Introduction Graph behaviors Realizability Emptiness Split-width Conclusion

Analyzing Timed Systems Using Tree Automata

S Akshay¹, Paul Gastin² and Krishna Shankara Narayanan¹

¹ Dept of CSE, IIT Bombay, India, ² LSV, ENS Cachan, France.

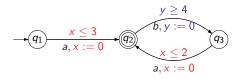
CONCUR 2016, Quebec 26 Aug 2016

Split-width

Conclusion

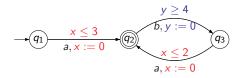
$$(q_1) \xrightarrow{x \leq 3} (q_2)$$

Conclusion



Split-width

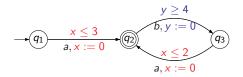
Conclusion

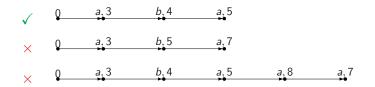




plit-width

Conclusion





- \bullet The timed language $\mathcal{L}_{\mathcal{T}}(\mathcal{A}) = \mathsf{set}$ of such good timed words
- Emptiness problem : Given \mathcal{A} , is $\mathcal{L}_{\mathcal{T}}(\mathcal{A}) = \emptyset$?

Emptiness for timed automata

Emptiness for timed automata

A well-studied problem with a now standard approach

• Timed automata: Region construction [Alur-Dill'90], and many optimizations since...

Emptiness for timed (pushdown) automata

- Timed automata: Region construction [Alur-Dill'90], and many optimizations since...
- Timed pushdown automata:

Emptiness for timed (pushdown) automata

- Timed automata: Region construction [Alur-Dill'90], and many optimizations since...
- Timed pushdown automata: Lifting region construction [Bouajjani et al. '94], [Abdulla et al. 2012]

Emptiness for timed (pushdown) automata

- Timed automata: Region construction [Alur-Dill'90], and many optimizations since...
- Timed pushdown automata: Lifting region construction [Bouajjani et al. '94], [Abdulla et al. 2012]
- An orthogonal approach: [Clemente-Lasota 2015]

Emptiness for timed (pushdown) automata

- Timed automata: Region construction [Alur-Dill'90], and many optimizations since...
- Timed pushdown automata: Lifting region construction [Bouajjani et al. '94], [Abdulla et al. 2012]
- Common feature:
 - represent behaviors as timed words and,
 - ${\ensuremath{\, \bullet }}$ use abstractions to reduce to finite automata over words

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

- Timed automata: Region construction [Alur-Dill'90], and many optimizations since...
- Timed pushdown automata: Lifting region construction [Bouajjani et al. '94], [Abdulla et al. 2012]
- Common feature:
 - represent behaviors as timed words and,
 - use abstractions to reduce to finite automata over words

Our point-de-depart

- represent behaviors as graphs with timing constraints
- use tree interpretations to reduce to tree automata

Emptiness for timed (pushdown) automata

A well-studied problem with a now standard approach

- Timed automata: Region construction [Alur-Dill'90], and many optimizations since...
- Timed pushdown automata: Lifting region construction [Bouajjani et al. '94], [Abdulla et al. 2012]
- Common feature:
 - represent behaviors as timed words and,
 - use abstractions to reduce to finite automata over words

Our point-de-depart

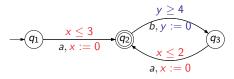
- represent behaviors as graphs with timing constraints
- use tree interpretations to reduce to tree automata
 - A higher level and more powerful formalism
 - Yields simpler proofs for more complicated systems
 - A new technique which does not depend on regions/zones

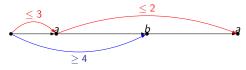
Split-width

Conclusion

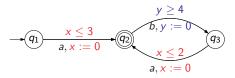
Outline

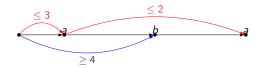
- Timed behaviours as graphs
- Ochecking realizability
- Interpreting graphs into trees
- Bounding the (split-)width of graphs
- Onclusion & future work

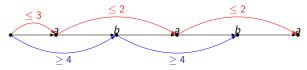


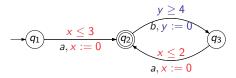


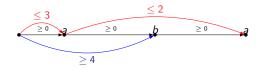
Conclusion

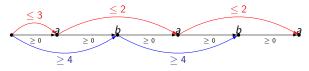




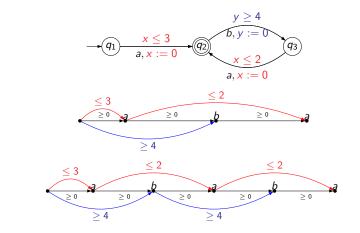








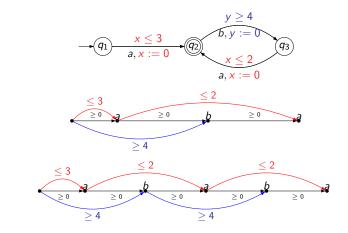
Abstracting paths of a timed system as graphs



• set of such time-constrained graphs, TC-words = $\mathcal{L}_{TCW}(\mathcal{A})$.

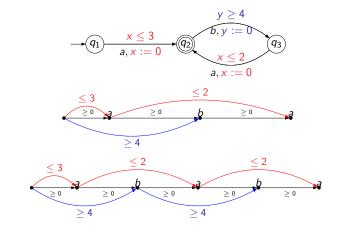
Conclusion

Abstracting paths of a timed system as graphs



• set of such time-constrained graphs, TC-words = $\mathcal{L}_{TCW}(\mathcal{A})$.

• What are some properties of such graphs?



• set of such time-constrained graphs, TC-words = $\mathcal{L}_{TCW}(\mathcal{A})$.

- What are some properties of such graphs?
- What is the link between $\mathcal{L}_{TCW}(\mathcal{A})$ and $\mathcal{L}_{T}(\mathcal{A})$?

Split-width

Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

Not all (linearly-ordered) graphs are TC-words

Split-width

Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

In Not all (linearly-ordered) graphs are TC-words



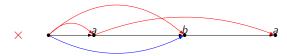
Split-wid

Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

Not all (linearly-ordered) graphs are TC-words



This graph cannot be generated by any timed automaton.

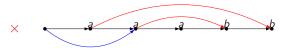
Split-width

Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

In Not all (linearly-ordered) graphs are TC-words



This graph cannot be generated by any timed automaton.

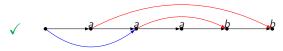
Split-widt

Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

Not all (linearly-ordered) graphs are TC-words



This graph cannot be generated by any timed automaton. But, it can be generated by a timed pushdown automaton!.

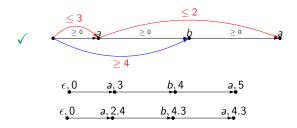
Split-w

Conclusion

TC-words and their relation to timed words

Properties of TC-words and timed words

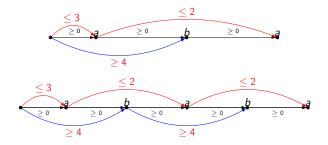
- In Not all (linearly-ordered) graphs are TC-words
- 2 A TC-word can be realized by (infinitely) many timed words



TC-words and their relation to timed words

Properties of TC-words and timed words

- Not all (linearly-ordered) graphs are TC-words
- 2 A TC-word can be realized by (infinitely) many timed words
- I However, a TC-word may be realized by no timed word too!



Realizability of TC-words

- Realization of a TC-word is a timed word satisfying constraints
- A TC-word is realizable if it has a timed word realization.

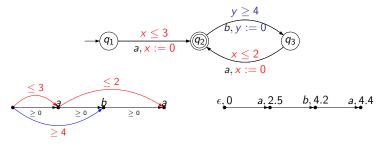
Realizability of TC-words

- Realization of a TC-word is a timed word satisfying constraints
- A TC-word is realizable if it has a timed word realization.
- Recall: for a timed system A, L_{TCW}(A) denotes the set of TC-words accepted by it.

Realizability of TC-words

- Realization of a TC-word is a timed word satisfying constraints
- A TC-word is realizable if it has a timed word realization.
- Recall: for a timed system A, L_{TCW}(A) denotes the set of TC-words accepted by it.

Difference between $\mathcal{L}_{TCW}(\mathcal{A})$ and $\mathcal{L}_{T}(\mathcal{A})$:



• $\mathcal{L}_{TCW}(\mathcal{A})$ is over a finite alphabet, while $\mathcal{L}_{T}(\mathcal{A})$ is not.

Realizability of TC-words

- Realization of a TC-word is a timed word satisfying constraints
- A TC-word is realizable if it has a timed word realization.
- Recall: for a timed system A, L_{TCW}(A) denotes the set of TC-words accepted by it.

Theorem: $\mathcal{L}_{\mathcal{T}}(\mathcal{A}) = \text{Realizations}(\mathcal{L}_{\mathcal{TCW}}(\mathcal{A}))$

Realizability of TC-words

- Realization of a TC-word is a timed word satisfying constraints
- A TC-word is realizable if it has a timed word realization.
- Recall: for a timed system A, L_{TCW}(A) denotes the set of TC-words accepted by it.

Theorem: $\mathcal{L}_{\mathcal{T}}(\mathcal{A}) = \text{Realizations}(\mathcal{L}_{\mathcal{TCW}}(\mathcal{A}))$

The Emptiness problem

For a given timed (pushdown) automaton \mathcal{A} , $\mathcal{L}_{\mathcal{T}}(\mathcal{A}) \neq \emptyset$ iff there exists a realizable TC-word in $\mathcal{L}_{\mathcal{T}CW}(\mathcal{A})$.

Realizability of TC-words

- Realization of a TC-word is a timed word satisfying constraints
- A TC-word is realizable if it has a timed word realization.
- Recall: for a timed system A, L_{TCW}(A) denotes the set of TC-words accepted by it.

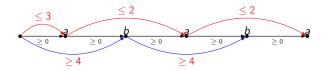
Theorem: $\mathcal{L}_{\mathcal{T}}(\mathcal{A}) = \text{Realizations}(\mathcal{L}_{\mathcal{TCW}}(\mathcal{A}))$

The Emptiness problem

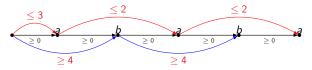
For a given timed (pushdown) automaton \mathcal{A} , $\mathcal{L}_{\mathcal{T}}(\mathcal{A}) \neq \emptyset$ iff there exists a realizable TC-word in $\mathcal{L}_{\mathcal{T}CW}(\mathcal{A})$.

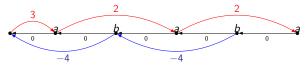
Thus, the question is: how to reason about these graphs?

Checking realizability of a single TC-word



Checking realizability of a single TC-word





Checking realizability of a single TC-word

A simple exercise

A TC-word is realizable iff its directed graph has no negative cycle.

The Emptiness problem

For a given timed (pushdown) automaton \mathcal{A} , Does there exist a TC-word in $\mathcal{L}_{TCW}(\mathcal{A})$, whose directed graph has no negative cycle?

• How to reason about the set of graphs $\mathcal{L}_{TCW}(\mathcal{A})$?

The Emptiness problem

- If we can show that:

 - Graphs have a bounded-width.
 - Each property is expressible in MSO. 2

The Emptiness problem

- If we can show that:
 - Graphs have a bounded-width.
 - 2 Each property is expressible in MSO.
 - Graphs are well-formed
 - Graphs define an abstract path in the given timed system.
 - Graphs are realizable, i.e., no negative weight cycle.

The Emptiness problem

- If we can show that:
 - Graphs have a bounded-width.
 - 2 Each property is expressible in MSO.
 - Graphs are well-formed
 - Graphs define an abstract path in the given timed system.
 - Graphs are realizable, i.e., no negative weight cycle.
- Then, by Courcelle's theory, we obtain a finite tree automaton (by interpreting the graphs into trees).

The Emptiness problem

- If we can show that:
 - Graphs have a bounded-width.
 - 2 Each property is expressible in MSO.
 - Graphs are well-formed
 - Graphs define an abstract path in the given timed system. Graphs are realizable, i.e., no negative weight cycle.
- Then, by Courcelle's theory, we obtain a finite tree automaton (by interpreting the graphs into trees).
 Same strategy as [Madhusudan & Parlato'11, Aiswarya et al '12] for untimed pushdown systems.

The Emptiness problem

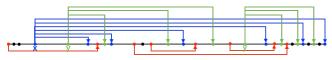
For a given timed (pushdown) automaton \mathcal{A} , Does there exist a TC-word in $\mathcal{L}_{TCW}(\mathcal{A})$, whose directed graph has no negative cycle?

- If we can show that:
 - Graphs have a bounded-width.
 - 2 Each property is expressible in MSO.
 - Graphs are well-formed Graphs define an abstract path in the given timed system. Graphs are realizable, i.e., no negative weight cycle.
- Then, by Courcelle's theory, we obtain a finite tree automaton (by interpreting the graphs into trees).

We show

The Emptiness problem

For a given timed (pushdown) automaton \mathcal{A} , Does there exist a TC-word in $\mathcal{L}_{TCW}(\mathcal{A})$, whose directed graph has no negative cycle?



Graphs from timed systems are different!

We show

The Emptiness problem

For a given timed (pushdown) automaton \mathcal{A} , Does there exist a TC-word in $\mathcal{L}_{TCW}(\mathcal{A})$, whose directed graph has no negative cycle?

- If we can show that:
 - Graphs have a bounded-width.
 - 2 Each property is expressible in MSO.
 - Graphs are well-formed Graphs define an abstract path in the given timed system. Graphs are realizable, i.e., no negative weight cycle.
- Then, by Courcelle's theory, we obtain a finite tree automaton (by interpreting the graphs into trees).

We show

The Emptiness problem

For a given timed (pushdown) automaton \mathcal{A} , Does there exist a TC-word in $\mathcal{L}_{TCW}(\mathcal{A})$, whose directed graph has no negative cycle?

- If we can show that:

 - Graphs have a bounded-width.
 - 2 Each property is expressible in MSO.
 - ✓ Graphs are well-formed
 - Graphs define an abstract path in the given timed system.
 - Graphs are realizable, i.e., no negative weight cycle. ?
- Then, by Courcelle's theory, we obtain a finite tree automaton (by interpreting the graphs into trees).

We show

The Emptiness problem

For a given timed (pushdown) automaton \mathcal{A} ,

Does there exist a TC-word in $\mathcal{L}_{TCW}(\mathcal{A})$, whose directed graph has no negative cycle?

- If we can show that:
 - Graphs have a bounded-width.
 - 2 Each property is expressible in MSO.
 - ✓ Graphs are well-formed
 - Graphs define an abstract path in the given timed system.
 - ? Graphs are realizable, i.e., no negative weight cycle.
- Then, by Courcelle's theory, we obtain a finite tree automaton (by interpreting the graphs into trees).

We show

- Step 1: graphs from T(PD)A have a bounded (split-)width.
- Step 2: directly build a finite bottom-up tree automaton.

- Step 1: Bound on (split-)width for timed (pushdown) systems
- Step 2: Directly building the tree automaton allows us to get tight complexity bounds.

- Step 1: Bound on (split-)width for timed (pushdown) systems
- Step 2: Directly building the tree automaton allows us to get tight complexity bounds.

Main results

• For timed automaton A with clocks X, all simple TC-words of A have (split-)width $K \leq |X| + 4$.

- Step 1: Bound on (split-)width for timed (pushdown) systems
- Step 2: Directly building the tree automaton allows us to get tight complexity bounds.

Main results

• For timed (pushdown) automaton \mathcal{A} with clocks X, all simple TC-words of \mathcal{A} have (split-)width $K \leq |X| + 4$ (4|X| + 6).

- Step 1: Bound on (split-)width for timed (pushdown) systems
- Step 2: Directly building the tree automaton allows us to get tight complexity bounds.

Main results

- For timed (pushdown) automaton \mathcal{A} with clocks X, all simple TC-words of \mathcal{A} have (split-)width $K \leq |X| + 4$ (4|X| + 6).
- We can build a tree automaton of size exponential in K^2 to check realizability (details in paper).

- Step 1: Bound on (split-)width for timed (pushdown) systems
- Step 2: Directly building the tree automaton allows us to get tight complexity bounds.

Main results

- For timed (pushdown) automaton \mathcal{A} with clocks X, all simple TC-words of \mathcal{A} have (split-)width $K \leq |X| + 4$ (4|X| + 6).
- We can build a tree automaton of size exponential in K^2 to check realizability (details in paper).
- Corollary: PSPACE (Exptime) emptiness for timed (pushdown) automata.

- Step 1: Bound on (split-)width for timed (pushdown) systems
- Step 2: Directly building the tree automaton allows us to get tight complexity bounds.

Main results

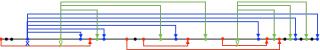
- For timed (pushdown) automaton \mathcal{A} with clocks X, all simple TC-words of \mathcal{A} have (split-)width $K \leq |X| + 4$ (4|X| + 6).
- We can build a tree automaton of size exponential in K^2 to check realizability (details in paper).
- Corollary: PSPACE (Exptime) emptiness for timed (pushdown) automata.

Lift to timed multi-pushdown systems with bounded rounds

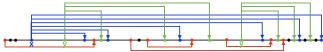
• Easy generalization, new decidability result & complexity too!

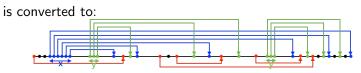
• We first break TC-words into "simpler" graphs, so that each node has only one upper/lower time constraint attached to it.

• We first break TC-words into "simpler" graphs, so that each node has only one upper/lower time constraint attached to it. For example,

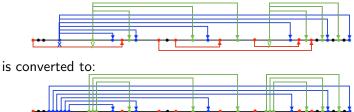


• We first break TC-words into "simpler" graphs, so that each node has only one upper/lower time constraint attached to it. For example,

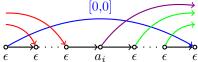




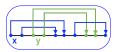
• We first break TC-words into "simpler" graphs, so that each node has only one upper/lower time constraint attached to it. For example,

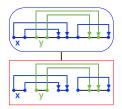


• To maintain atomicity, we use a single extra clock & add a constraint to each event:

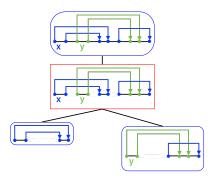


Step 1: Split-width for timed systems





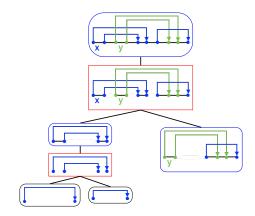
- Eve tries to disconnect the graph by cutting process edges.
- Positions are simple TC-words with holes.



- Eve tries to disconnect the graph by cutting process edges.
- Positions are simple TC-words with holes.
- Adam chooses which connected component to continue.

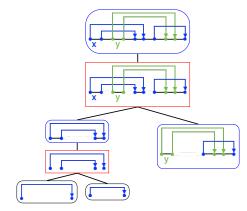
Step 1: Split-width for timed systems

Now, define split game (see [Aiswarya et. al.'12, '15])...



• Game ends at atomic nodes (no process edges left).

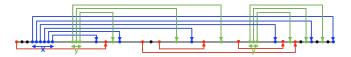
Step 1: Split-width for timed systems



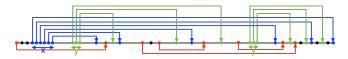
- Width of such a split simple TC-word = no. of blocks in it.
- Cost of play = max width of split TC-word seen along play.
- Split-width = min cost that Eve can achieve.

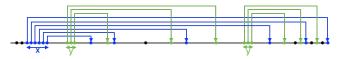
• To bound: split-width of any well-formed simple TC-word, i.e., graph from a timed (pushdown) automaton.

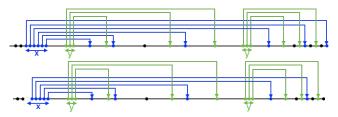
• To bound: split-width of any well-formed simple TC-word, i.e., graph from a timed (pushdown) automaton.

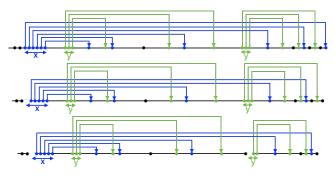


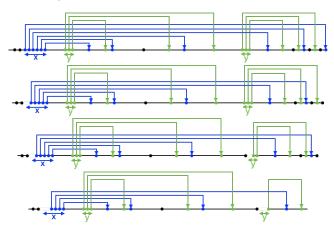
- To bound: split-width of any well-formed simple TC-word, i.e., graph from a timed (pushdown) automaton.
- Let's play the game...



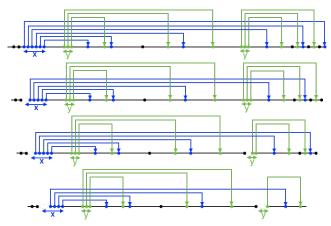








Split-width for timed automata

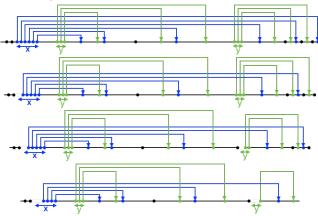


For any TC-word of a timed automaton

In any move of the game, we have:

• Each hole is attached to last reset of a clock, holes only widen!

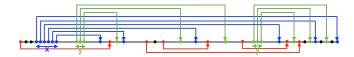
Split-width for timed automata

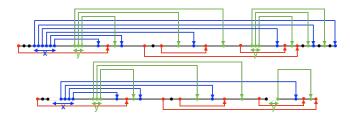


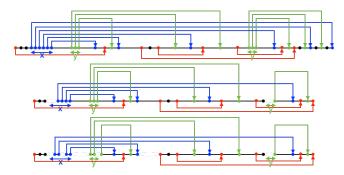
For any TC-word of a timed automaton

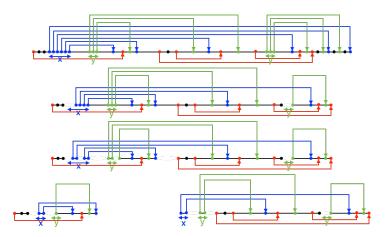
In any move of the game, we have:

- Each hole is attached to last reset of a clock, holes only widen!
- Thus, no. of blocks \leq No. of clocks + 4.

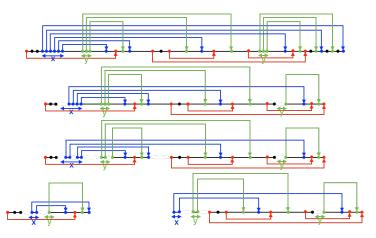








Split-width for timed pushdown automata



For any TC-word of a timed pushdown automaton In any move of the game, we have:

• Number of blocks $\leq 4 \cdot$ No. of clocks + 6.

Conclusion and Future work

A new recipe for analyzing timed systems. Given \mathcal{A}_{r}

• Write behaviors as graphs with timing constraints $\mathcal{L}_{TCW}(\mathcal{A})$.

- Write behaviors as graphs with timing constraints $\mathcal{L}_{TCW}(\mathcal{A})$.
- **2** Show a bound on width of graphs in $\mathcal{L}_{TCW}(\mathcal{A})$.

- Write behaviors as graphs with timing constraints $\mathcal{L}_{TCW}(\mathcal{A})$.
- **2** Show a bound on width of graphs in $\mathcal{L}_{TCW}(\mathcal{A})$.
- ${f 0}$ Interpret graphs into trees and reduce to a tree automaton ${\cal B}$

- Write behaviors as graphs with timing constraints $\mathcal{L}_{TCW}(\mathcal{A})$.
- **2** Show a bound on width of graphs in $\mathcal{L}_{TCW}(\mathcal{A})$.
- Interpret graphs into trees and reduce to a tree automaton B s.t., Realizations(L_{TCW}(A)) = Ø iff L(B) = Ø.

A new recipe for analyzing timed systems. Given \mathcal{A} ,

- Write behaviors as graphs with timing constraints $\mathcal{L}_{TCW}(\mathcal{A})$.
- **2** Show a bound on width of graphs in $\mathcal{L}_{TCW}(\mathcal{A})$.
- Interpret graphs into trees and reduce to a tree automaton B s.t., Realizations(L_{TCW}(A)) = ∅ iff L(B) = ∅.
 - A common framework for timed, pushdown, multi-pushdown automata with bounded rounds.

- Write behaviors as graphs with timing constraints $\mathcal{L}_{TCW}(\mathcal{A})$.
- **2** Show a bound on width of graphs in $\mathcal{L}_{TCW}(\mathcal{A})$.
- Interpret graphs into trees and reduce to a tree automaton B s.t., Realizations(L_{TCW}(A)) = ∅ iff L(B) = ∅.
 - A common framework for timed, pushdown, multi-pushdown automata with bounded rounds.
 - Robust framework: diagonal guards, etc.

A new recipe for analyzing timed systems. Given $\ensuremath{\mathcal{A}}$,

- Write behaviors as graphs with timing constraints $\mathcal{L}_{TCW}(\mathcal{A})$.
- **2** Show a bound on width of graphs in $\mathcal{L}_{TCW}(\mathcal{A})$.
- Interpret graphs into trees and reduce to a tree automaton B s.t., Realizations(L_{TCW}(A)) = Ø iff L(B) = Ø.
 - A common framework for timed, pushdown, multi-pushdown automata with bounded rounds.
 - Robust framework: diagonal guards, etc.

Future work

- Concurrent recursive timed programs
- MSO definability of realizability
- Going beyond emptiness. What about model-checking?