CS 208: Automata Theory and Logic Part II, Lecture 4: PCP and Complexity

S Akshay

Department of Computer Science and Engineering, Indian Institute of Technology Bombay. ٠

A dominoes matching puzzle

Can we arrange a set of domino tiles in such a way that the numbers read on top and bottom add up to the same?

- Not all dominoes need to be used
- Each domino can be used more than once

PCP: A language-theoretic dominoes matching problem

Consider a set of dominoes as couples of strings, $a_i, b_i \in \Sigma^*$:

$$P = \left\{ \begin{bmatrix} a_1 \\ \overline{b_1} \end{bmatrix}, \begin{bmatrix} a_2 \\ \overline{b_2} \end{bmatrix}, \dots, \begin{bmatrix} a_k \\ \overline{b_k} \end{bmatrix} \right\}$$

Does there exist a sequence $i_1, \ldots i_\ell$ such that the string read by the dominoes match? That is, $a_{i_1} \ldots a_{i_\ell} = b_{i_1} \ldots b_{i_\ell}$.

For e.g., a collection of dominoes may look like:

$$\left\{ \begin{bmatrix} b \\ ca \end{bmatrix}, \begin{bmatrix} a \\ ab \end{bmatrix}, \begin{bmatrix} ca \\ a \end{bmatrix}, \begin{bmatrix} abc \\ c \end{bmatrix} \right\}$$

Then, a match/solution to the puzzle is:

$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right]$$

PCP: A language-theoretic dominoes matching problem

Consider a set of dominoes as couples of strings, $a_i, b_i \in \Sigma^*$:

$$P = \left\{ \begin{bmatrix} a_1 \\ \overline{b_1} \end{bmatrix}, \begin{bmatrix} a_2 \\ \overline{b_2} \end{bmatrix}, \dots, \begin{bmatrix} a_k \\ \overline{b_k} \end{bmatrix} \right\}$$

Does there exist a sequence $i_1, \ldots i_\ell$ such that the string read by the dominoes match? That is, $a_{i_1} \ldots a_{i_\ell} = b_{i_1} \ldots b_{i_\ell}$.

For e.g., a collection of dominoes may look like:

$$\left\{ \left[\frac{b}{ca}\right], \left[\frac{a}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{abc}{c}\right] \right\}$$

Then, a match/solution to the puzzle is:

$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right]$$

This problem is unsolvable by algorithms!

The Post's correspondence problem is undecidable for $|\Sigma| \ge 2$.

The Post's correspondence problem is undecidable for $|\Sigma| \ge 2$.

Proof sketch

- Step 1: Reduce to Modified PCP (MPCP) MPCP ={ $\langle P \rangle | P$ is an inst of PCP with a match starting from first domino.
- Step 2: Reduction from L^A_{TM} to MPCP. We construct MPCP P' whose matching/soln will solve the TM-acceptance problem.

The Post's correspondence problem is undecidable for $|\Sigma| \ge 2$.

Proof sketch

- Step 1: Reduce to Modified PCP (MPCP) MPCP ={ $\langle P \rangle | P$ is an inst of PCP with a match starting from first domino.
- Step 2: Reduction from L^A_{TM} to MPCP. We construct MPCP P' whose matching/soln will solve the TM-acceptance problem.
- Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$.

1. Put
$$\left[\frac{\#}{\#q_0...w_n\#}\right]$$
 as first domino in *P*'.

Proof Contd.

2. for every tape alphabet *a*, *b* and states *q*, *r* s.t. $q \neq q_{rej}$

if
$$\delta(q, a) = (r, b, R)$$
 put $\left[\frac{qa}{br}\right]$ in P'

3. for every tape alphabet *a*, *b*, *c* and states *q*, *r* s.t. $q \neq q_{rej}$

if
$$\delta(q, a) = (r, b, L)$$
 put $\left[\frac{cqa}{rcb}\right]$ in P'

4. for tape alphabet *a* put $\left[\frac{a}{a}\right]$ in *P'*. (see board for sim)

Proof Contd.

2. for every tape alphabet *a*, *b* and states *q*, *r* s.t. $q \neq q_{rej}$

if
$$\delta(q, a) = (r, b, R)$$
 put $\left[\frac{qa}{br}\right]$ in P'

3. for every tape alphabet *a*, *b*, *c* and states *q*, *r* s.t. $q \neq q_{rej}$

if
$$\delta(q, a) = (r, b, L)$$
 put $[\frac{cqa}{rcb}]$ in P'

- 4. for tape alphabet *a* put $\left[\frac{a}{a}\right]$ in *P*'. (see board for sim)
- 5. for #, put $\begin{bmatrix} \# \\ \# \end{bmatrix}$ and $\begin{bmatrix} \# \\ \sqcup \# \end{bmatrix}$ in *P*'.
- 6. for every tape alphabet *a*, put $\left[\frac{aq_{acc}}{q_{acc}}\right]$ and $\left[\frac{q_{acc}a}{q_{acc}}\right]$ in *P*'.
- 7. Complete by adding $\left[\frac{q_{acc}\#\#}{\#}\right]$ in *P*'.

Formal definition of mapping reducibility

- To reduce problem *A* to *B*, we use a computable function to convert instances of *A* to instances of *B*. Then we can solve *A* with a solver for *B*.

Formal definition of mapping reducibility

- To reduce problem *A* to *B*, we use a computable function to convert instances of *A* to instances of *B*. Then we can solve *A* with a solver for *B*.

A function $f : \Sigma^* \to \Sigma^*$ is called computable if there exists a TM *M*, which on every input *w* halts with just f(w) on its tape.

Formal definition of mapping reducibility

- To reduce problem *A* to *B*, we use a computable function to convert instances of *A* to instances of *B*. Then we can solve *A* with a solver for *B*.

A function $f : \Sigma^* \to \Sigma^*$ is called computable if there exists a TM *M*, which on every input *w* halts with just f(w) on its tape.

Formal definition of reduction

A language *A* is mapping reducible to *B* (denoted $A \leq_m B$) if there is a computable function $f : \Sigma^* \to \Sigma^*$ s.t., for every *w*

 $w \in A \operatorname{iff} f(w) \in B$

The function *f* is called the reduction of *A* to *B*.

So, to check if $w \in A$, use the reduction to map w to f(w) and check if $f(w) \in B$.

- 1. If $A \leq_m B$ and B is decidable (resp. R.E), then A is decidable (resp. R.E).
- 2. If $A \leq_m B$ and A is decidable (resp. R.E), then B is decidable (resp. R.E).

- 1. If $A \leq_m B$ and B is decidable (resp. R.E), then A is decidable (resp. R.E).
- 2. If $A \leq_m B$ and A is decidable (resp. R.E), then B is decidable (resp. R.E).

Proof of 1. for decidable:

- Let *M* be the decider of *B* and *f* the reduction from *A* to *B*.
- Then define N a decider for A as follows: On input w
 - 1. Compute f(w)
 - 2. Run *M* on input f(w) and output whatever *M* outputs.

Time Complexity

Running time of a TM

- The running time of a TM is the number of steps it makes before halting.
- So, if the TM doesnt halt, the running time is infinite.

Time Complexity

Running time of a TM

- The running time of a TM is the number of steps it makes before halting.
- So, if the TM doesnt halt, the running time is infinite.
- The time complexity of *M* is the function *T*(*n*) that is the maximum, over all inputs *w* of length *n*, of the running time of *M* on *w*.

A time complexity class TIME(t(n)) is the set of all languages that can be decided by a TM in O(t(n)) time.

Time Complexity

Running time of a TM

- The running time of a TM is the number of steps it makes before halting.
- So, if the TM doesnt halt, the running time is infinite.
- The time complexity of *M* is the function *T*(*n*) that is the maximum, over all inputs *w* of length *n*, of the running time of *M* on *w*.

A time complexity class TIME(t(n)) is the set of all languages that can be decided by a TM in O(t(n)) time.

- Every multi-tape TM with time complexity t(n) can be simulated by a single-tape TM with time complexity $O(t^2(n))$.
- Every non-deterministic single-tape TM with time complexity t(n) can be simulated by a deterministic single-tape TM with time complexity $2^{O(t(n))}$.

The complexity classes $\mathcal P$ and $\mathcal N\mathcal P$

The class \mathcal{P}

- $\ensuremath{\mathcal{P}}$ is the class of languages decidable in poly-time on a det 1-tape TM.
- $-\mathcal{P}=\bigcup_k TIME(n^k).$

The complexity classes $\mathcal P$ and $\mathcal N\mathcal P$

The class \mathcal{P}

- \mathcal{P} is the class of languages decidable in poly-time on a det 1-tape TM.
- $-\mathcal{P}=\bigcup_k TIME(n^k).$

The class \mathcal{NP}

- \mathcal{NP} is the class of languages decidable in poly-time on a non-det 1-tape TM.
- \mathcal{NP} is the class of languages that guess a poly-length string and then verify membership in \mathcal{P} (poly-time).

The complexity classes $\mathcal P$ and $\mathcal N\mathcal P$

The class \mathcal{P}

- \mathcal{P} is the class of languages decidable in poly-time on a det 1-tape TM. - $\mathcal{P} = \bigcup_k TIME(n^k)$.

The class \mathcal{NP}

**

- \mathcal{NP} is the class of languages decidable in poly-time on a non-det 1-tape TM.
- \mathcal{NP} is the class of languages that guess a poly-length string and then verify membership in \mathcal{P} (poly-time).

Obviously $\mathcal{P} \subseteq \mathcal{NP}$, but the question is:

Is
$$\mathcal{P} = \mathcal{NP}$$
?

Examples of problems in $\mathcal P$ and $\mathcal N\mathcal P$

Problems in \mathcal{P}

- *PATH*: In a directed graph *G*, is there a path from vertices *s* to *t*.
- *PRIMES*: Is a given number prime? (Solved by Agrawal-Kayal-Saxena in 2002).

Problems in \mathcal{NP}

- *HAMPATH*: In a directed graph *G*, is there a path from vertices *s* to *t*, which visits each vertex exactly once.
- *k*-*CLIQUE*: Does a given undir graph have a clique of size *k*?

NP-completeness

NP-complete problems

A class of languages of \mathcal{NP} such that if one of them is in \mathcal{P} , then all of \mathcal{NP} is in \mathcal{P} .

NP-completeness

NP-complete problems

A class of languages of \mathcal{NP} such that if one of them is in \mathcal{P} , then all of \mathcal{NP} is in \mathcal{P} .

Satisfiability (SAT)

- Boolean variables x, y, z, ... taking values 0 (false) or 1 (true).
- Boolean operations: AND, OR and NOT.
- Boolean formulas: $\varphi = (\neg x \land y) \lor (x \land \neq z)$.
- A satisfying assignment is an assignment x = 0, y = 1, z = 0 s.t the formula evaluate to 1 (true)?
- A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula φ , is it satisfiable?

NP-completeness

NP-complete problems

A class of languages of \mathcal{NP} such that if one of them is in \mathcal{P} , then all of \mathcal{NP} is in \mathcal{P} .

Satisfiability (SAT)

- Boolean variables x, y, z, ... taking values 0 (false) or 1 (true).
- Boolean operations: AND, OR and NOT.
- Boolean formulas: $\varphi = (\neg x \land y) \lor (x \land \neq z)$.
- A satisfying assignment is an assignment x = 0, y = 1, z = 0 s.t the formula evaluate to 1 (true)?
- A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula φ , is it satisfiable?

Theorem (Cook-Levin '70s)

 $SAT \in \mathcal{P} \text{ iff } \mathcal{P} = \mathcal{NP}$

Poly-time reducibility

A function $f : \Sigma^* \to \Sigma^*$ is called poly-time computable if there exists a poly-time TM *M*, which on every input *w* halts with just f(w) on its tape.

A function $f : \Sigma^* \to \Sigma^*$ is called poly-time computable if there exists a poly-time TM *M*, which on every input *w* halts with just f(w) on its tape.

Formal definition of reduction

A language *A* is P-time reducible to *B* (denoted $A \leq_m B$) if there is a poly-time computable function $f : \Sigma^* \to \Sigma^*$ s.t., for every *w*

 $w \in A \operatorname{iff} f(w) \in B$

The function *f* is called the P-time reduction of *A* to *B*.

A function $f : \Sigma^* \to \Sigma^*$ is called poly-time computable if there exists a poly-time TM *M*, which on every input *w* halts with just f(w) on its tape.

Formal definition of reduction

A language *A* is P-time reducible to *B* (denoted $A \leq_m B$) if there is a poly-time computable function $f : \Sigma^* \to \Sigma^*$ s.t., for every *w*

 $w \in A \operatorname{iff} f(w) \in B$

The function *f* is called the P-time reduction of *A* to *B*.

NP-complete problems

B is NP-complete if $B \in \mathcal{NP}$ and every $A \in \mathcal{NP}$ is P-time reducible to *B*.

Thus, to show that a problem *B* is NP-complete it suffices to show a P-time reduction to an already known NP-complete problem (e.g., SAT) to *B*.

Examples of NP-complete problems

- *SAT* was the first example of an NP-complete problem.
 - For proof, read Hopcroft-Motwani-Ullman or Sipser.
- But now by showing *P*-time reduction from *SAT* we can easily show other *NP*-complete problems!

Some NP-complete problems (prove by reduction!)

- − 3-*SAT*: satisfiability of 3-CNF formulae. E.g., $(\neg x \lor y \lor \neg z) \land (\neg y \lor \neg z)$.
- *k*-CLIQUE, HAMPATH: As defined before.
- 3COLOR: Can the vertices of a graph be colored with 3 colors so that no 2 adj vertices have the same color?
- Bounded PCP: Given PCP instance $\{\begin{bmatrix} a_1\\b_1 \end{bmatrix}, \begin{bmatrix} a_2\\b_2 \end{bmatrix}, \dots, \begin{bmatrix} a_k\\b_k \end{bmatrix}\}$ and a bound *L*, does there exist a sequence i_1, \dots, i_ℓ of length at most *L*, i.e., $\ell \leq L$ s.t $a_{i_1} \dots a_{i_\ell} = b_{i_1} \dots b_{i_\ell}$.