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Preliminaries



Petri nets
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• Petri net (PN) is a tuple (P,T ,F ,M0),
• P is set of places, T is set of transitions,

• M0 : P → N is the initial marking and

• F : (P × T ) ∪ (T × P)→ N is the flow relation.

• usual definitions: marking M : P → N, firability, runs...

• ≤ is component-wise order over markings

M1 ≤ M2 iff ∀p ∈ P,M1(p) ≤ M2(p).
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Decision Problems

Definition

Given a Petri net N = (P,T ,F ,M0),

• Termination (or Term): Does there exist an infinite run from

marking M0?

• Reachability (or Reach): Given a marking M, is there a run

from M0 which reaches M?

• Coverability (or Cover): Given a marking M, is there a

marking M ′ ≥ M which is reachable from M0?
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• Termination (or Term): Does there exist an infinite run from

marking M0?

• Reachability (or Reach): Given a marking M, is there a run

from M0 which reaches M?

• Coverability (or Cover): Given a marking M, is there a

marking M ′ ≥ M which is reachable from M0?

• Deadlock-freeness (or DLFree): Does there exist a marking

M reachable from M0, such that no transition is firable at M?

• (Place-)Boundedness: Does some (a given) place get

unboundedly many tokens?
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Special Arcs in Petri nets

p1

p

• We can add a few special arcs into Petri nets.

• Inhibitor arcs
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Special Arcs in Petri nets
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• We can add a few special arcs into Petri nets.

• Inhibitor arcs

• Reset arcs
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Special Arcs in Petri nets

p1p3 p2

p

Trp Reset

• We can add a few special arcs into Petri nets.

• Inhibitor arcs

• Reset arcs

• Transfer arcs

• Redefine flow

F : (P × T ) ∪ (T × P)→ N ∪ {I ,R} ∪ {Sp | p ∈ P}
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Hierarchy

• Inhibitors are zero-tests

• Petri nets with 2 inhibitors model 2-counter machines.

• One way to deal with this: impose hierarchy on places [Rei08].

• A total order @ on P such that

∀(p, t) ∈ P × T , F (p, t) ∈ I =⇒ (∀q @ p, F (q, t) ∈ I )

p1 p2 p3

p

Trp Reset
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Adding priorities to job scheduling!
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Adding priorities to job scheduling!
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• The case of a single inhibitor arc/transition is an interesting

and well-studied subcase!
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State of the art: What is known

about these problems?



State of the art

Term Cover Reach DLFree

PN 3 ( see [FS01]) 3 (see [FS01]) 3 [May84, Ler12] 3 [CEP95, Hac74]

R/T-PN 3 (see [FS01]) 3 (see [FS01]) 7 [DFS98] 7 [Red. from [DFS98]]

I-PN 7 [Min67] 7 [Min67] 7 [Min67] 7 [Min67]

HIPN 3 [Rei08, Bon13] 3 [Rei08, Bon13] 3 [Rei08, Bon13]

R+HIPN 7[[DFS98], Thm 4] 7[Red.frm [DFS98],Thm 4]

T+HIPN 7[[DFS98], Thm 4] 7[Red.frm [DFS98],Thm 4]

Questions:

• What happens when resets/transfers are added to HIPN?

• Understanding the boundary of decidability and

undecidability...

• Can we “weaken” the notion of Hierarchy?
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Outline

Term Cover Reach DLFree

PN 3 ( see [FS01]) 3 (see [FS01]) 3 [May84, Ler12] 3 [CEP95, Hac74]

R/T-PN 3 (see [FS01]) 3 (see [FS01]) 7 [DFS98] 7 [Red. from [DFS98]]

I-PN 7 [Min67] 7 [Min67] 7 [Min67] 7 [Min67]

HIPN 3 [Rei08, Bon13] 3 [Rei08, Bon13] 3 [Rei08, Bon13]

R+HIPN 1. 3. 7[[DFS98], Thm 4] 7[Red.frm [DFS98],Thm 4]

T+HIPN 2. 3. 7[[DFS98], Thm 4] 7[Red.frm [DFS98],Thm 4]

Questions:

• What happens when resets/transfers are added to HIPN?

• Understanding the boundary of decidability and

undecidability...

• (4.) “Weakening” Hierarchy in HIPN using resets and

transfers.
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Part 1: Termination in R+HIPN



Termination in R+HIPN

• Difficulty: The traditional Finite Reachability Tree(FRT)

doesn’t work for R+HIPN due to inhibitor arcs.

• Usual idea: Explore all runs. If the net terminates, then this is

a decision procedure. Else, stop when a marking is

“subsumed” (which must happen thanks to WQO)!

• Subsumption: If M1 ≤ M2, then we can stop (witness for

nontermination), as we can repeat this.

In the presence of inhibitors, this is not true!

Idea

Modify the definition of FRT (specifically the subsumption

condition), to allow inhibitor arcs.
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Termination in R+HIPN

Theorem

Checking termination in R+HIPN is decidable.

Proof sketch/intuition:

• For any place p ∈ P, we define the index of the place p

(Index(p)) as the number of places q ∈ P such that q v p.

• For i ∈ N, M1 and M2 are i-Compatible (denoted

Compati (M1,M2)) if

∀p ∈ P Index(p) ≤ i =⇒ M1(p) = M2(p)

.

• For any transition t ∈ T , its index is defined as

Index(t) = max
F (p,t)=I

Index(p)

By convention, if there is no such place, then Index(t) = 0.
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Termination in R+HIPN

Definition (Modified subsumption)

Consider a run M2
ρ−−→ M1. Let t∗ = argmaxt∈ρ Index(t).

Subsume(M2,M1, ρ) = M2 ≤ M1 ∧
(
CompatIndex(t∗)(M1,M2)

)

Then, we can show

• This must happen if ∃ non-terminating run (thanks to WQO).

• Also, if it happens, there is a non-terminating run.

• Let M1 ≤ M2, i ∈ N, Compati (M1,M2). Then for any run ρ

over Ti = {t|t ∈ T ∧ Index(t) ≤ i}, if M1
ρ−−→ M ′1, then

M2
ρ−−→ M ′2, where M ′1 ≤ M ′2 and Compati (M

′
1,M

′
2).

From this and effectivity, we get our result.
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Part 2: Moving on to transfer arcs



But first – A detour to program

termination!



Termination of linear loop programs

Basic undecidability result – Turing 1936

Termination of a generic program with a loop is undecidable:

while (conditions) {commands}

But now, let us consider a much simpler case:

An initialized homogeneous linear program

~x := ~b; while (~cT~x > ~0) {~x := A~x}

Termination problem for simple linear programs

Does an instance of the above program i.e., 〈~b; ~c ;A〉, terminate?

This problem is also called the positivity problem!

– rewrite as ∀n ≥ 0, is ~cT · An · ~b > 0?
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Decidability of the Positivity problem

• Decidability of Skolem/Positivity for 2,3,4... in 1981, ’85, ’05,

’06, ’09 by various authors.

• In 2014, Ouaknine and Worrell showed the best known result:

• positivity of order ≤ 5 is decidable with complexity

coNPPPPPPP
.

• decidability for order 6 would imply major breakthroughs in

analytic number theory (Diophantine approx of transcendental

numbers).
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Decidability of the Positivity problem

• Decidability of Skolem/Positivity for 2,3,4... in 1981, ’85, ’05,

’06, ’09 by various authors.

• In 2014, Ouaknine and Worrell showed the best known result:

• positivity of order ≤ 5 is decidable with complexity

coNPPPPPPP
.

• decidability for order 6 would imply major breakthroughs in

analytic number theory (Diophantine approx of transcendental

numbers).

Bottomline: The general problem is still wide open!
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Back to Petri nets

Question

Can you model program termination with Petri nets?

Theorem

Program termination/positivity reduces to termination of Petri

nets with one transfer and one inhibitor arc!

Simulating a program

Consider the following while loop program

v = v0; while (v >= 0) v = Mv.

• Clearly, this program is non-terminating iff Mkv0 ≥ 0 for all k .

• We construct a net N which simulates the program, i.e.,

terminates iff the program does.
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Reduction from Positivity to T+HIPN

Consider

M =

 1 −4 7

2 −5 −8

−3 −6 9
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E.g: First entry of col vec Mv = 5(1) + 6(−4) + 7(7)
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Reduction from Positivity to T+HIPN
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G1 G2 G3

u1

u2

u3

u′1

u′2

u′3

G ′ G

tR

Initial marking assigns (v0)i , to place ui , and
∑

1≤i≤n(
∑

1≤j≤n |Mji |)(v0)i
tokens to G , all others 0.

Lemma: ∃ a non-term run in N iff Mkv0 ≥ 0 ∀k ∈ N.
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Links to program termination

• We do not have a two-way reduction... so termination for

T+HIPN could still be undecidable. (Open problem 1)

• Can we reduce positivity to termination of R+HIPN? (Open

problem 2) :P

• If not, what about other problems? Reachability is already

undecidable.

What about coverability?
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Coverability for R+HIPN

Theorem

Coverability is undecidable for Petri nets with 2 resets and 1

inhibitor arc.

qi Cr

S

qj

t0

(a) Increment

qi

S qi1 Cr

Sr1

qj ql

Sr2

t1

t2
t3

t11

Reset

(b) Decrement
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Coverability for R+HIPN

Theorem

Coverability is undecidable for Petri nets with 2 resets and 1

inhibitor arc.

qi Cr

S

qj

t0

(a) Increment

qi

S qi1 Cr

Sr1

qj ql

Sr2

t1

t2
t3

t11

Reset

(b) Decrement
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Summary till now

Term Cover Reach DLFree

PN 3 ( see [FS01]) 3 (see [FS01]) 3 [May84, Ler12] 3 [CEP95, Hac74]

R/T-PN 3 (see [FS01]) 3 (see [FS01]) 7 [DFS98] 7 [Red. from [DFS98]]

I-PN 7 [Min67] 7 [Min67] 7 [Min67] 7 [Min67]

HIPN 3 [Rei08, Bon13] 3 [Rei08, Bon13] 3 [Rei08, Bon13] (see paper!)

R+HIPN 3 7 7[[DFS98], Thm 4] 7[Red.frm [DFS98],Thm 4]

T+HIPN Positivity-Hard 7 7[[DFS98], Thm 4] 7[Red.frm [DFS98],Thm 4]
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Part 3: “Weakening” Hierarchy?

Adding resets/transfers within

hierarcy



Adding resets and transfers within Hierarchy

Definition of HIPN

A total order @ on P such that

∀(p, t) ∈ P × T , F (p, t) ∈ I =⇒ (∀q @ p, F (q, t) ∈ I ).

What if we change this to:
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Adding resets and transfers within Hierarchy

Definition of HIRPN : A seemingly larger class!

A total order @ on P such that

∀(p, t) ∈ P × T , F (p, t) ∈ I =⇒ (∀q @ p, F (q, t) ∈ (I∨R)).

p1

p2

p3

Reset

p1

p2

p3

Reset

• This is not a HIPN (or a R+HIPN), but it is a HIRPN!

• A R+HIPN which is not a HIRPN.

• Can do the same with transfers...
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Results on HIRPN and HITPN

Theorem

HIRPNs are still easy: Can reduce to HIPNs, which preserving

reachability. Hence obtain decidability of properties.
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pS pI pR

p

t
Reset

Rest of Net

pS p∗

p∗t

tS Rest of Net

pRpI

p

tR

t I
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Results on HIRPN and HITPN

Theorem

HIRPNs are still easy: Can reduce to HIPNs, which preserving

reachability. Hence obtain decidability of properties.

Theorem

Hierarchy is useless with transfers: i.e., HITPNs have same

properties as T+HIPNs.

20



Conclusion



Results: Summary

Term Cover Reach DLFree

PN 3 [FS01] 3 [FS01] 3 [May84, Ler12] 3 [CEP95, Hac74]

R/T-PN 3 [FS01] 3 [FS01] 7 [DFS98] 7 [Red. from [DFS98]]

I-PN 7 [Min67] 7 [Min67] 7 [Min67] 7 [Min67]

HIPN 3 [Rei08, Bon13] 3 [Rei08, Bon13] 3 [Rei08, Bon13] 3

HTPN 3 [FS01] 3 [FS01] 7 7

HIRPN 3 3 3 3

HITPN Positivity-Hard 7 7 7

HIRcTPN 3 3 3 3

R+HIPN 3 7 7[[DFS98]] 7[Red.frm [DFS98]]

T+HIPN Positivity-Hard 7 7[[DFS98]] 7[Red.frm [DFS98]]

R+HIRPN 3 7 7[[DFS98]] 7[Red.frm [DFS98]]

Table 1: Results for all other extensions are subsumed by these results.

Can add boundedness column too!
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Work in progress and Open problems

• Reducing the number of counters.

• What about complexity?

• Coverability for Petri nets with 1 reset and 1 inhibitor arc

(without hierarchy)?

• An approach towards the positivity/Skolem problem via

WSTS?

22
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