CS 208: Automata Theory and Logic
 Part II, Lecture 4: PCP and Complexity

S Akshay

Department of Computer Science and Engineering, Indian Institute of Technology Bombay.

Post's correspondence problem (РСР)

Post's correspondence problem (PCP)

A dominoes matching puzzle

Can we arrange a set of domino tiles in such a way that the numbers read on top and bottom add up to the same?

- Not all dominoes need to be used
- Each domino can be used more than once

Post's correspondence problem (PCP)

PCP: A language-theoretic dominoes matching problem

Consider a set of dominoes as couples of strings, $a_{i}, b_{i} \in \Sigma^{*}$:

$$
P=\left\{\left[\frac{a_{1}}{b_{1}}\right],\left[\frac{a_{2}}{b_{2}}\right], \ldots,\left[\frac{a_{k}}{b_{k}}\right]\right\}
$$

Does there exist a sequence $i_{1}, \ldots i_{\ell}$ such that the string read by the dominoes match? That is, $a_{i_{1}} \ldots a_{i_{\ell}}=b_{i_{1}} \ldots b_{i_{\ell}}$.

For e.g., a collection of dominoes may look like:

$$
\left\{\left[\frac{b}{c a}\right],\left[\frac{a}{a b}\right],\left[\frac{c a}{a}\right],\left[\frac{a b c}{c}\right]\right\}
$$

Then, a match/solution to the puzzle is:

$$
\left[\frac{a}{a b}\right]\left[\frac{b}{c a}\right]\left[\frac{c a}{a}\right]\left[\frac{a}{a b}\right]\left[\frac{a b c}{c}\right]
$$

Post's correspondence problem (PCP)

PCP: A language-theoretic dominoes matching problem

Consider a set of dominoes as couples of strings, $a_{i}, b_{i} \in \Sigma^{*}$:

$$
P=\left\{\left[\frac{a_{1}}{b_{1}}\right],\left[\frac{a_{2}}{b_{2}}\right], \ldots,\left[\frac{a_{k}}{b_{k}}\right]\right\}
$$

Does there exist a sequence $i_{1}, \ldots i_{\ell}$ such that the string read by the dominoes match? That is, $a_{i_{1}} \ldots a_{i_{\ell}}=b_{i_{1}} \ldots b_{i_{\ell}}$.

For e.g., a collection of dominoes may look like:

$$
\left\{\left[\frac{b}{c a}\right],\left[\frac{a}{a b}\right],\left[\frac{c a}{a}\right],\left[\frac{a b c}{c}\right]\right\}
$$

Then, a match/solution to the puzzle is:

$$
\left[\frac{a}{a b}\right]\left[\frac{b}{c a}\right]\left[\frac{c a}{a}\right]\left[\frac{a}{a b}\right]\left[\frac{a b c}{c}\right]
$$

This problem is unsolvable by algorithms!

PCP is undecidable

Theorem

The Post's correspondence problem is undecidable for $|\Sigma| \geq 2$.

PCP is undecidable

Theorem

The Post's correspondence problem is undecidable for $|\Sigma| \geq 2$.

Proof sketch

- Step 1: Reduce to Modified PCP (MPCP) MPCP $=\{\langle P\rangle \mid P$ is an inst of PCP with a match starting from first domino.
- Step 2: Reduction from $L_{T M}^{A}$ to MPCP. We construct MPCP P^{\prime} whose matching/soln will solve the TM-acceptance problem.

PCP is undecidable

Theorem

The Post's correspondence problem is undecidable for $|\Sigma| \geq 2$.

Proof sketch

- Step 1: Reduce to Modified PCP (MPCP) MPCP $=\{\langle P\rangle \mid P$ is an inst of PCP with a match starting from first domino.
- Step 2: Reduction from $L_{T M}^{A}$ to MPCP. We construct MPCP P^{\prime} whose matching/soln will solve the TM-acceptance problem.
- Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{a c c}, q_{r e j}\right)$.

1. Put $\left[\frac{\#}{\# q_{0} \ldots w_{n} \#}\right]$ as first domino in P^{\prime}.

Proof Contd.

2. for every tape alphabet a, b and states q, r s.t. $q \neq q_{r e j}$

$$
\text { if } \delta(q, a)=(r, b, R) \text { put }\left[\frac{q a}{b r}\right] \text { in } P^{\prime}
$$

3. for every tape alphabet a, b, c and states q, r s.t. $q \neq q_{r e j}$

$$
\text { if } \delta(q, a)=(r, b, L) \text { put }\left[\frac{c q a}{r c b}\right] \text { in } P^{\prime}
$$

4. for tape alphabet a put $\left[\frac{a}{a}\right]$ in P^{\prime}. (see board for sim)

Proof Contd.

2. for every tape alphabet a, b and states q, r s.t. $q \neq q_{r e j}$

$$
\text { if } \delta(q, a)=(r, b, R) \text { put }\left[\frac{q a}{b r}\right] \text { in } P^{\prime}
$$

3. for every tape alphabet a, b, c and states q, r s.t. $q \neq q_{r e j}$

$$
\text { if } \delta(q, a)=(r, b, L) \text { put }\left[\frac{c q a}{r c b}\right] \text { in } P^{\prime}
$$

4. for tape alphabet a put $\left[\frac{a}{a}\right]$ in P^{\prime}. (see board for sim)
5. for \#, put $\left[\frac{\#}{\#}\right]$ and $\left[\frac{\#}{\square \#}\right]$ in P^{\prime}.
6. for every tape alphabet a, put $\left[\frac{a q_{\text {acc }}}{q_{a c c}}\right]$ and $\left[\frac{q_{\text {acc }} a}{q_{a c c}}\right]$ in P^{\prime}.
7. Complete by adding $\left[\frac{q_{\text {acc }}^{\# \#}}{\#}\right]$ in P^{\prime}.

Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert instances of A to instances of B. Then we can solve A with a solver for B.

Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert instances of A to instances of B. Then we can solve A with a solver for B.

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called computable if there exists a TM M, which on every input w halts with just $f(w)$ on its tape.

Formal definition of mapping reducibility

- To reduce problem A to B, we use a computable function to convert instances of A to instances of B. Then we can solve A with a solver for B.

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called computable if there exists a TM M, which on every input w halts with just $f(w)$ on its tape.

Formal definition of reduction

A language A is mapping reducible to B (denoted $\left.A \leq_{m} B\right)$ if there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ s.t., for every w

$$
w \in A \text { iff } f(w) \in B
$$

The function f is called the reduction of A to B.
So, to check if $w \in A$, use the reduction to map w to $f(w)$ and check if $f(w) \in B$.

Mapping reducibility

Theorem

1. If $A \leq_{m} B$ and B is decidable (resp. R.E), then A is decidable (resp. R.E).
2. If $A \leq_{m} B$ and A is decidable (resp. R.E), then B is decidable (resp. R.E).

Mapping reducibility

Theorem

1. If $A \leq_{m} B$ and B is decidable (resp. R.E), then A is decidable (resp. R.E).
2. If $A \leq_{m} B$ and A is decidable (resp. R.E), then B is decidable (resp. R.E).

Proof of 1. for decidable:

- Let M be the decider of B and f the reduction from A to B.
- Then define N a decider for A as follows: On input w

1. Compute $f(w)$
2. Run M on input $f(w)$ and output whatever M outputs.

Time Complexity

Running time of a TM

- The running time of a TM is the number of steps it makes before halting.
- So, if the TM doesnt halt, the running time is infinite.

Time Complexity

Running time of a TM

- The running time of a TM is the number of steps it makes before halting.
- So, if the TM doesnt halt, the running time is infinite.
- The time complexity of M is the function $T(n)$ that is the maximum, over all inputs w of length n, of the running time of M on w.
A time complexity class $\operatorname{TIME}(t(n))$ is the set of all languages that can be decided by a TM in $O(t(n))$ time.

Time Complexity

Running time of a TM

- The running time of a TM is the number of steps it makes before halting.
- So, if the TM doesnt halt, the running time is infinite.
- The time complexity of M is the function $T(n)$ that is the maximum, over all inputs w of length n, of the running time of M on w.
A time complexity class $\operatorname{TIME}(t(n))$ is the set of all languages that can be decided by a TM in $O(t(n))$ time.
- Every multi-tape TM with time complexity $t(n)$ can be simulated by a single-tape TM with time complexity $O\left(t^{2}(n)\right)$.
- Every non-deterministic single-tape TM with time complexity $t(n)$ can be simulated by a deterministic single-tape TM with time complexity $2^{O(t(n))}$.

The complexity classes \mathcal{P} and $\mathcal{N} \mathcal{P}$

The class \mathcal{P}

- \mathcal{P} is the class of languages decidable in poly-time on a det 1-tape TM.
$-\mathcal{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)$.

The complexity classes \mathcal{P} and $\mathcal{N} \mathcal{P}$

The class \mathcal{P}

- \mathcal{P} is the class of languages decidable in poly-time on a det 1-tape TM.
- $\mathcal{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)$.

The class $\mathcal{N} \mathcal{P}$

- $\mathcal{N P}$ is the class of languages decidable in poly-time on a non-det 1 -tape TM.
$-\mathcal{N P}$ is the class of languages that guess a poly-length string and then verify membership in \mathcal{P} (poly-time).

The complexity classes \mathcal{P} and $\mathcal{N} \mathcal{P}$

The class \mathcal{P}

- \mathcal{P} is the class of languages decidable in poly-time on a det 1-tape TM.
- $\mathcal{P}=\bigcup_{k} \operatorname{TIME}\left(n^{k}\right)$.

The class $\mathcal{N} \mathcal{P}$

- $\mathcal{N P}$ is the class of languages decidable in poly-time on a non-det 1 -tape TM.
$-\mathcal{N} \mathcal{P}$ is the class of languages that guess a poly-length string and then verify membership in \mathcal{P} (poly-time).

Obviously $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$, but the question is:

Examples of problems in \mathcal{P} and $\mathcal{N P}$

Problems in \mathcal{P}

- PATH: In a directed graph G, is there a path from vertices s to t.
- PRIMES: Is a given number prime? (Solved by Agrawal-Kayal-Saxena in 2002).

Problems in $\mathcal{N P}$

- HAMPATH: In a directed graph G, is there a path from vertices s to t, which visits each vertex exactly once.
- k-CLIQUE: Does a given undir graph have a clique of size k ?

NP-completeness

NP-complete problems

A class of languages of $\mathcal{N} \mathcal{P}$ such that if one of them is in \mathcal{P}, then all of $\mathcal{N} \mathcal{P}$ is in \mathcal{P}.

NP-completeness

NP-complete problems

A class of languages of $\mathcal{N P}$ such that if one of them is in \mathcal{P}, then all of $\mathcal{N} \mathcal{P}$ is in \mathcal{P}.

Satisfiability (SAT)

- Boolean variables x, y, z, \ldots taking values 0 (false) or 1 (true).
- Boolean operations: AND, OR and NOT.
- Boolean formulas: $\varphi=(\neg x \wedge y) \vee(x \wedge \neq z)$.
- A satisfying assignment is an assignment $x=0, y=1, z=0$ s.t the formula evaluate to 1 (true)?
- A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula φ, is it satisfiable?

NP-completeness

NP-complete problems

A class of languages of $\mathcal{N P}$ such that if one of them is in \mathcal{P}, then all of $\mathcal{N} \mathcal{P}$ is in \mathcal{P}.

Satisfiability (SAT)

- Boolean variables x, y, z, \ldots taking values 0 (false) or 1 (true).
- Boolean operations: AND, OR and NOT.
- Boolean formulas: $\varphi=(\neg x \wedge y) \vee(x \wedge \neq z)$.
- A satisfying assignment is an assignment $x=0, y=1, z=0$ s.t the formula evaluate to 1 (true)?
- A formula is satisfiable if it has a satisfying assignment.

Qn: Given a formula φ, is it satisfiable?

Theorem (Cook-Levin '70s)

$S A T \in \mathcal{P}$ iff $\mathcal{P}=\mathcal{N} \mathcal{P}$

Poly-time reducibility

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called poly-time computable if there exists a poly-time TM M, which on every input w halts with just $f(w)$ on its tape.

Poly-time reducibility

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called poly-time computable if there exists a poly-time TM M, which on every input w halts with just $f(w)$ on its tape.

Formal definition of reduction

A language A is P-time reducible to $B\left(\operatorname{denoted} A \leq_{m} B\right)$ if there is a poly-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ s.t., for every w

$$
w \in A \operatorname{iff} f(w) \in B
$$

The function f is called the P -time reduction of A to B.

Poly-time reducibility

A function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is called poly-time computable if there exists a poly-time TM M, which on every input w halts with just $f(w)$ on its tape.

Formal definition of reduction

A language A is P-time reducible to $B\left(\operatorname{denoted} A \leq_{m} B\right)$ if there is a poly-time computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ s.t., for every w

$$
w \in A \operatorname{iff} f(w) \in B
$$

The function f is called the P -time reduction of A to B.

NP-complete problems

B is NP-complete if $B \in \mathcal{N P}$ and every $A \in \mathcal{N P}$ is P-time reducible to B.
Thus, to show that a problem B is NP-complete it suffices to show a P-time reduction to an already known NP-complete problem (e.g., SAT) to B.

Examples of NP-complete problems

- SAT was the first example of an NP-complete problem.
- For proof, read Hopcroft-Motwani-Ullman or Sipser.
- But now by showing P-time reduction from SAT we can easily show other NP-complete problems!

Some NP-complete problems (prove by reduction!)

- 3-SAT: satisfiability of 3-CNF formulae. E.g., $(\neg x \vee y \vee \neg z) \wedge(\neg y \vee \neg z)$.
- k-CLIQUE, HAMPATH: As defined before.
- 3COLOR: Can the vertices of a graph be colored with 3 colors so that no 2 adj vertices have the same color?
- Bounded PCP: Given PCP instance $\left\{\left[\frac{a_{1}}{b_{1}}\right],\left[\frac{a_{2}}{b_{2}}\right], \ldots,\left[\frac{a_{k}}{b_{k}}\right]\right\}$ and a bound L, does there exist a sequence $i_{1}, \ldots i_{\ell}$ of length at most L, i.e., $\ell \leq L$ s.t $a_{i_{1}} \ldots a_{i_{\ell}}=b_{i_{1}} \ldots b_{i_{\ell}}$.

