CS 208: Automata Theory and Logic
Part II, Lecture 4: PCP and Complexity

S Akshay

Department of Computer Science and Engineering,
Indian Institute of Technology Bombay.

complexity -1 of 13

Post’s correspondence problem (PCP)

complexity -2 of 13

Post’s correspondence problem (PCP)

A dominoes matching puzzle

Can we arrange a set of domino tiles in such a way that the numbers read
on top and bottom add up to the same?

— Not all dominoes need to be used

— Each domino can be used more than once

complexity -2 of 13

Post’s correspondence problem (PCP)

PCP: A language-theoretic dominoes matching problem
Consider a set of dominoes as couples of strings, a;, b; € ¥*:
_ &) |2 i
P~][]

Does there exist a sequence i1, . . . ig such that the string read by the
dominoes match? Thatis, a;, ...a;, = b;, ... b;,.

For e.g., a collection of dominoes may look like:

(el [l [0 []

Then, a match/solution to the puzzle is:
el (2] 518 %]

complexity -3 of 13

Post’s correspondence problem (PCP)

PCP: A language-theoretic dominoes matching problem
Consider a set of dominoes as couples of strings, a;, b; € ¥*:
_ &) |2 i
P~][]

Does there exist a sequence i1, . . . ig such that the string read by the
dominoes match? Thatis, a;, ...a;, = b;, ... b;,.

For e.g., a collection of dominoes may look like:
b aj fcay [abc
{[a} SEAREE [7]}
Then, a match/solution to the puzzle is:
a1 [b]cayran [abc
5] [a]) Las) [T]

This problem is unsolvable by algorithms! it 3 of 13
complexity — 3 of

PCP is undecidable

The Post’s correspondence problem is undecidable for |X| > 2.

complexity — 4 of 13

PCP is undecidable

Theorem

The Post’s correspondence problem is undecidable for |X| > 2.

Proof sketch

— Step 1: Reduce to Modified PCP (MPCP) MPCP ={(P) | P is an inst of
PCP with a match starting from first domino.

— Step 2: Reduction from L%, to MPCP. We construct MPCP P’ whose
matching/soln will solve the TM-acceptance problem.

complexity — 4 of 13

PCP is undecidable

Theorem

The Post’s correspondence problem is undecidable for |X| > 2.

Proof sketch

— Step 1: Reduce to Modified PCP (MPCP) MPCP ={(P) | P is an inst of
PCP with a match starting from first domino.

— Step 2: Reduction from L%, to MPCP. We construct MPCP P’ whose
matching/soln will solve the TM-acceptance problem.

- LetM = (Qa T, (57 q0’qacm€hej)-

1. Put [#%Lwn#] as first domino in P’.

complexity — 4 of 13

Proof Contd.

2. for every tape alphabet 4, b and states q,7 s.t. g # gy
. qga,. -,
if 6(g,a) = (r,b,R) put [E] in P

3. for every tape alphabet a, b, c and states q,7 s.t. g # g
. _ cqa, . o
if §(q,a) = (r,b,L) put [rcb] in P

4. for tape alphabet a put [2] in P’. (see board for sim)

complexity -5 of 13

Proof Contd.

2. for every tape alphabet 4, b and states q,7 s.t. g # gy
. qa. . o
if 6(g,a) = (r,b,R) put [E] inP

3. for every tape alphabet a, b, c and states q,7 s.t. g # g
. B cqa,. o,
if §(q,a) = (r,b,L) put [rcb] in P
for tape alphabet a put [4] in P'. (see board for sim)
for #, put [%] and [%] in P

for every tape alphabet g, put [%] and [%‘f] in P’

N o O e

Complete by adding [@] inP.

complexity -5 of 13

Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert
instances of A to instances of B. Then we can solve A with a solver for B.

complexity — 6 of 13

Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert
instances of A to instances of B. Then we can solve A with a solver for B.

]
A function f : ¥* — ¥* is called computable if there exists a TM M, which
on every input w halts with just f(w) on its tape.

complexity — 6 of 13

Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert
instances of A to instances of B. Then we can solve A with a solver for B.

]
A function f : ¥* — ¥* is called computable if there exists a TM M, which
on every input w halts with just f(w) on its tape.

Formal definition of reduction

A language A is mapping reducible to B (denoted A <, B) if there is a
computable function f : ¥* — ¥* s.t., for every w

we Aifff(w) € B
The function f is called the reduction of A to B.

So, to check if w € A, use the reduction to map w to f(w) and check if

f(w) € B.

complexity — 6 of 13

Mapping reducibility

Theorem

1. If A <,, B and B is decidable (resp. R.E), then A is decidable (resp.
R.E).

2. If A <, Band A is decidable (resp. R.E), then B is decidable (resp.
R.E).

complexity -7 of 13

Mapping reducibility

Theorem

1. If A <,, B and B is decidable (resp. R.E), then A is decidable (resp.
R.E).

2. If A <, Band A is decidable (resp. R.E), then B is decidable (resp.
R.E).

Proof of 1. for decidable:
— Let M be the decider of B and f the reduction from A to B.
— Then define N a decider for A as follows: On input w

1. Compute f(w)
2. Run M on input f(w) and output whatever M outputs.

complexity -7 of 13

Time Complexity

Running time of a TM

— The running time of a TM is the number of steps it makes before
halting.

— So, if the TM doesnt halt, the running time is infinite.

complexity - 8 of 13

Time Complexity

Running time of a TM

— The running time of a TM is the number of steps it makes before
halting.

— So, if the TM doesnt halt, the running time is infinite.

— The time complexity of M is the function T(n) that is the maximum,
over all inputs w of length #, of the running time of M on w.

A time complexity class TIME(t(n)) is the set of all languages that can be
decided by a TM in O(t(n)) time.

complexity - 8 of 13

Time Complexity

Running time of a TM

— The running time of a TM is the number of steps it makes before
halting.

— So, if the TM doesnt halt, the running time is infinite.

— The time complexity of M is the function T(n) that is the maximum,
over all inputs w of length #, of the running time of M on w.

A time complexity class TIME(t(n)) is the set of all languages that can be
decided by a TM in O(t(n)) time.

— Every multi-tape TM with time complexity ¢(n) can be simulated by a
single-tape TM with time complexity O(t?(n)).

— Every non-deterministic single-tape TM with time complexity ¢(n)
can be simulated by a deterministic single-tape TM with time
complexity 20¢("),

complexity - 8 of 13

The complexity classes P and N'P

The class P

— P is the class of languages decidable in poly-time on a det 1-tape TM.
- P = U, TIME(").

complexity -9 of 13

The complexity classes P and N'P

The class P

— P is the class of languages decidable in poly-time on a det 1-tape TM.
- P = U, TIME(").

The class NP

— NP is the class of languages decidable in poly-time on a non-det
1-tape TM.

— NP is the class of languages that guess a poly-length string and then
verify membership in P (poly-time).

complexity -9 of 13

The complexity classes P and N'P

The class P

— P is the class of languages decidable in poly-time on a det 1-tape TM.
- P = U, TIME(").

The class NP

— NP is the class of languages decidable in poly-time on a non-det
1-tape TM.

— NP is the class of languages that guess a poly-length string and then
verify membership in P (poly-time).

Obviously P C NP, but the question is:
= Is P = N'P?

complexity -9 of 13

Examples of problems in P and N'P

Problems in P

— PATH: In a directed graph G, is there a path from vertices s to t.

— PRIMES: Is a given number prime? (Solved by
Agrawal-Kayal-Saxena in 2002).

Problems in NP

— HAMPATH: In a directed graph G, is there a path from vertices s to t,
which visits each vertex exactly once.

— k-CLIQUE: Does a given undir graph have a clique of size k?

complexity —10 of 13

NP-completeness

NP-complete problems

A class of languages of NP such that if one of them is in P, then all of NP
isin P.

complexity — 11 of 13

NP-completeness

NP-complete problems

A class of languages of NP such that if one of them is in P, then all of N'P
isin P.

Satisfiability (SAT)

— Boolean variables x, v, z, ... taking values 0 (false) or 1 (true).
— Boolean operations: AND, OR and NOT.
— Boolean formulas: ¢ = (-x Ay) V (XA # z).

— A satisfying assignment is an assignment x = 0,y = 1,z = 0 s.t the
formula evaluate to 1 (true)?

— A formula is satisfiable if it has a satisfying assignment.

On: Given a formula ¢, is it satisfiable?

complexity —11 of 13

NP-completeness

NP-complete problems

A class of languages of NP such that if one of them is in P, then all of N'P
isin P.

Satisfiability (SAT)

— Boolean variables x, v, z, ... taking values 0 (false) or 1 (true).
— Boolean operations: AND, OR and NOT.
— Boolean formulas: ¢ = (-x Ay) V (XA # z).

— A satisfying assignment is an assignment x = 0,y = 1,z = 0 s.t the
formula evaluate to 1 (true)?

— A formula is satisfiable if it has a satisfying assignment.

On: Given a formula ¢, is it satisfiable?

Theorem (Cook-Levin "70s)
SAT € Piff P = NP

complexity —11 of 13

Poly-time reducibility

|
A function f : ¥* — ¥* is called poly-time computable if there exists a
poly-time TM M, which on every input w halts with just f(w) on its tape.

complexity —12 of 13

Poly-time reducibility

|
A function f : ¥* — ¥* is called poly-time computable if there exists a
poly-time TM M, which on every input w halts with just f(w) on its tape.

Formal definition of reduction

A language A is P-time reducible to B (denoted A <,, B) if there is a
poly-time computable function f : ¥* — ¥* s.t., for every w

w € Aiff f(w) € B

The function f is called the P-time reduction of A to B.

complexity —12 of 13

Poly-time reducibility

A function f : ¥* — ¥* is called poly-time computable if there exists a
poly-time TM M, which on every input w halts with just f(w) on its tape.

Formal definition of reduction

A language A is P-time reducible to B (denoted A <,, B) if there is a
poly-time computable function f : ¥* — ¥* s.t., for every w

w € Aiff f(w) € B

The function f is called the P-time reduction of A to B.

NP-complete problems

B is NP-complete if B € NP and every A € NP is P-time reducible to B.

Thus, to show that a problem B is NP-complete it suffices to show a P-time
reduction to an already known NP-complete problem (e.g., SAT) to B.

complexity —12 of 13

Examples of NP-complete problems

— SAT was the first example of an NP-complete problem.
— For proof, read Hopcroft-Motwani-Ullman or Sipser.

— But now by showing P-time reduction from SAT we can easily show
other NP-complete problems!

Some NP-complete problems (prove by reduction!)

— 3-SAT: satisfiability of 3-CNF formulae. E.g.,(—xVy V —z) A (-y V —z).

— k-CLIQUE, HAMPATH: As defined before.

— 3COLOR: Can the vertices of a graph be colored with 3 colors so that
no 2 adj vertices have the same color?

— Bounded PCP: Given PCP instance { [%] , {“—2] ey [‘g—’;} } and a bound

by
L, does there exist a sequence iy, . .. i, of length at most L, i.e., ¢ < Ls.t

aj ...4, :bi1 ...bie.

complexity —13 of 13

	Decidability

