
complexity – 1 of 13

CS 208: Automata Theory and Logic
Part II, Lecture 4: PCP and Complexity

S Akshay

start: s0 s1

b/a,R

⊔/b,L

b/a,R a/c,L

a · · · b · · · ⊔ · · · .

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.

complexity – 2 of 13

Post’s correspondence problem (PCP)

A dominoes matching puzzle

Can we arrange a set of domino tiles in such a way that the numbers read
on top and bottom add up to the same?

– Not all dominoes need to be used
– Each domino can be used more than once

complexity – 2 of 13

Post’s correspondence problem (PCP)

A dominoes matching puzzle

Can we arrange a set of domino tiles in such a way that the numbers read
on top and bottom add up to the same?

– Not all dominoes need to be used
– Each domino can be used more than once

complexity – 3 of 13

Post’s correspondence problem (PCP)

PCP: A language-theoretic dominoes matching problem

Consider a set of dominoes as couples of strings, ai, bi ∈ Σ∗:

P = {
[

a1

b1

]
,

[
a2

b2

]
, . . . ,

[
ak

bk

]
}

Does there exist a sequence i1, . . . i` such that the string read by the
dominoes match? That is, ai1 . . . ai` = bi1 . . . bi` .

For e.g., a collection of dominoes may look like:

{
[

b
ca

]
,
[a

ab

]
,
[ca

a

]
,

[
abc
c

]
}

Then, a match/solution to the puzzle is:[a
ab

] [b
ca

] [ca
a

] [a
ab

] [abc
c

]

This problem is unsolvable by algorithms!

complexity – 3 of 13

Post’s correspondence problem (PCP)

PCP: A language-theoretic dominoes matching problem

Consider a set of dominoes as couples of strings, ai, bi ∈ Σ∗:

P = {
[

a1

b1

]
,

[
a2

b2

]
, . . . ,

[
ak

bk

]
}

Does there exist a sequence i1, . . . i` such that the string read by the
dominoes match? That is, ai1 . . . ai` = bi1 . . . bi` .

For e.g., a collection of dominoes may look like:

{
[

b
ca

]
,
[a

ab

]
,
[ca

a

]
,

[
abc
c

]
}

Then, a match/solution to the puzzle is:[a
ab

] [b
ca

] [ca
a

] [a
ab

] [abc
c

]
This problem is unsolvable by algorithms!

complexity – 4 of 13

PCP is undecidable

Theorem
The Post’s correspondence problem is undecidable for |Σ| ≥ 2.

Proof sketch

– Step 1: Reduce to Modified PCP (MPCP) MPCP ={〈P〉 | P is an inst of
PCP with a match starting from first domino.

– Step 2: Reduction from LA
TM to MPCP. We construct MPCP P′ whose

matching/soln will solve the TM-acceptance problem.
– Let M = (Q,Σ,Γ, δ, q0, qacc, qrej).

1. Put [#
#q0...wn#

] as first domino in P′.

complexity – 4 of 13

PCP is undecidable

Theorem
The Post’s correspondence problem is undecidable for |Σ| ≥ 2.

Proof sketch

– Step 1: Reduce to Modified PCP (MPCP) MPCP ={〈P〉 | P is an inst of
PCP with a match starting from first domino.

– Step 2: Reduction from LA
TM to MPCP. We construct MPCP P′ whose

matching/soln will solve the TM-acceptance problem.

– Let M = (Q,Σ,Γ, δ, q0, qacc, qrej).

1. Put [#
#q0...wn#

] as first domino in P′.

complexity – 4 of 13

PCP is undecidable

Theorem
The Post’s correspondence problem is undecidable for |Σ| ≥ 2.

Proof sketch

– Step 1: Reduce to Modified PCP (MPCP) MPCP ={〈P〉 | P is an inst of
PCP with a match starting from first domino.

– Step 2: Reduction from LA
TM to MPCP. We construct MPCP P′ whose

matching/soln will solve the TM-acceptance problem.
– Let M = (Q,Σ,Γ, δ, q0, qacc, qrej).

1. Put [#
#q0...wn#

] as first domino in P′.

complexity – 5 of 13

Proof Contd.

2. for every tape alphabet a, b and states q, r s.t. q 6= qrej

if δ(q, a) = (r, b,R) put [
qa
br

] in P′

3. for every tape alphabet a, b, c and states q, r s.t. q 6= qrej

if δ(q, a) = (r, b,L) put [
cqa
rcb

] in P′

4. for tape alphabet a put [a
a] in P′. (see board for sim)

5. for #, put [##] and [#
t#] in P′.

6. for every tape alphabet a, put [
aqacc
qacc

] and [
qacca
qacc

] in P′.

7. Complete by adding [
qacc##

] in P′.

complexity – 5 of 13

Proof Contd.

2. for every tape alphabet a, b and states q, r s.t. q 6= qrej

if δ(q, a) = (r, b,R) put [
qa
br

] in P′

3. for every tape alphabet a, b, c and states q, r s.t. q 6= qrej

if δ(q, a) = (r, b,L) put [
cqa
rcb

] in P′

4. for tape alphabet a put [a
a] in P′. (see board for sim)

5. for #, put [##] and [#
t#] in P′.

6. for every tape alphabet a, put [
aqacc
qacc

] and [
qacca
qacc

] in P′.

7. Complete by adding [
qacc##

] in P′.

complexity – 6 of 13

Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert
instances of A to instances of B. Then we can solve A with a solver for B.

A function f : Σ∗ → Σ∗ is called computable if there exists a TM M, which
on every input w halts with just f (w) on its tape.

Formal definition of reduction
A language A is mapping reducible to B (denoted A ≤m B) if there is a
computable function f : Σ∗ → Σ∗ s.t., for every w

w ∈ A iff f (w) ∈ B

The function f is called the reduction of A to B.

So, to check if w ∈ A, use the reduction to map w to f (w) and check if
f (w) ∈ B.

complexity – 6 of 13

Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert
instances of A to instances of B. Then we can solve A with a solver for B.

A function f : Σ∗ → Σ∗ is called computable if there exists a TM M, which
on every input w halts with just f (w) on its tape.

Formal definition of reduction
A language A is mapping reducible to B (denoted A ≤m B) if there is a
computable function f : Σ∗ → Σ∗ s.t., for every w

w ∈ A iff f (w) ∈ B

The function f is called the reduction of A to B.

So, to check if w ∈ A, use the reduction to map w to f (w) and check if
f (w) ∈ B.

complexity – 6 of 13

Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert
instances of A to instances of B. Then we can solve A with a solver for B.

A function f : Σ∗ → Σ∗ is called computable if there exists a TM M, which
on every input w halts with just f (w) on its tape.

Formal definition of reduction
A language A is mapping reducible to B (denoted A ≤m B) if there is a
computable function f : Σ∗ → Σ∗ s.t., for every w

w ∈ A iff f (w) ∈ B

The function f is called the reduction of A to B.

So, to check if w ∈ A, use the reduction to map w to f (w) and check if
f (w) ∈ B.

complexity – 7 of 13

Mapping reducibility

Theorem

1. If A ≤m B and B is decidable (resp. R.E), then A is decidable (resp.
R.E).

2. If A ≤m B and A is decidable (resp. R.E), then B is decidable (resp.
R.E).

Proof of 1. for decidable:
– Let M be the decider of B and f the reduction from A to B.
– Then define N a decider for A as follows: On input w

1. Compute f (w)
2. Run M on input f (w) and output whatever M outputs.

complexity – 7 of 13

Mapping reducibility

Theorem

1. If A ≤m B and B is decidable (resp. R.E), then A is decidable (resp.
R.E).

2. If A ≤m B and A is decidable (resp. R.E), then B is decidable (resp.
R.E).

Proof of 1. for decidable:
– Let M be the decider of B and f the reduction from A to B.
– Then define N a decider for A as follows: On input w

1. Compute f (w)
2. Run M on input f (w) and output whatever M outputs.

complexity – 8 of 13

Time Complexity

Running time of a TM

– The running time of a TM is the number of steps it makes before
halting.

– So, if the TM doesnt halt, the running time is infinite.

– The time complexity of M is the function T(n) that is the maximum,
over all inputs w of length n, of the running time of M on w.

A time complexity class TIME(t(n)) is the set of all languages that can be
decided by a TM in O(t(n)) time.

– Every multi-tape TM with time complexity t(n) can be simulated by a
single-tape TM with time complexity O(t2(n)).

– Every non-deterministic single-tape TM with time complexity t(n)
can be simulated by a deterministic single-tape TM with time
complexity 2O(t(n)).

complexity – 8 of 13

Time Complexity

Running time of a TM

– The running time of a TM is the number of steps it makes before
halting.

– So, if the TM doesnt halt, the running time is infinite.
– The time complexity of M is the function T(n) that is the maximum,

over all inputs w of length n, of the running time of M on w.

A time complexity class TIME(t(n)) is the set of all languages that can be
decided by a TM in O(t(n)) time.

– Every multi-tape TM with time complexity t(n) can be simulated by a
single-tape TM with time complexity O(t2(n)).

– Every non-deterministic single-tape TM with time complexity t(n)
can be simulated by a deterministic single-tape TM with time
complexity 2O(t(n)).

complexity – 8 of 13

Time Complexity

Running time of a TM

– The running time of a TM is the number of steps it makes before
halting.

– So, if the TM doesnt halt, the running time is infinite.
– The time complexity of M is the function T(n) that is the maximum,

over all inputs w of length n, of the running time of M on w.

A time complexity class TIME(t(n)) is the set of all languages that can be
decided by a TM in O(t(n)) time.

– Every multi-tape TM with time complexity t(n) can be simulated by a
single-tape TM with time complexity O(t2(n)).

– Every non-deterministic single-tape TM with time complexity t(n)
can be simulated by a deterministic single-tape TM with time
complexity 2O(t(n)).

complexity – 9 of 13

The complexity classes P and NP

The class P

– P is the class of languages decidable in poly-time on a det 1-tape TM.
– P =

⋃
k TIME(nk).

The class NP

– NP is the class of languages decidable in poly-time on a non-det
1-tape TM.

– NP is the class of languages that guess a poly-length string and then
verify membership in P (poly-time).

Obviously P ⊆ NP , but the question is:

** Is P = NP? **

complexity – 9 of 13

The complexity classes P and NP

The class P

– P is the class of languages decidable in poly-time on a det 1-tape TM.
– P =

⋃
k TIME(nk).

The class NP

– NP is the class of languages decidable in poly-time on a non-det
1-tape TM.

– NP is the class of languages that guess a poly-length string and then
verify membership in P (poly-time).

Obviously P ⊆ NP , but the question is:

** Is P = NP? **

complexity – 9 of 13

The complexity classes P and NP

The class P

– P is the class of languages decidable in poly-time on a det 1-tape TM.
– P =

⋃
k TIME(nk).

The class NP

– NP is the class of languages decidable in poly-time on a non-det
1-tape TM.

– NP is the class of languages that guess a poly-length string and then
verify membership in P (poly-time).

Obviously P ⊆ NP , but the question is:

** Is P = NP? **

complexity – 10 of 13

Examples of problems in P and NP

Problems in P

– PATH: In a directed graph G, is there a path from vertices s to t.
– PRIMES: Is a given number prime? (Solved by

Agrawal-Kayal-Saxena in 2002).

Problems in NP

– HAMPATH: In a directed graph G, is there a path from vertices s to t,
which visits each vertex exactly once.

– k-CLIQUE: Does a given undir graph have a clique of size k?

complexity – 11 of 13

NP-completeness

NP-complete problems

A class of languages of NP such that if one of them is in P , then all of NP
is in P .

Satisfiability (SAT)

– Boolean variables x, y, z, ... taking values 0 (false) or 1 (true).
– Boolean operations: AND, OR and NOT.
– Boolean formulas: ϕ = (¬x ∧ y) ∨ (x∧ 6= z).
– A satisfying assignment is an assignment x = 0, y = 1, z = 0 s.t the

formula evaluate to 1 (true)?
– A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula ϕ, is it satisfiable?

Theorem (Cook-Levin ’70s)
SAT ∈ P iff P = NP

complexity – 11 of 13

NP-completeness

NP-complete problems

A class of languages of NP such that if one of them is in P , then all of NP
is in P .

Satisfiability (SAT)

– Boolean variables x, y, z, ... taking values 0 (false) or 1 (true).
– Boolean operations: AND, OR and NOT.
– Boolean formulas: ϕ = (¬x ∧ y) ∨ (x∧ 6= z).
– A satisfying assignment is an assignment x = 0, y = 1, z = 0 s.t the

formula evaluate to 1 (true)?
– A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula ϕ, is it satisfiable?

Theorem (Cook-Levin ’70s)
SAT ∈ P iff P = NP

complexity – 11 of 13

NP-completeness

NP-complete problems

A class of languages of NP such that if one of them is in P , then all of NP
is in P .

Satisfiability (SAT)

– Boolean variables x, y, z, ... taking values 0 (false) or 1 (true).
– Boolean operations: AND, OR and NOT.
– Boolean formulas: ϕ = (¬x ∧ y) ∨ (x∧ 6= z).
– A satisfying assignment is an assignment x = 0, y = 1, z = 0 s.t the

formula evaluate to 1 (true)?
– A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula ϕ, is it satisfiable?

Theorem (Cook-Levin ’70s)
SAT ∈ P iff P = NP

complexity – 12 of 13

Poly-time reducibility

A function f : Σ∗ → Σ∗ is called poly-time computable if there exists a
poly-time TM M, which on every input w halts with just f (w) on its tape.

Formal definition of reduction
A language A is P-time reducible to B (denoted A ≤m B) if there is a
poly-time computable function f : Σ∗ → Σ∗ s.t., for every w

w ∈ A iff f (w) ∈ B

The function f is called the P-time reduction of A to B.

NP-complete problems

B is NP-complete if B ∈ NP and every A ∈ NP is P-time reducible to B.

Thus, to show that a problem B is NP-complete it suffices to show a P-time
reduction to an already known NP-complete problem (e.g., SAT) to B.

complexity – 12 of 13

Poly-time reducibility

A function f : Σ∗ → Σ∗ is called poly-time computable if there exists a
poly-time TM M, which on every input w halts with just f (w) on its tape.

Formal definition of reduction
A language A is P-time reducible to B (denoted A ≤m B) if there is a
poly-time computable function f : Σ∗ → Σ∗ s.t., for every w

w ∈ A iff f (w) ∈ B

The function f is called the P-time reduction of A to B.

NP-complete problems

B is NP-complete if B ∈ NP and every A ∈ NP is P-time reducible to B.

Thus, to show that a problem B is NP-complete it suffices to show a P-time
reduction to an already known NP-complete problem (e.g., SAT) to B.

complexity – 12 of 13

Poly-time reducibility

A function f : Σ∗ → Σ∗ is called poly-time computable if there exists a
poly-time TM M, which on every input w halts with just f (w) on its tape.

Formal definition of reduction
A language A is P-time reducible to B (denoted A ≤m B) if there is a
poly-time computable function f : Σ∗ → Σ∗ s.t., for every w

w ∈ A iff f (w) ∈ B

The function f is called the P-time reduction of A to B.

NP-complete problems

B is NP-complete if B ∈ NP and every A ∈ NP is P-time reducible to B.

Thus, to show that a problem B is NP-complete it suffices to show a P-time
reduction to an already known NP-complete problem (e.g., SAT) to B.

complexity – 13 of 13

Examples of NP-complete problems

– SAT was the first example of an NP-complete problem.
– For proof, read Hopcroft-Motwani-Ullman or Sipser.

– But now by showing P-time reduction from SAT we can easily show
other NP-complete problems!

Some NP-complete problems (prove by reduction!)

– 3-SAT: satisfiability of 3-CNF formulae. E.g.,(¬x ∨ y ∨ ¬z) ∧ (¬y ∨ ¬z).
– k-CLIQUE,HAMPATH: As defined before.
– 3COLOR: Can the vertices of a graph be colored with 3 colors so that

no 2 adj vertices have the same color?

– Bounded PCP: Given PCP instance {
[

a1
b1

]
,
[

a2
b2

]
, . . . ,

[
ak
bk

]
} and a bound

L, does there exist a sequence i1, . . . i` of length at most L, i.e., ` ≤ L s.t
ai1 . . . ai` = bi1 . . . bi` .

	Decidability

