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Recap

Turing machines and computability

1. Turing machines

(i) Definition & variants
(ii) Decidable and Turing recognizable languages
(iii) Church-Turing Hypothesis

2. Undecidability

(i) A proof technique by diagonalization
(ii) Via reductions
(iii) Rice’s theorem

3. Applications: showing (un)decidability of other problems

(i) A string matching problem: Post’s Correspondance Problem
(ii) A problem for compilers: Unambiguity of Context-free languages
(iii) Between TM and PDA: Linear Bounded Automata

4. Efficiency in computation: run-time complexity.

(i) Running time complexity: polynomial and exponential time
(ii) Nondeterministic polynomial time, and the P vs NP problem.
(iii) NP-completeness, the Cook-Levin Theorem.
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The P vs NP problem

I P: class of problems solvable in polynomial time

I NP: class of problems verifiable in polynomial time

= class of problems solvable in polynomial time in a non-determistic TM.

I EXP: class of problems solvable in exponential time.

I NEXP: class of problems solvable in exponential time by a non-det TM.

I Co − C: class of problems whose complement is solvable in C.
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Polynomial time reductions

Ptime computable functions

f : Σ∗ → Σ∗ is Ptime computable if there is a polytime TM M, which started
on any input w halts with just f (w) on its tape.

Polynomial time reduction

Language A polynomial time reducible to B, denoted A ≤P B if there is a
Ptime computable function f s.t.

w ∈ A⇔ f (w) ∈ B

Such a function is called a Ptime reduction of A to B.

Theorem
If A ≤p B and B ∈ P, then A ∈ P

(Note: if there is a “halting TM” reduction from A to B, then A undecidable
implied B undecidable!)
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Exercise (H.W)

I Show that 3SAT is polytime reducible to CLIQUE.

I Show that 3SAT is polytime reducible to SUBSETSUM.
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NP-completeness

Definition
A language B is NP-complete if two conditions hold:

1. B is in NP,

2. every A in NP is polynomial time reducible to B

If only condition 2 holds B is said to be NP-hard.

Exercises:

I If B is NP-complete, and B ∈ P, then P = NP.

I If B is NP-complete, and B ≤P C , then C is NP-hard.

The Cook-Levin Theorem
SAT is NP-complete.
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Cook-Levin Theorem

The Cook-Levin Theorem
SAT is NP-complete.

I SAT ∈ NP.

I Take any language A ∈ NP and show it is polytime reducible to SAT.

I Reduction via computation histories!

Sketch: Step 1 - language to tableau

1. Spse N is NTM decides A in nk time.

2. Write nk × nk tableau for each computation of N on w , rows are config.

3. Every accepting tableau (some config is acc) is an accepting
computation branch of N on w .

4. Thus, N acc w iff there exists an accepting tableau for N on w .
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Cook-Levin Theorem (Contd.)

Sketch: Step 2 - language to tableau to SAT

Given N and w , produce formula ϕ:

1. Variable xi ,j ,s for each 1 ≤ i , j ≤ nk , s ∈ C = Q ∪ Γ ∪ {#}.
2. Idea: cell [i , j ] = s iff xi ,j ,s = 1.

3. Design ϕ s.t., SAT assignment corresponds to acc tableau for N on w .

4. ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc
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Cook-Levin Theorem (Contd.)

Sketch: Step 3 - SAT formula

ϕ = ϕcell ∧ ϕstart ∧ ϕmove ∧ ϕacc where,

1. for each cell one variable is “on”, and only one is:
ϕcell =

∧
1≤i ,j≤nk [

∨
s∈C xi ,j ,s ∧

∨
s 6=t∈C (xi ,j ,s ∨ xi ,j ,t)]

2. start encodes that first row is starting config:
ϕstart = x1,1,# ∧ x1,2,q0 ∧ . . .

3. accept says that accepting config should occur somewhere in tableau
ϕacc =

∨
1≤i ,j≤nk xi ,j ,qacc

4. move encodes that each row correponds to config that “legally” follows
the preceding row config acc to N
ϕmove =

∧
1,≤i ,j<nk (the (i , j)-window is legal)
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