CS 208: Automata Theory and Logic

Part II, Lecture 2: Decidability

Department of Computer Science and Engineering, Indian Institute of Technology Bombay.

Decidable languages

- A TM accepts language L if it has an accepting run on each word in L.
- A TM decides language L if it accepts L and halts on all inputs.

Decidable and Turing recognizable languages

- A language L is decidable (recursive) if there exists a Turing machine M which decides L (i.e., M halts on all inputs and M accepts L).
- A language L is Turing recognizable (recursively enumerable) if there exists a Turing machine M which accepts L.

Algorithms and Decidability

Algorithms \Longleftrightarrow Decidable (i.e, TM decides it)

- A decision problem P is said to be decidable (i.e., have an algorithm) if the language L of all yes instances to P is decidable.
- A decision problem P is said to be semi-decidable (i.e., have a semi-algorithm) if the language L of all yes instances to P is r.e.
- A decision problem P is said to be undecidable if the language L of all yes instances to P is not decidable.

Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- (Emptiness problem for DFA) Given a DFA does it accept any word?
- (Equivalence problem for DFA) Given two DFAs, do they accept the same language?

Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- $L_{D F A}^{A}=\{\langle B, w\rangle \mid A$ is a DFA that accepts input word $w\}$
- (Emptiness problem for DFA) Given a DFA does it accept any word?
- $L_{D F A}^{\emptyset}=\{<A>\mid A$ is a DFA, $L(A)=\emptyset\}$
- (Equivalence problem for DFA) Given two DFAs, do they accept the same language?

$$
-L_{D F A}^{E Q}=\{<A, B>\mid A, B \text { are DFAs, } L(A)=L(B)\}
$$

Examples of Decidable languages and problems

- (Acceptance problem for DFA) Given a DFA does it accept a given word?
- $L_{D F A}^{A}=\{\langle B, w\rangle \mid A$ is a DFA that accepts input word $w\}$
- (Emptiness problem for DFA) Given a DFA does it accept any word?
- $L_{D F A}^{\emptyset}=\{<A>\mid A$ is a DFA, $L(A)=\emptyset\}$
- (Equivalence problem for DFA) Given two DFAs, do they accept the same language?

$$
-L_{D F A}^{E Q}=\{\langle A, B\rangle \mid A, B \text { are DFAs, } L(A)=L(B)\}
$$

- What about NFAs, regular expressions

Relationship among languages

Regular \subsetneq Decidable $\underset{?}{\subsetneq}$ Turing recognizable $\frac{\subseteq}{?}$ All languages

$\underline{\text { Relationship among languages }}$

Regular \subsetneq Decidable $\underset{?}{\subsetneq}$ Turing recognizable $\underset{?}{\subseteq}$ All languages

DFA/NFA < Algorithms/Halting TM $\underset{?}{<}$ Semi-algorithms/TM

$\underline{\text { Relationship among languages }}$

Regular \subsetneq Decidable $\underset{?}{\subsetneq}$ Turing recognizable $\underset{?}{\subset}$ All languages

DFA/NFA $<$ Algorithms/Halting TM $\underset{?}{<}$ Semi-algorithms/TM

Languages outside R.E.

Thm: There exist languages that are not R.E

Proof: Recall Cantor's argument from First Lecture.

- No. of R.E languages is countable. Why?
- Set S of all words over a finite alphabet Σ is countably infinite.
- Set of all languages over Σ is the set of subsets of S and is therefore uncountable.
- By Cantor's argument, for some such language, there must be no accepting TM.

Diagonalization: go via binary strings over $\{0,1\}$ which are uncountable.

The acceptance problem for Turing Machines

Given a TM, does it accept a given input word?

$L_{T M}^{A}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\}$

- $L_{T M}^{A}$ is Turing recognizable: consider TM U which on input $\langle M, w\rangle$ simulates M on w and accepts if M accepts and rejects if M rejects.

Theorem
 $L_{T M}^{A}$ is undecidable.

Proof of undecidability

Suppose $L_{T M}^{A}=\{\langle M, w\rangle \mid M$ is a TM and M accepts $w\}$ was decidable.

1. Let H be the deciding TM: on input $\langle M, w\rangle$,

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

2. Construct TM D which on input $\langle M\rangle$, runs H on input $\langle M,\langle M\rangle\rangle$ and outputs opposite of H.

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle\end{cases}
$$

3. Finally, run D with its own description $\langle D\rangle$ as input!

$$
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\ \text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
$$

Proof of undecidability

Diagonalization in the above argument

Enumerate Turing machines in the y-axis and their encodings in the x-axis.

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	\ldots	$\langle D\rangle$	\ldots
M_{1}	$\underline{\text { accept }}$	reject	accept	\ldots	accept	\ldots
M_{2}	accept	$\frac{\text { accept }}{}$	accept	\ldots	accept	\ldots
M_{3}	reject	reject	$\frac{\text { reject }}{}$	\ldots	reject	\ldots
\vdots			\vdots		\vdots	
$D=M_{i}$	reject	reject	accept	\ldots	$\frac{(? ?)}{(?)}$	\ldots
\vdots			\vdots		\vdots	

More properties of decidable and r.e. languages

Regular \subsetneq Decidable \subsetneq R.E \subsetneq All languages
What about closure under complementation?

More properties of decidable and r.e. languages

Regular \subsetneq Decidable \subsetneq R.E \subsetneq All languages
What about closure under complementation?
Theorem
If L is decidable, so is \bar{L}.

More properties of decidable and r.e. languages

Regular \subsetneq Decidable \subsetneq R.E \subsetneq All languages
What about closure under complementation?

Theorem

If L is decidable, so is \bar{L}.

Theorem

L is decidable iff L is R.E and \bar{L} is also R.E.

More properties of decidable and r.e. languages

Regular \subsetneq Decidable \subsetneq R.E \subsetneq All languages
What about closure under complementation?

Theorem

If L is decidable, so is \bar{L}.

Theorem

L is decidable iff L is R.E and \bar{L} is also R.E.
So, what about $\overline{L_{T M}^{A}}$?

