CS 208: Automata Theory and Logic Part II, Lecture 3: Reductions

S Akshay

Department of Computer Science and Engineering, Indian Institute of Technology Bombay. ٠

 $\begin{aligned} & \text{Regular} \subsetneq \text{Decidable} \subsetneq \text{Recursively Enumerable} \subsetneq \text{All languages} \\ & \text{DFA}/\text{NFA} < \text{Algorithms}/\text{Halting TM} < \text{Semi-algorithms}/\text{TM} \end{aligned}$

Properties

- 1. There exist languages that are not R.E.
- 2. There exist languages that are R.E but are undecidable. Eg. universal TM lang $L_{TM}^A = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$
- 3. Decidable languages are closed under complementation.
- 4. *L* is decidable iff *L* is *R*.*E* and \overline{L} is also R.E.

The halting problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

 $- L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}.$

The halting problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

 $- L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}.$

Proof: Suppose there exists TM *H* deciding L_{TM}^{HALT} , then construct a TM *D* s.t., on input $\langle M, w \rangle$:

- runs TM *H* on input $\langle M, w \rangle$
- if *H* rejects then reject.
- if *H* accepts, then simulate *M* on *w* until it halts.
- if at halting *M* has accepted *w*, accept, else reject.

But *D* decides L_{TM}^A which is undecidable. A contradiction.

The halting problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

 $- L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}.$

Proof: Suppose there exists TM *H* deciding L_{TM}^{HALT} , then construct a TM *D* s.t., on input $\langle M, w \rangle$:

- runs TM *H* on input $\langle M, w \rangle$
- if *H* rejects then reject.
- if *H* accepts, then simulate *M* on *w* until it halts.
- if at halting *M* has accepted *w*, accept, else reject.

But *D* decides L_{TM}^A which is undecidable. A contradiction.

This proof strategy is called a reduction.

Reduction from the acceptance problem

The halting problem for Turing Machines is undecidable

Does a given Turing machine halt on a given input?

 $-L_{TM}^{HALT} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}.$

Some more undecidable problems

The emptiness problem for TMs

Does a given Turing machine accept any word?

 $- L^{\emptyset}_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

Some more undecidable problems

The emptiness problem for TMs

Does a given Turing machine accept any word?

 $- L^{\emptyset}_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

The regularity problem for TMs

Does a given Turing machine accept a regular language? - $L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}.$

Some more undecidable problems

The emptiness problem for TMs

Does a given Turing machine accept any word?

 $- L^{\emptyset}_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$

The regularity problem for TMs

Does a given Turing machine accept a regular language? - $L_{TM}^{REG} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language } \}.$

Rice's Theorem

Any "non-trivial" property of R.E languages is undecidable!

Rice's theorem (1953)

Any non-trivial property of R.E languages is undecidable!

- Property $P \equiv$ set of languages (i.e., their TM encodings) satisfying P
- − Property of r.e languages: membership of *M* in *P* depends only on the language of *M*. If L(M) = L(M'), then $\langle M \rangle \in P$ iff $\langle M' \rangle \in P$.
- Non-trivial: It holds for some but not all TMs.

Rice's theorem (1953)

Any non-trivial property of R.E languages is undecidable!

- Property $P \equiv$ set of languages (i.e., their TM encodings) satisfying P
- − Property of r.e languages: membership of *M* in *P* depends only on the language of *M*. If L(M) = L(M'), then $\langle M \rangle \in P$ iff $\langle M' \rangle \in P$.
- Non-trivial: It holds for some but not all TMs.

