# On Synthesizing Computable Skolem functions for FO logic 

Supratik Chakraborty and S. Akshay

Indian Institute of Technology Bombay
MFCS 2022, Vienna

## Skolem functions

Given a FOL formula $\varphi(X, Y)$ over (inputs) $X$ and (outputs) $Y, F(\cdot)$ is a Skolem function iff

$$
\forall X(\exists Y \varphi(X, Y) \Leftrightarrow \varphi(X, F(X)))
$$

## Skolem functions

Given a FOL formula $\varphi(X, Y)$ over (inputs) $X$ and (outputs) $Y, F(\cdot)$ is a Skolem function iff

$$
\forall X(\exists Y \varphi(X, Y) \Leftrightarrow \varphi(X, F(X)))
$$

- Classical concept arising from quantifier elimination in FOL.
- Known to always exist! But,
- Is the function computable?
(2) Can we effectively compute/synthesize such a function?


Skolem functions play an important role in first order logic

- Getting rid of existential quantifiers
- Seminal work by Thoralf Skolem 1920s and Jacques Herbrand 1930s.
- Skolemization and "Skolem-Normal form"
- Focus on existence of form, NOT computability.


Skolem functions play an important role in first order logic

- Getting rid of existential quantifiers
- Seminal work by Thoralf Skolem 1920s and Jacques Herbrand 1930s.
- Skolemization and "Skolem-Normal form"
- Focus on existence of form, NOT computability.


Skolem functions play an important role in first order logic

- Getting rid of existential quantifiers
- Seminal work by Thoralf Skolem 1920s and Jacques Herbrand 1930s.
- Skolemization and "Skolem-Normal form"
- Focus on existence of form, NOT computability.

We can trace this history even further back

- Existence and construction of Boolean unifiers
- Boole'1847, Lowenheim'1908.



## Applications

## Why should we be interested in synthesizability of Skolem functions?

- Heart of Automated Program Synthesis and repair.

$$
\begin{aligned}
& g\left(x_{1}, x_{2}\right) \geq x_{1} \text { and } \\
& g\left(x_{1}, x_{2}\right) \geq x_{2} \text { and } \\
& \left(g\left(x_{1}, x_{2}\right)=x_{1}\right. \text { or } \\
& \left.g\left(x_{1}, x_{2}\right)==x_{2}\right)
\end{aligned}
$$

Synthesize program for $g$

## Applications

## Why should we be interested in synthesizability of Skolem functions?

- Heart of Automated Program Synthesis and repair.

| $g\left(x_{1}, x_{2}\right) \geq x_{1}$ and |
| :--- |
| $g\left(x_{1}, x_{2}\right) \geq x_{2}$ and |
| $\left(g\left(x_{1}, x_{2}\right)==x_{1}\right.$ or |
| $\left.g\left(x_{1}, x_{2}\right)==x_{2}\right)$ |
| Synthesize program for $g$ |$\quad$| $y_{1} \geq x_{1}$ and |
| :--- |
| $y_{1} \geq x_{2}$ and |
| $\left(y_{1}==x_{1}\right.$ or |
| $\left.y_{1}==x_{1}\right)$ |
| $\forall x_{1} x_{2} \exists y_{1} \varphi$ |

## Why should we be interested in synthesizability of Skolem functions?

- Heart of Automated Program Synthesis and repair.



## Prior work

- Propositional setting: Akshay et al:17; '18;'19;20;21, Rabe e tal. '17; ;18, Golia e etal:20;21, etc., Fried et al'16, John et al:15, Heule et al:14, etc.
- Beyond Propositional setting:
- Results on specific theories: Linear rational arithmetic kuncak et al:10, Bit vectors spielman et al.,Priener et al.
- Partial approach for Quantifier Elimination Jiang'o9.
- Skolem functions are often conflated with terms in the logic.
- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- Consider the formula

$$
\forall y \forall z \exists x((y>0) \rightarrow(x>z))
$$

- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- Consider the formula

$$
\forall y \forall z \exists x((y>0) \rightarrow(x>z))
$$

- What is a Skolem function for $x$ ?
- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- Consider the formula

$$
\forall y \forall z \exists x((y>0) \rightarrow(x>z))
$$

- What is a Skolem function for $x ? F(x)=y+z$
- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- Consider the formula

$$
\forall y \forall z \exists x((y>0) \rightarrow(x>z))
$$

- What is a Skolem function for $x$ ? $F(x)=y+z$, which is a term in the logic.
- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- However, suppose we have

$$
\forall y \forall z \exists x(((x=y) \vee(x=z)) \wedge((x \geq y) \wedge(x \geq z)))
$$

- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- However, suppose we have

$$
\forall y \forall z \exists x(((x=y) \vee(x=z)) \wedge((x \geq y) \wedge(x \geq z)))
$$

- No term can serve as a Skolem function for $x$ (all terms are linear functions).
- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- However, suppose we have

$$
\forall y \forall z \exists x(((x=y) \vee(x=z)) \wedge((x \geq y) \wedge(x \geq z)))
$$

- No term can serve as a Skolem function for $x$ (all terms are linear functions).
- But $F(x)=\max (y, z)$ is clearly a Skolem function
- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- However, suppose we have

$$
\forall y \forall z \exists x(((x=y) \vee(x=z)) \wedge((x \geq y) \wedge(x \geq z)))
$$

- No term can serve as a Skolem function for $x$ (all terms are linear functions).
- But $F(x)=\max (y, z)$ is clearly a Skolem function, which can be written as a program:
"input( $\mathbf{y}, \mathrm{z}$ ); if $\mathrm{y} \geq \mathrm{z}$ then return $y$ else return $z$ "
- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- However, suppose we have

$$
\forall y \forall z \exists x(((x=y) \vee(x=z)) \wedge((x \geq y) \wedge(x \geq z)))
$$

- No term can serve as a Skolem function for $x$ (all terms are linear functions).
- But $F(x)=\max (y, z)$ is clearly a Skolem function, which can be written as a program: "input( $y, z$ ); if $y \geq z$ then return $y$ else return $z$ "
- In fact, for ANY formula in this theory, Skolem functions can be written this way!
- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- However, suppose we have

$$
\forall y \forall z \exists x(((x=y) \vee(x=z)) \wedge((x \geq y) \wedge(x \geq z)))
$$

- No term can serve as a Skolem function for $x$ (all terms are linear functions).
- But $F(x)=\max (y, z)$ is clearly a Skolem function, which can be written as a program: "input( $\mathbf{y}, \mathrm{z}$ ); if $\mathrm{y} \geq \mathrm{z}$ then return $y$ else return $z$ "
- In fact, for ANY formula in this theory, Skolem functions can be written this way!


## The thesis of this paper

For computability/synthesis, Skolem functions should be seen as programs aka Turing machines!

- Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V}=\{<,+,=, 0,1\}$

- However, suppose we have

$$
\forall y \forall z \exists x(((x=y) \vee(x=z)) \wedge((x \geq y) \wedge(x \geq z)))
$$

- No term can serve as a Skolem function for $x$ (all terms are linear functions).
- But $F(x)=\max (y, z)$ is clearly a Skolem function, which can be written as a program: "input( $\mathbf{y}, \mathrm{z}$ ); if $\mathrm{y} \geq \mathrm{z}$ then return $y$ else return $z$ "
- In fact, for ANY formula in this theory, Skolem functions can be written this way!


## The thesis of this paper

For computability/synthesis, Skolem functions should be seen as programs aka Turing machines!
Idea of going beyond terms not new: Skolem functions as set of conditional statements

Testing the limits

Can we always synthesize Skolem functions as Turing machines?

Can we always synthesize Skolem functions as Turing machines?

- Is there a theory where even programs fail? A theory where there is a formula for which there is no Skolem function as a program?

Can we always synthesize Skolem functions as Turing machines?

- Is there a theory where even programs fail? A theory where there is a formula for which there is no Skolem function as a program?
- Unfortunately yes.

Can we always synthesize Skolem functions as Turing machines?

- Is there a theory where even programs fail? A theory where there is a formula for which there is no Skolem function as a program?
- Unfortunately yes. Natural numbers over $\mathcal{V}=\{=,+, *, 0,1\}$

Can we always synthesize Skolem functions as Turing machines?

- Is there a theory where even programs fail? A theory where there is a formula for which there is no Skolem function as a program?
- Unfortunately yes. Natural numbers over $\mathcal{V}=\{=,+, *, 0,1\}$
- Follows from the classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem!

The problem statements

Given a vocabulary $\mathcal{V}$ and a $\mathcal{V}$-structure $\mathfrak{M}$.

Given a vocabulary $\mathcal{V}$ and a $\mathcal{V}$-structure $\mathfrak{N}$.

## Questions of concern

(1) For every $\mathcal{V}$-formula $\xi=\forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $T M_{\xi, \mathfrak{M}}$ that serves as a Skolem function for $Y$ in $\xi$, when evaluated over $\mathfrak{M}$ ? (SkExist)

Given a vocabulary $\mathcal{V}$ and a $\mathcal{V}$-structure $\mathfrak{N}$.

## Questions of concern

(1) For every $\mathcal{V}$-formula $\xi=\forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $T M_{\xi, \mathfrak{M}}$ that serves as a Skolem function for $Y$ in $\xi$, when evaluated over $\mathfrak{M}$ ? (SkExist)
(2) Is there an algorithm $A_{\mathfrak{M}}$ that takes $\xi$ as input and returns $T M_{\xi, \mathfrak{M}}$ ? (SkSyn)

Given a vocabulary $\mathcal{V}$ and a $\mathcal{V}$-structure $\mathfrak{N}$.

## Questions of concern

(1) For every $\mathcal{V}$-formula $\xi=\forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $T M_{\xi, \mathfrak{M}}$ that serves as a Skolem function for $Y$ in $\xi$, when evaluated over $\mathfrak{M}$ ? (SkExist)
(2) Is there an algorithm $A_{\mathfrak{M}}$ that takes $\xi$ as input and returns $T M_{\xi, \mathfrak{M}}$ ? (SkSyn)

## Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Given a vocabulary $\mathcal{V}$ and a $\mathcal{V}$-structure $\mathfrak{N}$.

## Questions of concern

(1) For every $\mathcal{V}$-formula $\xi=\forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $T M_{\xi, \mathfrak{M}}$ that serves as a Skolem function for $Y$ in $\xi$, when evaluated over $\mathfrak{M}$ ? (SkExist)
(2) Is there an algorithm $A_{\mathfrak{M}}$ that takes $\xi$ as input and returns $T M_{\xi, \mathfrak{M}}$ ? (SkSyn)

## Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Question 2
When SkExist returns Yes, then

- can SkSyn return No?

Given a vocabulary $\mathcal{V}$ and a $\mathcal{V}$-structure $\mathfrak{N}$.

## Questions of concern

(1) For every $\mathcal{V}$-formula $\xi=\forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $T M_{\xi, \mathfrak{M}}$ that serves as a Skolem function for $Y$ in $\xi$, when evaluated over $\mathfrak{M}$ ? (SkExist)
(2) Is there an algorithm $A_{\mathfrak{M}}$ that takes $\xi$ as input and returns $T M_{\xi, \mathfrak{M}}$ ? (SkSyn)

## Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Question 2
When SkExist returns Yes, then

- can SkSyn return No?
- can we characterize precisely when SkSyn returns Yes?

Given a vocabulary $\mathcal{V}$ and a $\mathcal{V}$-structure $\mathfrak{N}$.

## Questions of concern

(1) For every $\mathcal{V}$-formula $\xi=\forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $T M_{\xi, \mathfrak{M}}$ that serves as a Skolem function for $Y$ in $\xi$, when evaluated over $\mathfrak{M}$ ? (SkExist)
(2) Is there an algorithm $A_{\mathfrak{M}}$ that takes $\xi$ as input and returns $T M_{\xi, \mathfrak{M}}$ ? (SkSyn)

## Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Question 2
When SkExist returns Yes, then

- can SkSyn return No?
- can we characterize precisely when SkSyn returns Yes ?
- Moreover, can we explicitly construct $A_{\mathfrak{M}}$ ?

Given a vocabulary $\mathcal{V}$ and a $\mathcal{V}$-structure $\mathfrak{M}$.

## Questions of concern

(1) For every $\mathcal{V}$-formula $\xi=\forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $T M_{\xi, \mathfrak{M}}$ that serves as a Skolem function for $Y$ in $\xi$, when evaluated over $\mathfrak{M}$ ? (SkExist)
(2) Is there an algorithm $A_{\mathfrak{M}}$ that takes $\xi$ as input and returns $T M_{\xi, \mathfrak{M}}$ ? (SkSyn)

## Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Note: We assume structures to be "computable": predicates/functions are effectively computable.

Question 2
When SkExist returns Yes, then

- can SkSyn return No?
- can we characterize precisely when SkSyn returns Yes?
- Moreover, can we explicitly construct $A_{\mathfrak{M}}$ ?

Negative results
(1) Depending on $\mathfrak{M}$, SkExist can return Yes as well as No.

Negative results
(1) Depending on $\mathfrak{M}$, SkExist can return Yes as well as No.
(2) SkExist is undecidable,

Negative results
(1) Depending on $\mathfrak{M}$, SkExist can return Yes as well as No.
(2) SkExist is undecidable,

- even when $\mathcal{V}$ has a single binary predicate and a single constant.


## Negative results

(1) Depending on $\mathfrak{M}$, SkExist can return Yes as well as No.
(2) SkExist is undecidable,

- even when $\mathcal{V}$ has a single binary predicate and a single constant.
(2) even for $\xi$ in quantifier prefix classes $\exists \forall \exists$ and $\forall \exists \exists$ (but not $\exists^{+} \forall^{*}$ ).


## Main results

Negative results
(1) Depending on $\mathfrak{M}$, SkExist can return Yes as well as No.
(2) SkExist is undecidable,

- even when $\mathcal{V}$ has a single binary predicate and a single constant.
(2) even for $\xi$ in quantifier prefix classes $\exists \forall \exists$ and $\forall \exists \exists$ (but not $\exists^{+} \forall^{*}$ ).
(3) There are instances where SkExist has Yes answer but not SkSyn.


## Main results

## Negative results

(1) Depending on $\mathfrak{M}$, SkExist can return Yes as well as No.
(2) SkExist is undecidable,
(0) even when $\mathcal{V}$ has a single binary predicate and a single constant.
(2) even for $\xi$ in quantifier prefix classes $\exists \forall \exists$ and $\forall \exists \exists$ (but not $\exists^{+} \forall^{*}$ ).
(3) There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So what makes them decidable?

## Main results

## Negative results

(1) Depending on $\mathfrak{M}$, SkExist can return Yes as well as No.
(2) SkExist is undecidable,
(0) even when $\mathcal{V}$ has a single binary predicate and a single constant.
(2) even for $\xi$ in quantifier prefix classes $\exists \forall \exists$ and $\forall \exists \exists$ (but not $\exists^{+} \forall^{*}$ ).
(3) There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So what makes them decidable?

## A characterization for Synthesis

Let $\mathfrak{M}$ be a computable $\mathcal{V}$-structure for vocabulary $\mathcal{V}$.

- SkSyn has a positive answer for $\mathfrak{M}$ iff


## Main results

## Negative results

(1) Depending on $\mathfrak{M}$, SkExist can return Yes as well as No.
(2) SkExist is undecidable,
(1) even when $\mathcal{V}$ has a single binary predicate and a single constant.
(2) even for $\xi$ in quantifier prefix classes $\exists \forall \exists$ and $\forall \exists \exists$ (but not $\exists^{+} \forall^{*}$ ).
(3) There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So what makes them decidable?

## A characterization for Synthesis

Let $\mathfrak{M}$ be a computable $\mathcal{V}$-structure for vocabulary $\mathcal{V}$.

- SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.

A brief detour into Model theory

So what is the elementary diagram of $\mathfrak{M}$ ?

A brief detour into Model theory

- Vocabulary V e.g., $\{<,=,+, 0,1\}$
- Vocabulary $\mathcal{V}$

$$
\text { e.g., }\{<,=,+, 0,1\}
$$

- Structure $\mathfrak{N}$

Universe $\mathbb{Z}$
$<:(0,1),(-1,0),(5,7), \ldots$,
$=:(0,0), \ldots$
$+:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots$
$0: 0,1: 1$

- Vocabulary V
e.g., $\{<,=,+, 0,1\}$
- Structure $\mathfrak{N}$

Universe $\mathbb{Z}$
$<:(0,1),(-1,0),(5,7), \ldots$,
$=:(0,0), \ldots$
$+:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots$
$0: 0,1: 1$

- $\operatorname{Th}(\mathfrak{N})$ is the set of all true sentences in $\mathfrak{M}$.
- Vocabulary $\mathcal{V}$

$$
\text { e.g., }\{<,=,+, 0,1\}
$$

- Structure $\mathfrak{N}$

Universe $\mathbb{Z}$
$<:(0,1),(-1,0),(5,7), \ldots$,
$=:(0,0), \ldots$
$+:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots$
$0: 0,1: 1$

- $\operatorname{Th}(\mathfrak{M})$ is the set of all true sentences in $\mathfrak{M}$.
- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$ $\left\{<,=,+, 0,1, c_{0}, c_{1}, c_{-1}, \ldots\right\}$
- Vocabulary $\mathcal{V}$

$$
\text { e.g., }\{<,=,+, 0,1\}
$$

- Structure $\mathfrak{M}$

Universe $\mathbb{Z}$

$$
\begin{aligned}
& <:(0,1),(-1,0),(5,7), \ldots, \\
& =:(0,0), \ldots \\
& +:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots \\
& 0: 0,1: 1
\end{aligned}
$$

- Th(M) is the set of all true sentences in $\mathfrak{M}$.
- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$

$$
\left\{<,=,+, 0,1, c_{0}, c_{1}, c_{-1}, \ldots\right\}
$$

- Expansion of Structure $\mathfrak{M}_{\text {exp }}$

Universe $\mathbb{Z}$

$$
\begin{aligned}
& <:(0,1),(-1,0),(5,7), \ldots, \\
& =:(0,0), \ldots \\
& +:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots \\
& 0: 0,1: 1 \\
& c_{0}: 0, c_{1}: 1, \ldots, c_{-1}:-1, \ldots
\end{aligned}
$$

- Vocabulary $\mathcal{V}$

$$
\text { e.g., }\{<,=,+, 0,1\}
$$

- Structure $\mathfrak{N}$

Universe $\mathbb{Z}$

$$
\begin{aligned}
& <:(0,1),(-1,0),(5,7), \ldots, \\
& =:(0,0), \ldots \\
& +:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots \\
& 0: 0,1: 1
\end{aligned}
$$

- $\operatorname{Th}(\mathfrak{M})$ is the set of all true sentences in $\mathfrak{M}$.
- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$

$$
\left\{<,=,+, 0,1, c_{0}, c_{1}, c_{-1}, \ldots\right\}
$$

- Expansion of Structure $\mathfrak{M}_{\text {exp }}$

Universe $\mathbb{Z}$

$$
\begin{aligned}
& <:(0,1),(-1,0),(5,7), \ldots, \\
& =:(0,0), \ldots \\
& +:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots \\
& 0: 0,1: 1 \\
& c_{0}: 0, c_{1}: 1, \ldots, c_{-1}:-1, \ldots
\end{aligned}
$$

- $\operatorname{Th}\left(\mathfrak{M}_{\text {exp }}\right)$ is the set of all true sentences in $\mathfrak{M}_{\text {exp }}$.
- Vocabulary $\mathcal{V}$

$$
\text { e.g., }\{<,=,+, 0,1\}
$$

- Structure $\mathfrak{M}$

Universe $\mathbb{Z}$
$<:(0,1),(-1,0),(5,7), \ldots$,
$=:(0,0), \ldots$
$+:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots$ $0: 0,1: 1$

- $\operatorname{Th}(\mathfrak{M})$ is the set of all true sentences in $\mathfrak{M}$.
- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$

$$
\left\{<,=,+, 0,1, c_{0}, c_{1}, c_{-1}, \ldots\right\}
$$

- Expansion of Structure $\mathfrak{M}_{\text {exp }}$

Universe $\mathbb{Z}$

$$
\begin{aligned}
& <:(0,1),(-1,0),(5,7), \ldots, \\
& =:(0,0), \ldots \\
& +:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots \\
& 0: 0,1: 1 \\
& c_{0}: 0, c_{1}: 1, \ldots, c_{-1}:-1, \ldots
\end{aligned}
$$

- $\operatorname{Th}\left(\mathfrak{M}_{\text {exp }}\right)$ is the set of all true sentences in $\mathfrak{M}_{\text {exp }}$. Also called elementary diagram of $\mathfrak{M}, E D(\mathfrak{M})$.
- Vocabulary V

$$
\text { e.g., }\{<,=,+, 0,1\}
$$

- Structure $\mathfrak{N}$

Universe $\mathbb{Z}$
$<:(0,1),(-1,0),(5,7), \ldots$,
$=:(0,0), \ldots$
$+:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots$ $0: 0,1: 1$

- Th( $\mathfrak{M})$ is the set of all true sentences in $\mathfrak{M}$.
- Expansion of Vocabulary $\mathcal{V}(\mathfrak{N})$

$$
\left\{<,=,+, 0,1, c_{0}, c_{1}, c_{-1}, \ldots\right\}
$$

- Expansion of Structure $\mathfrak{M e x p}$

Universe $\mathbb{Z}$
$<:(0,1),(-1,0),(5,7), \ldots$,
$=:(0,0), \ldots$
$+:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots$
$0: 0,1: 1$
$c_{0}: 0, c_{1}: 1, \ldots, c_{-1}:-1, \ldots$

- Th( $\left.\mathfrak{M}_{\text {exp }}\right)$ is the set of all true sentences in $\mathfrak{M}_{\text {exp }}$. Also called elementary diagram of $\mathfrak{M}, ~ E D(\mathfrak{M})$.

Elementary diagram is said to be decidable if given any sentence $\varphi$ in $\mathcal{V}(\mathfrak{M})$, we can algorithmically decide if $\varphi \in E D(\mathfrak{M})$.

- Vocabulary $\mathcal{V}$ e.g., $\{<,=,+, 0,1\}$
- Structure $\mathfrak{M}$

Universe $\mathbb{Z}$
$<:(0,1),(-1,0),(5,7), \ldots$,
$=:(0,0), \ldots$
$+:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots$
$0: 0,1: 1$

- $\operatorname{Th}(\mathfrak{N})$ is the set of all true sentences in $\mathfrak{M}$.
- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$ $\left\{<,=,+, 0,1, c_{0}, c_{1}, c_{-1}, \ldots\right\}$
- Expansion of Structure $\mathfrak{M}_{\text {exp }}$

Universe $\mathbb{Z}$
$<:(0,1),(-1,0),(5,7), \ldots$,
$=:(0,0), \ldots$
$+:(0,1) \rightarrow 1,(-3,2) \rightarrow-1, \ldots$
$0: 0,1: 1$
$c_{0}: 0, c_{1}: 1, \ldots, c_{-1}:-1, \ldots$

- $\operatorname{Th}\left(\mathfrak{M}_{\text {exp }}\right)$ is the set of all true sentences in $\mathfrak{M}_{\text {exp }}$. Also called elementary diagram of $\mathfrak{M}, E D(\mathfrak{M})$.

Elementary diagram is said to be decidable if given any sentence $\varphi$ in $\mathcal{V}(\mathfrak{M})$, we can algorithmically decide if $\varphi \in E D(\mathfrak{M})$.

Consequences and more!

## Theorem

## SkSyn has a positive answer for $\mathfrak{M}$

iff the "elementary diagram" of $\mathfrak{M}$ is decidable.

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ and we can effectively synthesize Skolem functions as halting Turing machines for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ and we can effectively synthesize Skolem functions as halting Turing machines for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.

## Consequences

(1) SkSyn has a negative answer for $(\mathbb{N},<,=,+, *, 0,1)$.
(2) SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic
2. Linear rational arithmetic
3. Real algebraic numbers
4. Dense linear orders without endpoints

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ and we can effectively synthesize Skolem functions as halting Turing machines for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.

## Consequences

(1) SkSyn has a negative answer for $(\mathbb{N},<,=,+, *, 0,1)$.
(2) SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic
2. Linear rational arithmetic
3. Real algebraic numbers
4. Dense linear orders without endpoints

- In each case, we reduce to decidability of underlying theory $\operatorname{Th}(\mathfrak{M})$.


## Consequences and more!

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ and we can effectively synthesize Skolem functions as halting Turing machines for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.

## Consequences

(1) SkSyn has a negative answer for $(\mathbb{N},<,=,+, *, 0,1)$.
(2) SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic
2. Real algebraic numbers
3. Linear rational arithmetic
4. Dense linear orders without endpoints

- In each case, we reduce to decidability of underlying theory $\operatorname{Th}(\mathfrak{M})$.
- Not true in general! There exist $\mathfrak{M}$ s.t. $T h(\mathfrak{M})$ is decidable but $E D(\mathfrak{M})$ is not (see paper).


## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ and we can effectively synthesize Skolem functions as halting Turing machines for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.

## Consequences

(1) SkSyn has a negative answer for $(\mathbb{N},<,=,+, *, 0,1)$.
(2) SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic
2. Real algebraic numbers
3. Linear rational arithmetic
4. Dense linear orders without endpoints

- In each case, we reduce to decidability of underlying theory $\operatorname{Th}(\mathfrak{M})$.
- Not true in general! There exist $\mathfrak{M}$ s.t. $T h(\mathfrak{M})$ is decidable but $E D(\mathfrak{M})$ is not (see paper).


## Complexity

- Lower bound follows from complexity of deciding theory.


## Consequences and more!

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ and we can effectively synthesize Skolem functions as halting Turing machines for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.

## Consequences

(1) SkSyn has a negative answer for $(\mathbb{N},<,=,+, *, 0,1)$.
(2) SkSyn has a positive answer and we can effectively synthesize Skolem functions for

1. Presburger arithmetic
2. Real algebraic numbers
3. Linear rational arithmetic
4. Dense linear orders without endpoints

- In each case, we reduce to decidability of underlying theory $\operatorname{Th}(\mathfrak{M})$.
- Not true in general! There exist $\mathfrak{M}$ s.t. $\operatorname{Th}(\mathfrak{M})$ is decidable but $E D(\mathfrak{M})$ is not (see paper).


## Complexity

- Lower bound follows from complexity of deciding theory.
- If theory admits effective constraint solving, then can give upper bounds! (see paper)

Conclusion - A beginning

A framework to the study algorithmic computation of Skolem functions.

- Skolem functions as Turing machines/programs.
- A characterization resulting in strong positive and negative results.

A framework to the study algorithmic computation of Skolem functions.

- Skolem functions as Turing machines/programs.
- A characterization resulting in strong positive and negative results.


## Other results in paper

- e.g., what happens if you fix the formula and vary the structure?

A framework to the study algorithmic computation of Skolem functions.

- Skolem functions as Turing machines/programs.
- A characterization resulting in strong positive and negative results.


## Other results in paper

- e.g., what happens if you fix the formula and vary the structure?


## The future

- Synthesizing succinct Skolem functions and algorithms with better complexity.
- Characterization of when terms are sufficient.
- Implementation for certain theories?

A framework to the study algorithmic computation of Skolem functions.

- Skolem functions as Turing machines/programs.
- A characterization resulting in strong positive and negative results.


## Other results in paper

- e.g., what happens if you fix the formula and vary the structure?


## The future

- Synthesizing succinct Skolem functions and algorithms with better complexity.
- Characterization of when terms are sufficient.
- Implementation for certain theories? Work in progress!

Thank you!

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longrightarrow)$ Program/TM for Skolem function for $Y$ in $\forall X \exists Y \varphi(X, Y)$ is as follows:

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longrightarrow)$ Program/TM for Skolem function for $Y$ in $\forall X \exists Y \varphi(X, Y)$ is as follows:
(1) Given value of $X$, say $\sigma$, construct $\Psi_{\sigma}=\exists Y \varphi(\sigma, Y)$

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longrightarrow)$ Program/TM for Skolem function for $Y$ in $\forall X \exists Y \varphi(X, Y)$ is as follows:
(1) Given value of $X$, say $\sigma$, construct $\Psi_{\sigma}=\exists Y \varphi(\sigma, Y)$
(2) Use dec proc for $E D(\mathfrak{M})$ on this.

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longrightarrow)$ Program/TM for Skolem function for $Y$ in $\forall X \exists Y \varphi(X, Y)$ is as follows:
(1) Given value of $X$, say $\sigma$, construct $\Psi_{\sigma}=\exists Y \varphi(\sigma, Y)$
(2) Use dec proc for $E D(\mathfrak{M})$ on this.

- if false, output arbitrary value.


## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longrightarrow)$ Program/TM for Skolem function for $Y$ in $\forall X \exists Y \varphi(X, Y)$ is as follows:
(1) Given value of $X$, say $\sigma$, construct $\Psi_{\sigma}=\exists Y \varphi(\sigma, Y)$
(2) Use dec proc for $E D(\mathfrak{M})$ on this.

- if false, output arbitrary value.
- if true, for each elt $\rho$ in $\operatorname{dom}(Y)$, do


## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longrightarrow)$ Program/TM for Skolem function for $Y$ in $\forall X \exists Y \varphi(X, Y)$ is as follows:
(1) Given value of $X$, say $\sigma$, construct $\Psi_{\sigma}=\exists Y \varphi(\sigma, Y)$
(2) Use dec proc for $E D(\mathfrak{M})$ on this.

- if false, output arbitrary value.
- if true, for each elt $\rho$ in $\operatorname{dom}(Y)$, do
- construct $\varphi(\sigma, \rho)$


## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longrightarrow)$ Program/TM for Skolem function for $Y$ in $\forall X \exists Y \varphi(X, Y)$ is as follows:
(1) Given value of $X$, say $\sigma$, construct $\Psi_{\sigma}=\exists Y \varphi(\sigma, Y)$
(2) Use dec proc for $E D(\mathfrak{M})$ on this.

- if false, output arbitrary value.
- if true, for each elt $\rho$ in $\operatorname{dom}(Y)$, do
(1) construct $\varphi(\sigma, \rho)$
(2) apply dec proc for $E D(\mathfrak{M})$ on this.


## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longrightarrow)$ Program/TM for Skolem function for $Y$ in $\forall X \exists Y \varphi(X, Y)$ is as follows:
(1) Given value of $X$, say $\sigma$, construct $\Psi_{\sigma}=\exists Y \varphi(\sigma, Y)$
(2) Use dec proc for $E D(\mathfrak{M})$ on this.

- if false, output arbitrary value.
- if true, for each elt $\rho$ in $\operatorname{dom}(Y)$, do
(1) construct $\varphi(\sigma, \rho)$
(2) apply dec proc for $E D(\mathfrak{M})$ on this.
(3) if true, output $\rho$, quit loop, else goto next elt.


## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longleftarrow)$ Dec proc for $E D(\mathfrak{M})$ using Sk fn generator for formulas over $\mathfrak{M}$.

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longleftarrow)$ Dec proc for $E D(\mathfrak{M})$ using Sk fn generator for formulas over $\mathfrak{M}$.
(1) Given $\mathcal{V}(\mathfrak{M})$ sentence $\varphi$ with constant $c \in \mathcal{V}(\mathfrak{M})$, construct $\varphi^{\prime}(y)$ where $c$ replaced by fresh var $y$.

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longleftarrow)$ Dec proc for $E D(\mathfrak{M})$ using Sk fn generator for formulas over $\mathfrak{M}$.
(1) Given $\mathcal{V}(\mathfrak{M})$ sentence $\varphi$ with constant $c \in \mathcal{V}(\mathfrak{M})$, construct $\varphi^{\prime}(y)$ where $c$ replaced by fresh var $y$.
(2) For fresh var, $z_{1}, z_{2}$ define $\psi=\forall y \forall z_{1} \forall z_{2} \exists x\left(\left(\left(x=z_{1}\right) \wedge \varphi^{\prime}\right) \vee\left(x=z_{2}\right) \wedge \neg \varphi^{\prime}\right)$ (note: this is a valid formula!)

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longleftarrow)$ Dec proc for $E D(\mathfrak{M})$ using Sk fn generator for formulas over $\mathfrak{M}$.
(1) Given $\mathcal{V}(\mathfrak{M})$ sentence $\varphi$ with constant $c \in \mathcal{V}(\mathfrak{M})$, construct $\varphi^{\prime}(y)$ where $c$ replaced by fresh var $y$.
(2) For fresh var, $z_{1}, z_{2}$ define $\psi=\forall y \forall z_{1} \forall z_{2} \exists x\left(\left(\left(x=z_{1}\right) \wedge \varphi^{\prime}\right) \vee\left(x=z_{2}\right) \wedge \neg \varphi^{\prime}\right)$ (note: this is a valid formula!)
(3) Use Sk fn gen on $\psi$ to synthesize $\operatorname{Sk}$ fn for $x, F\left(y, z_{1}, z_{2}\right)$.

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longleftarrow)$ Dec proc for $E D(\mathfrak{M})$ using Sk fn generator for formulas over $\mathfrak{M}$.
(1) Given $\mathcal{V}(\mathfrak{M})$ sentence $\varphi$ with constant $c \in \mathcal{V}(\mathfrak{M})$, construct $\varphi^{\prime}(y)$ where $c$ replaced by fresh var $y$.
(2) For fresh var, $z_{1}, z_{2}$ define $\psi=\forall y \forall z_{1} \forall z_{2} \exists x\left(\left(\left(x=z_{1}\right) \wedge \varphi^{\prime}\right) \vee\left(x=z_{2}\right) \wedge \neg \varphi^{\prime}\right)$ (note: this is a valid formula!)
(3) Use Sk fn gen on $\psi$ to synthesize $\operatorname{Sk}$ fn for $x, F\left(y, z_{1}, z_{2}\right)$.
(9) For two distinct elements $d, e \in \mathfrak{M}$, evaluate $F(c, d, e)$.

## Theorem

SkSyn has a positive answer for $\mathfrak{M}$ iff the "elementary diagram" of $\mathfrak{M}$ is decidable.
$(\Longleftarrow)$ Dec proc for $E D(\mathfrak{M})$ using Sk fn generator for formulas over $\mathfrak{M}$.
(1) Given $\mathcal{V}(\mathfrak{M})$ sentence $\varphi$ with constant $c \in \mathcal{V}(\mathfrak{M})$, construct $\varphi^{\prime}(y)$ where $c$ replaced by fresh var $y$.
(2) For fresh var, $z_{1}, z_{2}$ define $\psi=\forall y \forall z_{1} \forall z_{2} \exists x\left(\left(\left(x=z_{1}\right) \wedge \varphi^{\prime}\right) \vee\left(x=z_{2}\right) \wedge \neg \varphi^{\prime}\right)$ (note: this is a valid formula!)
(3) Use Sk fn gen on $\psi$ to synthesize $\operatorname{Sk}$ fn for $x, F\left(y, z_{1}, z_{2}\right)$.
(9) For two distinct elements $d, e \in \mathfrak{M}$, evaluate $F(c, d, e)$.

- if $F(c, d, e)=d$, then $\varphi$ is valid.
- else $F(c, d, e)=e$ and $\varphi$ is not valid.

