On Synthesizing Computable Skolem functions for FO logic

Supratik Chakraborty and S. Akshay

Indian Institute of Technology Bombay

MFCS 2022, Vienna

1

Skolem functions

Given a FOL formula $\varphi(X, Y)$ over (inputs) X and (outputs) Y, $F(\cdot)$ is a Skolem function iff

 $\forall \boldsymbol{X} \big(\exists \boldsymbol{Y} \boldsymbol{\varphi}(\boldsymbol{X}, \boldsymbol{Y}) \Leftrightarrow \boldsymbol{\varphi}(\boldsymbol{X}, \boldsymbol{F}(\boldsymbol{X})) \big)$

Skolem functions

Given a FOL formula $\varphi(X, Y)$ over (inputs) X and (outputs) Y, $F(\cdot)$ is a Skolem function iff

 $\forall \boldsymbol{X} \big(\exists \boldsymbol{Y} \boldsymbol{\varphi}(\boldsymbol{X}, \boldsymbol{Y}) \Leftrightarrow \boldsymbol{\varphi}(\boldsymbol{X}, \boldsymbol{F}(\boldsymbol{X})) \big)$

- Classical concept arising from quantifier elimination in FOL.
- Known to always exist! But,
 - Is the function computable?
 - 2 Can we effectively compute/synthesize such a function?

A storied history

Skolem functions play an important role in first order logic

- Getting rid of existential quantifiers
- Seminal work by Thoralf Skolem 1920s and Jacques Herbrand 1930s.
- Skolemization and "Skolem-Normal form"
- · Focus on existence of form, NOT computability.

A storied history

Skolem functions play an important role in first order logic

- Getting rid of existential quantifiers
 - Seminal work by Thoralf Skolem 1920s and Jacques Herbrand 1930s.
- Skolemization and "Skolem-Normal form"
- Focus on existence of form, NOT computability.

We can trace this history even further back

A storied history

Skolem functions play an important role in first order logic

- Getting rid of existential quantifiers
- Seminal work by Thoralf Skolem 1920s and Jacques Herbrand 1930s.
- Skolemization and "Skolem-Normal form"
- · Focus on existence of form, NOT computability.

We can trace this history even further back

- Existence and construction of Boolean unifiers
- Boole'1847, Lowenheim'1908.

Applications

Why should we be interested in synthesizability of Skolem functions?

• Heart of Automated Program Synthesis and repair.

Applications

Why should we be interested in synthesizability of Skolem functions?

Heart of Automated Program Synthesis and repair.

Applications

Why should we be interested in synthesizability of Skolem functions?

Heart of Automated Program Synthesis and repair.

Prior work

- Propositional setting: Akshay et al.'17,'18,'19,'20,'21, Rabe et al. '17,'18, Golia et al.'20,'21, etc., Fried et al'16, John et al.'15, Heule et al.'14, etc.
- Beyond Propositional setting:
 - Results on specific theories: Linear rational arithmetic Kuncak et al.'10, Bit vectors Spielman et al., Priener et al.
 - Partial approach for Quantifier Elimination Jiang'09.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

Consider the formula

$$\forall y \forall z \exists x((y > 0) \rightarrow (x > z))$$

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

Consider the formula

$$\forall y \forall z \exists x((y > 0) \rightarrow (x > z))$$

• What is a Skolem function for x?

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

Consider the formula

$$\forall y \forall z \exists x((y > 0) \rightarrow (x > z))$$

• What is a Skolem function for x? F(x) = y + z

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

Consider the formula

$$\forall y \forall z \exists x ((y > 0) \rightarrow (x > z))$$

• What is a Skolem function for x? F(x) = y + z, which is a term in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

• However, suppose we have

$$\forall y \forall z \exists x (((x = y) \lor (x = z)) \land ((x \ge y) \land (x \ge z)))$$

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

• However, suppose we have

$$\forall y \forall z \exists x (((x = y) \lor (x = z)) \land ((x \ge y) \land (x \ge z)))$$

• No term can serve as a Skolem function for *x* (all terms are linear functions).

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

• However, suppose we have

$$\forall y \forall z \exists x (((x = y) \lor (x = z)) \land ((x \ge y) \land (x \ge z)))$$

- No term can serve as a Skolem function for x (all terms are linear functions).
- But F(x) = max(y, z) is clearly a Skolem function

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

However, suppose we have

$$\forall y \forall z \exists x (((x = y) \lor (x = z)) \land ((x \ge y) \land (x \ge z)))$$

- No term can serve as a Skolem function for *x* (all terms are linear functions).
- But F(x) = max(y, z) is clearly a Skolem function, which can be written as a program: "input(y,z); if $y \ge z$ then return y else return z"

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

• However, suppose we have

$$\forall y \forall z \exists x (((x = y) \lor (x = z)) \land ((x \ge y) \land (x \ge z)))$$

- No term can serve as a Skolem function for *x* (all terms are linear functions).
- But F(x) = max(y, z) is clearly a Skolem function, which can be written as a program: "input(y,z); if $y \ge z$ then return y else return z"
- In fact, for ANY formula in this theory, Skolem functions can be written this way!

Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

However, suppose we have

$$\forall y \forall z \exists x (((x = y) \lor (x = z)) \land ((x \ge y) \land (x \ge z)))$$

- No term can serve as a Skolem function for x (all terms are linear functions).
- But F(x) = max(y, z) is clearly a Skolem function, which can be written as a program: "input(y,z); if $y \ge z$ then return y else return z"
- In fact, for ANY formula in this theory, Skolem functions can be written this way!

The thesis of this paper

For computability/synthesis, Skolem functions should be seen as programs aka Turing machines!

Skolem functions beyond terms

• Skolem functions are often conflated with terms in the logic.

Consider Presburger arithmetic, integers over vocabulary $\mathcal{V} = \{<, +, =, 0, 1\}$

However, suppose we have

$$\forall y \forall z \exists x (((x = y) \lor (x = z)) \land ((x \ge y) \land (x \ge z)))$$

- No term can serve as a Skolem function for x (all terms are linear functions).
- But F(x) = max(y, z) is clearly a Skolem function, which can be written as a program: "input(y,z); if $y \ge z$ then return y else return z"
- In fact, for ANY formula in this theory, Skolem functions can be written this way!

The thesis of this paper

For computability/synthesis, Skolem functions should be seen as programs aka Turing machines!

Idea of going beyond terms not new: Skolem functions as set of conditional statements [Jiang'09]

• Is there a theory where even programs fail? A theory where there is a formula for which there is no Skolem function as a program?

- Is there a theory where even programs fail? A theory where there is a formula for which there is no Skolem function as a program?
- Unfortunately yes.

- Is there a theory where even programs fail? A theory where there is a formula for which there is no Skolem function as a program?
- Unfortunately yes. Natural numbers over $\mathcal{V} = \{=, +, *, 0, 1\}$

- Is there a theory where even programs fail? A theory where there is a formula for which there is no Skolem function as a program?
- Unfortunately yes. Natural numbers over $\mathcal{V} = \{=, +, *, 0, 1\}$
- Follows from the classical Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem!

Given a vocabulary $\mathcal V$ and a $\mathcal V\text{-structure}\ \mathfrak M.$

Given a vocabulary ${\mathcal V}$ and a ${\mathcal V}\text{-structure }{\mathfrak M}.$

Questions of concern

• For every \mathcal{V} -formula $\xi = \forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $TM_{\xi,\mathfrak{M}}$ that serves as a Skolem function for Y in ξ , when evaluated over \mathfrak{M} ? (SkExist)

Given a vocabulary ${\mathcal V}$ and a ${\mathcal V}\text{-structure }{\mathfrak M}.$

Questions of concern

- For every \mathcal{V} -formula $\xi = \forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $TM_{\xi,\mathfrak{M}}$ that serves as a Skolem function for Y in ξ , when evaluated over \mathfrak{M} ? (SkExist)
- 3 Is there an algorithm $A_{\mathfrak{M}}$ that takes ξ as input and returns $TM_{\xi,\mathfrak{M}}$? (SkSyn)

Given a vocabulary ${\mathcal V}$ and a ${\mathcal V}\text{-structure }{\mathfrak M}.$

Questions of concern

- For every \mathcal{V} -formula $\xi = \forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $TM_{\xi,\mathfrak{M}}$ that serves as a Skolem function for Y in ξ , when evaluated over \mathfrak{M} ? (SkExist)
- 3 Is there an algorithm $A_{\mathfrak{M}}$ that takes ξ as input and returns $TM_{\xi,\mathfrak{M}}$? (SkSyn)

Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Given a vocabulary ${\mathcal V}$ and a ${\mathcal V}\text{-structure }{\mathfrak M}.$

Questions of concern

- For every \mathcal{V} -formula $\xi = \forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $TM_{\xi,\mathfrak{M}}$ that serves as a Skolem function for Y in ξ , when evaluated over \mathfrak{M} ? (SkExist)
- **2** Is there an algorithm $A_{\mathfrak{M}}$ that takes ξ as input and returns $TM_{\xi,\mathfrak{M}}$? (SkSyn)

Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Question 2

When SkExist returns Yes, then

• can SkSyn return No?

Given a vocabulary ${\mathcal V}$ and a ${\mathcal V}\text{-structure }{\mathfrak M}.$

Questions of concern

- For every \mathcal{V} -formula $\xi = \forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $TM_{\xi,\mathfrak{M}}$ that serves as a Skolem function for Y in ξ , when evaluated over \mathfrak{M} ? (SkExist)
- **2** Is there an algorithm $A_{\mathfrak{M}}$ that takes ξ as input and returns $TM_{\xi,\mathfrak{M}}$? (SkSyn)

Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Question 2

When SkExist returns Yes, then

- can SkSyn return No?
- can we characterize precisely when SkSyn returns Yes ?

Given a vocabulary ${\mathcal V}$ and a ${\mathcal V}\text{-structure }{\mathfrak M}.$

Questions of concern

- For every \mathcal{V} -formula $\xi = \forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $TM_{\xi,\mathfrak{M}}$ that serves as a Skolem function for Y in ξ , when evaluated over \mathfrak{M} ? (SkExist)
- 3 Is there an algorithm $A_{\mathfrak{M}}$ that takes ξ as input and returns $TM_{\xi,\mathfrak{M}}$? (SkSyn)

Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Question 2

When SkExist returns Yes, then

- can SkSyn return No?
- can we characterize precisely when SkSyn returns Yes ?
- Moreover, can we explicitly construct A_m?

Given a vocabulary $\mathcal V$ and a $\mathcal V\text{-structure }\mathfrak M.$

Questions of concern

- For every \mathcal{V} -formula $\xi = \forall X \exists Y \varphi(X, Y)$, does there exist a Turing Machine $TM_{\xi,\mathfrak{M}}$ that serves as a Skolem function for Y in ξ , when evaluated over \mathfrak{M} ? (SkExist)
- 3 Is there an algorithm $A_{\mathfrak{M}}$ that takes ξ as input and returns $TM_{\xi,\mathfrak{M}}$? (SkSyn)

Question 1

- Can SkExist ever return No?
- Is SkExist decidable?

Note: We assume structures to be "computable": predicates/functions are effectively computable.

Question 2

When SkExist returns Yes, then

- can SkSyn return No?
- can we characterize precisely when SkSyn returns Yes ?
- Moreover, can we explicitly construct A_m?

Negative results

() Depending on \mathfrak{M} , SkExist can return Yes as well as No.
- **O** Depending on \mathfrak{M} , SkExist can return Yes as well as No.
- SkExist is undecidable,

- **O** Depending on \mathfrak{M} , SkExist can return Yes as well as No.
- SkExist is undecidable,
 - ${\color{black} 0}$ even when ${\color{black} \mathcal{V}}$ has a single binary predicate and a single constant.

- **O** Depending on \mathfrak{M} , SkExist can return Yes as well as No.
- SkExist is undecidable,
 - ${\color{black} 0}$ even when ${\color{black} \mathcal{V}}$ has a single binary predicate and a single constant.
 - even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃⁺∀^{*}).

- **O** Depending on \mathfrak{M} , SkExist can return Yes as well as No.
- SkExist is undecidable,
 - ${\color{black} 0}$ even when ${\color{black} \mathcal V}$ has a single binary predicate and a single constant.
 - $even \text{ for } \xi \text{ in quantifier prefix classes } \exists \forall \exists \text{ and } \forall \exists \exists \text{ (but not } \exists^+ \forall^*).$
- There are instances where SkExist has Yes answer but not SkSyn.

- **O** Depending on \mathfrak{M} , SkExist can return Yes as well as No.
- SkExist is undecidable,
 - ${\color{black} 0}$ even when ${\color{black} \mathcal V}$ has a single binary predicate and a single constant.
 - $even \text{ for } \xi \text{ in quantifier prefix classes } \exists \forall \exists \text{ and } \forall \exists \exists \text{ (but not } \exists^+ \forall^*).$
- There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So what makes them decidable?

- Depending on M, SkExist can return Yes as well as No.
- SkExist is undecidable,
 - ${\color{black} 0}$ even when ${\color{black} \mathcal V}$ has a single binary predicate and a single constant.
 - **②** even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃⁺∀^{*}).
- There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So what makes them decidable?

A characterization for Synthesis

Let \mathfrak{M} be a computable \mathcal{V} -structure for vocabulary \mathcal{V} .

• SkSyn has a positive answer for \mathfrak{M} iff

- Depending on M, SkExist can return Yes as well as No.
- SkExist is undecidable,
 - ${\color{black} 0}$ even when ${\color{black} \mathcal V}$ has a single binary predicate and a single constant.
 - **②** even for ξ in quantifier prefix classes ∃∀∃ and ∀∃∃ (but not ∃⁺∀^{*}).
- There are instances where SkExist has Yes answer but not SkSyn.

But we know many theories where Skolem functions can be synthesized for all formulas. So what makes them decidable?

A characterization for Synthesis

Let \mathfrak{M} be a computable \mathcal{V} -structure for vocabulary \mathcal{V} .

So what is the elementary diagram of \mathfrak{M} ?

 Vocabulary V e.g., {<,=,+,0,1}

• Vocabulary
$$\mathcal{V}$$

e.g., $\{<, =, +, 0, 1\}$
• Structure \mathfrak{M}
Universe \mathbb{Z}
 $<: (0, 1), (-1, 0), (5, 7), \dots,$
 $=: (0, 0), \dots$
 $+: (0, 1) \rightarrow 1, (-3, 2) \rightarrow -1, \dots$
 $0: 0, 1: 1$

•••

- Vocabulary \mathcal{V} e.g., $\{<,=,+,0,1\}$ • Structure \mathfrak{M} Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0: 0, 1: 1
- *Th*(𝔐) is the set of all true sentences in 𝔐.

- Vocabulary \mathcal{V} e.g., $\{<,=,+,0,1\}$
- Structure \mathfrak{M}

Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0: 0, 1: 1

• *Th*(𝔐) is the set of all true sentences in 𝔐.

• Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$ $\{<,=,+,0,1,c_0,c_1,c_{-1},\ldots\}$

- Vocabulary V

 e.g., {<,=,+,0,1}
- Structure \mathfrak{M}

Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0: 0, 1: 1

• *Th*(𝔐) is the set of all true sentences in 𝔐.

- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$ $\{<,=,+,0,1,c_0,c_1,c_{-1},\ldots\}$
- Expansion of Structure \mathfrak{M}_{exp}

Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0: 0, 1: 1 $c_0: 0, c_1: 1, \dots, c_{-1}: -1, \dots$

- Vocabulary 𝒱
 e.g., {<,=,+,0,1}
- Structure \mathfrak{M}

Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0: 0, 1: 1

• *Th*(𝔐) is the set of all true sentences in 𝔐.

- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$
 - $\{<,=,+,0,1,c_0,c_1,c_{-1},\ldots\}$
- Expansion of Structure \mathfrak{M}_{exp}

Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0:0, 1:1 $c_0:0, c_1:1, \dots, c_{-1}:-1, \dots$

• $Th(\mathfrak{M}_{e\times p})$ is the set of all true sentences in $\mathfrak{M}_{e\times p}$.

- Vocabulary V e.g., {<,=,+,0,1}
- Structure \mathfrak{M}

Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0: 0, 1: 1

• *Th*(𝔐) is the set of all true sentences in 𝔐.

- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$
 - $\{<,=,+,0,1,c_0,c_1,c_{-1},\ldots\}$
- Expansion of Structure \mathfrak{M}_{exp}

Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0: 0, 1: 1 $c_0: 0, c_1: 1, \dots, c_{-1}: -1, \dots$

Th(M_{exp}) is the set of all true sentences in M_{exp}.
 Also called *elementary diagram of* M, *ED*(M).

- Vocabulary 𝒴
 e.g., {<,=,+,0,1}
- Structure \mathfrak{M}

 $\begin{array}{l} \text{Universe } \mathbb{Z} \\ <: (0,1), (-1,0), (5,7), \ldots, \\ =: (0,0), \ldots \\ +: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \ldots \\ 0: 0, 1:1 \end{array}$

• *Th*(𝔐) is the set of all true sentences in 𝔐.

- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$ $\{<,=,+,0,1,c_0,c_1,c_{-1},\ldots\}$
- Expansion of Structure \mathfrak{M}_{exp}

Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0:0, 1:1 $c_0: 0, c_1: 1, \dots, c_{-1}: -1, \dots$

Th(M_{exp}) is the set of all true sentences in M_{exp}.
 Also called *elementary diagram of* M, *ED*(M).

Elementary diagram is said to be decidable if given any sentence φ in $\mathcal{V}(\mathfrak{M})$, we can algorithmically decide if $\varphi \in ED(\mathfrak{M})$.

- Vocabulary 𝒴
 e.g., {<,=,+,0,1}
- Structure \mathfrak{M}

 $\begin{array}{l} \text{Universe } \mathbb{Z} \\ <: (0,1), (-1,0), (5,7), \ldots, \\ =: (0,0), \ldots \\ +: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \ldots \\ 0: 0, 1:1 \end{array}$

• *Th*(𝔐) is the set of all true sentences in 𝔐.

- Expansion of Vocabulary $\mathcal{V}(\mathfrak{M})$ $\{<,=,+,0,1,c_0,c_1,c_{-1},\ldots\}$
- Expansion of Structure \mathfrak{M}_{exp}

Universe \mathbb{Z} $<: (0,1), (-1,0), (5,7), \dots,$ $=: (0,0), \dots$ $+: (0,1) \rightarrow 1, (-3,2) \rightarrow -1, \dots$ 0:0, 1:1 $c_0: 0, c_1: 1, \dots, c_{-1}: -1, \dots$

• $Th(\mathfrak{M}_{exp})$ is the set of all true sentences in \mathfrak{M}_{exp} . Also called *elementary diagram of* \mathfrak{M} , $ED(\mathfrak{M})$.

Elementary diagram is said to be decidable if given any sentence φ in $\mathcal{V}(\mathfrak{M})$, we can algorithmically decide if $\varphi \in ED(\mathfrak{M})$.

This is the necessary and sufficient condition for synthesis!

SkSyn has a positive answer for \mathfrak{M}

iff the "elementary diagram" of ${\mathfrak M}$ is decidable.

SkSyn has a positive answer for \mathfrak{M} and we can effectively synthesize Skolem functions as halting Turing machines for \mathfrak{M} iff the "elementary diagram" of \mathfrak{M} is decidable.

SkSyn has a positive answer for \mathfrak{M} and we can effectively synthesize Skolem functions as halting Turing machines for \mathfrak{M} iff the "elementary diagram" of \mathfrak{M} is decidable.

Consequences

- SkSyn has a negative answer for $(\mathbb{N}, <, =, +, *, 0, 1)$.
- SkSyn has a positive answer and we can effectively synthesize Skolem functions for
 - 1. Presburger arithmetic

3. Real algebraic numbers

2. Linear rational arithmetic

4. Dense linear orders without endpoints

SkSyn has a positive answer for \mathfrak{M} and we can effectively synthesize Skolem functions as halting Turing machines for \mathfrak{M} iff the "elementary diagram" of \mathfrak{M} is decidable.

Consequences

- SkSyn has a negative answer for $(\mathbb{N}, <, =, +, *, 0, 1)$.
- SkSyn has a positive answer and we can effectively synthesize Skolem functions for
 - 1. Presburger arithmetic

3. Real algebraic numbers

2. Linear rational arithmetic

- 4. Dense linear orders without endpoints
- In each case, we reduce to decidability of underlying theory $Th(\mathfrak{M})$.

SkSyn has a positive answer for \mathfrak{M} and we can effectively synthesize Skolem functions as halting Turing machines for \mathfrak{M} iff the "elementary diagram" of \mathfrak{M} is decidable.

Consequences

- SkSyn has a negative answer for $(\mathbb{N}, <, =, +, *, 0, 1)$.
- SkSyn has a positive answer and we can effectively synthesize Skolem functions for
 - 1. Presburger arithmetic
 - 2. Linear rational arithmetic

4. Dense linear orders without endpoints

3. Real algebraic numbers

- In each case, we reduce to decidability of underlying theory $Th(\mathfrak{M})$.
- Not true in general! There exist \mathfrak{M} s.t. $Th(\mathfrak{M})$ is decidable but $ED(\mathfrak{M})$ is not (see paper).

SkSyn has a positive answer for \mathfrak{M} and we can effectively synthesize Skolem functions as halting Turing machines for \mathfrak{M} iff the "elementary diagram" of \mathfrak{M} is decidable.

Consequences

- SkSyn has a negative answer for $(\mathbb{N}, <, =, +, *, 0, 1)$.
- SkSyn has a positive answer and we can effectively synthesize Skolem functions for
 - 1. Presburger arithmetic

3. Real algebraic numbers

2. Linear rational arithmetic

- 4. Dense linear orders without endpoints
- In each case, we reduce to decidability of underlying theory $Th(\mathfrak{M})$.
- Not true in general! There exist \mathfrak{M} s.t. $Th(\mathfrak{M})$ is decidable but $ED(\mathfrak{M})$ is not (see paper).

Complexity

Lower bound follows from complexity of deciding theory.

SkSyn has a positive answer for \mathfrak{M} and we can effectively synthesize Skolem functions as halting Turing machines for \mathfrak{M} iff the "elementary diagram" of \mathfrak{M} is decidable.

Consequences

- SkSyn has a negative answer for $(\mathbb{N}, <, =, +, *, 0, 1)$.
- SkSyn has a positive answer and we can effectively synthesize Skolem functions for
 - 1. Presburger arithmetic

3. Real algebraic numbers

2. Linear rational arithmetic

- 4. Dense linear orders without endpoints
- In each case, we reduce to decidability of underlying theory $Th(\mathfrak{M})$.
- Not true in general! There exist \mathfrak{M} s.t. $Th(\mathfrak{M})$ is decidable but $ED(\mathfrak{M})$ is not (see paper).

Complexity

- Lower bound follows from complexity of deciding theory.
- If theory admits effective constraint solving, then can give upper bounds! (see paper)

- Skolem functions as Turing machines/programs.
- A characterization resulting in strong positive and negative results.

- Skolem functions as Turing machines/programs.
- A characterization resulting in strong positive and negative results.

Other results in paper

• e.g., what happens if you fix the formula and vary the structure?

- Skolem functions as Turing machines/programs.
- A characterization resulting in strong positive and negative results.

Other results in paper

• e.g., what happens if you fix the formula and vary the structure?

The future

- Synthesizing succinct Skolem functions and algorithms with better complexity.
- Characterization of when terms are sufficient.
- Implementation for certain theories?

- Skolem functions as Turing machines/programs.
- A characterization resulting in strong positive and negative results.

Other results in paper

• e.g., what happens if you fix the formula and vary the structure?

The future

- Synthesizing succinct Skolem functions and algorithms with better complexity.
- Characterization of when terms are sufficient.
- Implementation for certain theories? Work in progress!

Thank you!

SkSyn has a positive answer for \mathfrak{M} iff the "elementary diagram" of \mathfrak{M} is decidable.

 (\Longrightarrow) Program/TM for Skolem function for Y in $\forall X \exists Y \varphi(X, Y)$ is as follows:

SkSyn has a positive answer for \mathfrak{M} iff the "elementary diagram" of \mathfrak{M} is decidable.

 (\Longrightarrow) Program/TM for Skolem function for Y in $\forall X \exists Y \varphi(X, Y)$ is as follows:

• Given value of *X*, say σ , construct $\Psi_{\sigma} = \exists Y \phi(\sigma, Y)$

- (\Longrightarrow) Program/TM for Skolem function for Y in $\forall X \exists Y \varphi(X, Y)$ is as follows:
 - Given value of X, say σ , construct $\Psi_{\sigma} = \exists Y \phi(\sigma, Y)$
 - **2** Use dec proc for $ED(\mathfrak{M})$ on this.

- (\Longrightarrow) Program/TM for Skolem function for Y in $\forall X \exists Y \phi(X, Y)$ is as follows:
 - Given value of X, say σ , construct $\Psi_{\sigma} = \exists Y \phi(\sigma, Y)$
 - **2** Use dec proc for $ED(\mathfrak{M})$ on this.
 - if false, output arbitrary value.

- (\Longrightarrow) Program/TM for Skolem function for Y in $\forall X \exists Y \varphi(X, Y)$ is as follows:
 - Given value of X, say σ , construct $\Psi_{\sigma} = \exists Y \phi(\sigma, Y)$
 - **2** Use dec proc for $ED(\mathfrak{M})$ on this.
 - if false, output arbitrary value.
 - if true, for each elt ρ in dom(Y), do

- (\Longrightarrow) Program/TM for Skolem function for Y in $\forall X \exists Y \varphi(X, Y)$ is as follows:
 - Given value of X, say σ , construct $\Psi_{\sigma} = \exists Y \phi(\sigma, Y)$
 - **2** Use dec proc for $ED(\mathfrak{M})$ on this.
 - if false, output arbitrary value.
 - if true, for each elt ρ in dom(Y), do
 - construct $\varphi(\sigma, \rho)$
- (\Longrightarrow) Program/TM for Skolem function for Y in $\forall X \exists Y \varphi(X, Y)$ is as follows:
 - Given value of X, say σ , construct $\Psi_{\sigma} = \exists Y \phi(\sigma, Y)$
 - 2 Use dec proc for $ED(\mathfrak{M})$ on this.
 - if false, output arbitrary value.
 - if true, for each elt ρ in dom(Y), do
 - construct $\phi(\sigma, \rho)$
 - 2 apply dec proc for $ED(\mathfrak{M})$ on this.

- (\Longrightarrow) Program/TM for Skolem function for Y in $\forall X \exists Y \varphi(X, Y)$ is as follows:
 - Given value of X, say σ , construct $\Psi_{\sigma} = \exists Y \phi(\sigma, Y)$
 - 2 Use dec proc for $ED(\mathfrak{M})$ on this.
 - if false, output arbitrary value.
 - if true, for each elt ρ in dom(Y), do
 - construct $\phi(\sigma, \rho)$
 - 2 apply dec proc for $ED(\mathfrak{M})$ on this.
 - (3) if true, output ρ , quit loop, else goto next elt.

SkSyn has a positive answer for \mathfrak{M} iff the "elementary diagram" of \mathfrak{M} is decidable.

(\Leftarrow) Dec proc for $ED(\mathfrak{M})$ using Sk fn generator for formulas over \mathfrak{M} .

- (\Leftarrow) Dec proc for $ED(\mathfrak{M})$ using Sk fn generator for formulas over \mathfrak{M} .
 - Given V(M) sentence φ with constant c ∈ V(M), construct φ'(y) where c replaced by fresh var y.

- (\Leftarrow) Dec proc for $ED(\mathfrak{M})$ using Sk fn generator for formulas over \mathfrak{M} .
 - Given V(M) sentence φ with constant c ∈ V(M), construct φ'(y) where c replaced by fresh var y.
 - Sor fresh var, z₁, z₂ define ψ = ∀y∀z₁∀z₂∃x(((x = z₁) ∧ φ') ∨ (x = z₂) ∧ ¬φ') (note: this is a valid formula!)

- (\Leftarrow) Dec proc for $ED(\mathfrak{M})$ using Sk fn generator for formulas over \mathfrak{M} .
 - Given V(M) sentence φ with constant c ∈ V(M), construct φ'(y) where c replaced by fresh var y.
 - Sor fresh var, z₁, z₂ define ψ = ∀y∀z₁∀z₂∃x(((x = z₁) ∧ φ') ∨ (x = z₂) ∧ ¬φ') (note: this is a valid formula!)
 - **Output** Use Sk fn gen on ψ to synthesize Sk fn for *x*, $F(y, z_1, z_2)$.

- (\Leftarrow) Dec proc for $ED(\mathfrak{M})$ using Sk fn generator for formulas over \mathfrak{M} .
 - Given V(M) sentence φ with constant c ∈ V(M), construct φ'(y) where c replaced by fresh var y.
 - Por fresh var, z₁, z₂ define ψ = ∀y∀z₁∀z₂∃x(((x = z₁) ∧ φ') ∨ (x = z₂) ∧ ¬φ') (note: this is a valid formula!)
 - **Output** Use Sk fn gen on ψ to synthesize Sk fn for *x*, $F(y, z_1, z_2)$.
 - So For two distinct elements $d, e \in \mathfrak{M}$, evaluate F(c, d, e).

- (\Leftarrow) Dec proc for $ED(\mathfrak{M})$ using Sk fn generator for formulas over \mathfrak{M} .
 - Given V(M) sentence φ with constant c ∈ V(M), construct φ'(y) where c replaced by fresh var y.
 - Por fresh var, z₁, z₂ define ψ = ∀y∀z₁∀z₂∃x(((x = z₁) ∧ φ') ∨ (x = z₂) ∧ ¬φ') (note: this is a valid formula!)
 - Solution Use Sk fn gen on ψ to synthesize Sk fn for x, $F(y, z_1, z_2)$.
 - So For two distinct elements $d, e \in \mathfrak{M}$, evaluate F(c, d, e).
 - if F(c, d, e) = d, then φ is valid.
 - else F(c, d, e) = e and φ is not valid.