is the complexity of this? $O\left(b^{t(n)}\right)=2^{O(t(n))}$.
three tapes to one-tape: $\left(2^{O(t(n))}\right)^{2}=2^{O(t(n))}$.

The class P

So, k-tape to 1 -tape involves a polynomial blow-up, while non-det to det requires an exponential blow-up.

Definition

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine, i.e.,

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

The class P

So, k-tape to 1-tape involves a polynomial blow-up, while non-det to det requires an exponential blow-up.

Definition

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine, i.e.,

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

Why important

- take all models of computation that are polytime eq to det 1-tape TM, P is invariant.
- classically considered to be the good class for a computer.

The class P

Definition

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine, i.e.,

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

Why important

- take all models of computation that are polytime eq to det 1-tape TM, P is invariant.
- classically considered to be the good class for a computer.

Examples:

- Given a graph G, is there a path from s to t ?

The class P

Definition

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine, i.e.,

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

Why important

- take all models of computation that are polytime eq to det 1-tape TM, P is invariant.
- classically considered to be the good class for a computer.

Examples:

- Given a graph G, is there a path from s to t ?
- Are two given numbers relatively prime?

The class P

Definition

P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine, i.e.,

$$
P=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)
$$

Why important

- take all models of computation that are polytime eq to det 1-tape TM, P is invariant.
- classically considered to be the good class for a computer.

Examples:

- Given a graph G, is there a path from s to t ?
- Are two given numbers relatively prime?
- Check if a language is a CFL.

Examples of problems in P

PATH: Given directed graph $G=(V, E)$ and nodes s, t, is there a path between s and t

Examples of problems in P

PATH: Given directed graph $G=(V, E)$ and nodes s, t, is there a path between s and t Brute force algo?

Examples of problems in P

PATH: Given directed graph $G=(V, E)$ and nodes s, t, is there a path between s and t

- Mark s
- Repeat until no additional nodes are marked:
- scan all edges of G and if (a, b) is an edge with a marked and b unmarked, then mark b,
- if t is marked, accept, else reject.

Examples of problems in P

PATH: Given directed graph $G=(V, E)$ and nodes s, t, is there a path between s and t

- Mark s
- Repeat until no additional nodes are marked: at most $|V|$ times
- scan all edges of G and if (a, b) is an edge with a marked and b unmarked, then mark b,
- if t is marked, accept, else reject.

Examples of problems in P

PATH: Given directed graph $G=(V, E)$ and nodes s, t, is there a path between s and t

RELPRIME: Given $x, y \in \mathbb{N}$, is $\operatorname{gcd}(x, y)=1$

Examples of problems in P

PATH: Given directed graph $G=(V, E)$ and nodes s, t, is there a path between s and t

RELPRIME: Given $x, y \in \mathbb{N}$, is $\operatorname{gcd}(x, y)=1$

Euclid's algo!

- repeat till $y=0$;
- assign $x:=x \bmod y$
- exchange x and y;
- At end if result is $x=1$ accept, else reject.

Examples of problems in P

PATH: Given directed graph $G=(V, E)$ and nodes s, t, is there a path between s and t

RELPRIME: Given $x, y \in \mathbb{N}$, is $\operatorname{gcd}(x, y)=1$

Euclid's algo!

- repeat till $y=0$;how many times is this done?
- assign $x:=x \bmod y$
- exchange x and y;
- At end if result is $x=1$ accept, else reject.

The class EXP

Definition

EXP is the class of languages that are decidable in exponential time on a deterministic single-tape Turing machine, i.e.,

$$
E X P=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

The class EXP

Definition

EXP is the class of languages that are decidable in exponential time on a deterministic single-tape Turing machine, i.e.,

$$
E X P=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Examples

The class EXP

Definition

EXP is the class of languages that are decidable in exponential time on a deterministic single-tape Turing machine, i.e.,

$$
E X P=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Examples

- All P time problems! i.e., $P \subseteq E X P$.

The class EXP

Definition

EXP is the class of languages that are decidable in exponential time on a deterministic single-tape Turing machine, i.e.,

$$
E X P=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Examples

- All P time problems! i.e., $P \subseteq E X P$.
- HAMILTONIAN-PATH: G, s, t : is there a path from s to t that goes through each node of G exactly once?

The class EXP

Definition

EXP is the class of languages that are decidable in exponential time on a deterministic single-tape Turing machine, i.e.,

$$
E X P=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Examples

- All P time problems! i.e., $P \subseteq E X P$.
- HAMILTONIAN-PATH: G, s, t : is there a path from s to t that goes through each node of G exactly once?
- (Generalized) CHESS

The class EXP

Definition

EXP is the class of languages that are decidable in exponential time on a deterministic single-tape Turing machine, i.e.,

$$
E X P=\bigcup_{k} \operatorname{TIME}\left(2^{n^{k}}\right)
$$

Examples

- All P time problems! i.e., $P \subseteq E X P$.
- HAMILTONIAN-PATH: G, s, t : is there a path from s to t that goes through each node of G exactly once?
- (Generalized) CHESS
- COMPOSITIES: is a number composite?

