Agent-Based Distributed ARC Programming

R. K. Joshi, Harikrishnan. C. R.
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Email: {rkj, harikcr}@cse.iitb.ac.in
T. Vamsi Kalyan.

Veritas Software India Pvt. Ltd.

Email: tvamsika@vxindia.veritas.com

May 24, 2004

Abstract

Anonymous Remote Computing (ARC) for C# over .NET supports development of dis-
tributed and parallel programs in presence of object mobility. This paper presents deployment
view of ARC over LAN, explains development of agent-based applications on ARC framework
with simple example programs. Observations on writing agent-based programs using ARC are
discussed, it compares round trip time between two hosts of an object for ARC framework with
IBM’s Aglet system. Evaluations have shown that code motion component of ARC makes it to
down perform than Aglets. Paper concludes by mentioning directions on future work.

1 Introduction

Agent-based programming follows a new approach for devising solutions to numerous distributed
applications of interest. It extends object-oriented programming by treating objects as autonomous
entities, which may be active in a separate thread of execution. These objects can hop between
multiple hosts in a network. Agent-based solutions address different kinds of problems [5] with
single approach and offer various individual advantages [1] than their alternative solutions. This
paper takes common set of all definitions of mobile agent and calls a migrating object as mobile
agent, which carries state of the object and its associated code while migrating.

ARC framework for C# over .NET [7] is a service oriented framework built on .NET technol-
ogy [6]. Tt follows ARC suite, built using C based RPC services over Linux workstations [9]. It
offers various services to programmers to develop distributed or parallel programs in presence of
heterogeneity, load and failures. Services include, object migration and object retraction. These
migratable objects supported in ARC remain addressable to originator application as well as to
remote contexts while they roam on the network. ARC supports multi-hopping of an object over a
network of machines.

2 Related Work

Much work on mobile agent platforms and agent-based programming has been done over the past
ten years. Many research and commercial agent platforms like IBM’s Aglets [4] and Voyager [10]

support agent-based programming. Aglets and Voyager are popular commercial platforms used for
developing applications involving agents. These are 100% Java based platforms.

| SI No. | Service | Aglets | Voyager | ARC |
1. Creation yes yes yes
2. Migration yes yes yes
3. Retraction yes no yes
4. Activation and Deactivation yes yes yes
5. Messaging yes yes yes
6. Load Characterization no yes yes
7. Multi-hopping yes yes yes
8. Asynchronous Return of Object no no yes
9. Disposal yes yes no
10. Object Arrival Intimation Service yes yes yes
11. Multi-casting no yes no
12. Remote Agent Creation yes yes no
13. Security yes yes no
14. Proxy Update on Migration yes yes yes

Table 1: List of Commonly Used Services in Agent-Based Programming

Agent-based ARC programming uses .NET technology exclusively. It uses .NET Remoting [8] as
means for communicating with ARC services. Table 1 compares ARC framework with Aglets and
Voyager in terms of services that are commonly provided for agent-based programming, it is not a
complete list of services.

3 ARC Framework Deployment View

Figure 1 shows deployment view of ARC software over the LAN. A node in the LAN may join
ARC network to give its computational resources to other nodes present in ARC network. Joined
nodes form a logical ring to handle fail stop failures in ARC network. Nodes in the ARC network
contain ARC software components that provide different ARC services accessible to local as well as
to remote contexts through .NET remoting infrastructure over TCP.

Distributed applications reside in top most layer of ARC framework architecture [7]. These
applications written on top of ARC platform may use provided interfaces of ARC service components
at a node, whose proxies can be obtained using .NET remoting. These applications may make use
of one or more systems present in ARC network.

4 Simple Agent-Based Example Programs

Application development process over ARC is discussed in [7]. It has mainly following three steps;
rest of this section explains two simple example programs by describing these three steps

1. Specification of ARC object interface.

2. Implementation of ARC object interface and method, Trigger().

ARC
Sotware
Components

ARC
Sotware
Components

:a node not in
the ARC |l ogical ring

‘logical _.--="7 - """" - -

PPhg -, =
R <<TCR . NET <<TEP . NET ™~
, Renot i ng>> Renpt i ng>> \‘
Nét wor k) {LAN
' H Net wor k
\ <<TCP|. NET <<TCP .NET <<TQP .NET
\‘ Renot|i ng>> Re ing>> Renptings>

ARC == ﬁr’ ==
Sotware))
Components ~a node in

fical ring

ARC
Sotware
Components

ARC
Sotware
Components

Figure 1: Deployment View of ARC Software

3. Using the ARC object implementation in an application.

4.1 Distributed Copy Paste Application

Distributed copy paste application is useful in copying text at one machine and pasting it at another
machine. It is especially very useful in a cluster, where all nodes are connected using a CPU switch.

An ARC object stores text in it and acts as messenger between originator and remote machine.
Application uses Object Arrival Intimation Service implemented in component, NameServer of ARC
framework to get an intimation when an ARC object, containing text arrives as local host. It registers
a request with NameServer at startup for an intimation of arrival of copy paste ARC object.

Application uses ARC framework to transmit text by wrapping it in copy paste ARC object.
The object migrates to a remote machine and calls method, RegisterForRemoteAccess to register
a proxy of it to enable access to its interface from remote environments. It also registers a proxy
with NameServer to allow applications, which have registered a request at NameServer access its
interface. Copy paste application running at remote machine extracts the text from arrived object
upon receiving an intimation from NaemeServer and displays the text. Originator machine uses
connect construct to subsequently read and modify the copied text from migrated object. Various
steps of the application development are described below.

4.1.1 Interface Specification

Following interface is used in copy paste application to create an ARC object. It consists of public
member functions that copy paste ARC object exports to applications for use.

public interface ICP{
Object getData();
void setData(Object data);
void setDataAndNotify(Object data);
void RegisterApp(IUI app);
}

4.1.2 Implementation of the Interface and Trigger

Interfaces ICP and ITrigger are implemented in class, Real. A proxy to the ARC object is regis-
tered from method, Trigger. The proxy is registered at current local system to allow access to it
from remote environments as well as from local context. Trigger method registers a proxy at the
NameServer and blocks the thread. Following is the code snippet of class, Real.

public class Real:PReal,CPObjectInterface.ICP,ITrigger {
private Object Lock = new Object();
public void Trigger(){
RegisterForRemoteAccess();
ARCObjectInterface_NamingService.IARCObject nameserver = null;
if (this.Proxy !'= null){
Object proxy = this.Proxy;
nameserver = (ARCUbjectInterface_NamingService.IARCDbject)
Activator.GetObject (typeof (
ARCObjectInterface_NamingService.IARCObject),
"tcp://localhost:9123/NameServerClass");
nameserver .Register ("CopyPasteARCObject" ,proxy) ;
}
Monitor.Enter(Lock) ;
Monitor.Wait(Lock) ;
Monitor.Exit(Lock);
UnRegisterForRemoteAccess() ;
if (nameserver != null)
nameserver .UnRegister("CopyPasteARCObject") ;
} // end of Trigger method

... //implementation of interface, ICP

} //end of class definition

4.1.3 GUI of Distributed Copy Paste Application

Figure 2 shows the GUI of copy paste application. The application registers a request for copy paste
ARC object with NameServer at startup. It gets the notification when ARC object registers a proxy
with the NameServer from method, Trigger.

Figure 2 has string, “test string” in one of the Textboxes. When button labeled Copy/Modify
located immediately next to “test string” is clicked for the first time, an ARC object is instantiated.
String in the Textbox is stored into the copy paste ARC object and sent to destination machine.

o Formi = : =0} x|

To Machine Data
| roraszers | Copy/Modify Fefresh
| roreszers {test string Copy/hadify Fefresh

Data From Machine

TR IO 24 7Y TR TS24 13

F odifie I b iy !

Figure 2: Copy Paste Application Interface

Remote copy paste application gets a notification from NameServer after object arrives at that
node. Application extracts the string from ARC object by using ARC object interface and displays
it. Copy paste application at sender machine may connect to previously sent ARC object by calling
method, connect on ARC object. Clicking on Refresh button at originator machine connects to the
sent ARC object and displays current value of string. Any modifications to the string data from
original sender machine requires a click on Copy/Modify button and any modification to the string
data from remote environment requires a click on Modify button.

4.2 Tic Tac Toe Game Using ARC

Tic Tac Toe game developed using ARC uses multiple machines. Here, players can play the game
from different machines in a network. Game window can be sent to a machine from where the player
is playing the game. ARC object is used to carry state of the game from one machine to the other.
Figure 3 shows working of the game with screenshots taken when played from two machines in a
network. Game window has provision for entering machine address to where it should go for next
move in the game. Using this feature, same game window can be migrated among more than two
machines. It demonstrates multi-hopping of an ARC object. Rest of this section describes various

steps involved in developing the application.

[Tic Tac Toe WS I=1E3) [l = ric Toc Toe
File. ARCObjeckt File. ARCObjeckt
Id:H'xtestarc'x'xarc: Id:H'xtestarc'x'xarc:
ElE= ElE=
=lE = =l =]
=l = =1

-
-

_ 1ol x|

File ARCObject

Id:'\'xtestarc:'ﬁarc
|1 010515210 'vI

1Bl
[LE

-
g

R I=1rs

Clear I A Clear I A Clear I é
(i) (iii) (v)
[MTic Tac T SNT=TE] I ¥ ic 7 T QRNT=TET| I - vic Tac vos SSHI=TEY
File. ARCObjeckt File. ARCObjeckt File. ARCZObject
Id:H'xtestarc'x'xarc: Id:H'xtestarc'x'xarc: Id:'\'xtestarc:'ﬁarc
|1EI.1E|5.152.12 'vI |1EI.1E|5.152.12 'vI |1El.1E|5.152._1D =
E =
ElE= =1 % WON THE GAME
=l =] =l =]
=l = =1
_x [o] _x [o]
Lo | Lo | 7

Figure 3: Working of Tic Tac Toe Using ARC

4.2.1 Interface Specification

Following interface is used in Tic Tac Toe application. It contains a single method, startGame to

start the game.

public interface IT3{
void startGame();

}

4.2.2 Implementation of the Interface

Implementation of method Trigger consists a statement to show the game window. Player enters
next move, selects a machine address to send the game window to it and selects push operation from
menu, ARCObject. Trigger then acquires HPF value on selected machine and pushes the object to
selected machine for next move in the game.

public class Real:PReal,T3object.IT3,ITrigger

public void Trigger (){
this.ShowScreen() ;
UserInterface_HPFServer.IUser hpfserver = (UserInterface_HPFServer.IUser)

Activator.GetObject (typeof (UserInterface_HPFServer.IUser),
’’tcp://localhost:9123/HPFServerClass’’) ;
UserInterface_HPFValue.IUser hpfv;
hpfv = hpfserver.getHPFValue (machn) ;
this.push(hpfv);
}

. implementation of IT3 ...

4.2.3 Tic Tac Toe Application Development

Application code registers a channel to communicate with local ARC kernel. It then creates a
new ARC object and invokes method, startGame on it. Following is the code snippet showing the
application program.

using T3objectGeneratedInterfaces;

using T3objectNamespace;

public static void Main(){
TcpChannel chan = new TcpChannel (8106) ;
ChannelServices.RegisterChannel (chan) ;
IT3GeneratedInterfaces.IContainer arcobject = Factory.New();
arcobject.StartGame() ;

5 Observations

Many researchers have agreed till now that mobile agent technology does not solve any problem that
otherwise cannot be solved using alternative techniques such as RPC [2], CORBA [3], .NET Remot-
ing [8] etc. We used ARC framework to write agent-based solutions for different distributed/parallel

problems like, algorithms such as Parallel Quick Sort, useful applications such as Distributed Copy
Paste, work flow implementations and games such as Tic Tac Toe. Our observation is that developing
programs using ARC services solve many problems with a single approach.

a0

an

T

G0

a0

40

Time {sec)

a0

20

10

D -I- _ .I. I: T T T T T T
100 200 300 400 S00 B00 oo g00 Q00 1000

Number of Round Trips of an Agent

—— Aglets —s— ARC —— ARC without Code hotion

Figure 4: Communication costs of Aglets, ARC and ARC without Code Motion

Figure 4 compares performance of ARC with IBM’s Aglets. Performance metric used for com-
parison is time taken to finish n round trips between two hosts. Test was done using two Windows
based workstations connected through 100 Mbps switch. Results have shown that ARC takes more
time than Aglets due to disk I/O involved in class mobility. When required classes are kept manually
at remote machine and removed the use of CodeMotionServer component of ARC framework, which
is used to transfer associated code of an object, ARC performed better than Aglets.

6 Conclusion

ARC deployment view was presented along with simple agent-based example programs written on top
of ARC platform. Performance of ARC was compared with IBM’s Aglet system. It was observed
that devising solutions with ARC services solve many problems under the same approach. We
continue our research in this direction to explore the possibility of integrating different agent-based
applications in a cluster by using ARC services and communication between agents.

References

[1]

[2]

[10]

C. G. Harrison, D. M. Chess, A. Kershenbaum. Mobile agents: Are they good idea? Research
Report, IBM Research Division, March 1995.

A. D. Birrel and B. J. Nelson. Implementing remote procedure calls. ACM Transactions on
Computer Systems, 2(1):39-59, February 1984.

Object Management Group. Common Object Request Broker Architecture Specification.
http://www.omg.org/, 2002.

Danny B. Lange and Mitsuru Oshima. Mobile Agents with Java: The Aglet API. World Wide
Web Journal, 1998.

Danny B. Lange, Mitsuru Oshima. Seven good reasons for mobile agents. Communications of
the ACM, 42(3):88-89, March 1999.

David S. Platt. Introducing Microsoft .NET. Microsoft Press, January 2003.

T. Vamsi Kalyan, R. K. Joshi. Architecture of the object oriented anonymous remote computing
framework for c# over .net. International Workshop on Software Design and Architecture,
January 2004.

Ingo Rammer. Advanced .NET Remoting. APress, April 2002.

D. Janaki Ram, Rushikesh K Joshi. Anonymous Remote Computing, A paradigm for Parallel
Programming on interconnected Workstations. IEEE Transactions on Software Engineering,
pages 75-90, Jan/Feb 1999.

Thomas Wheeler. Reducing development effort using the voyager orb, 2003. URL:
http://www.recursionsw.com/products/voyager/whitepapers/Ease of developement.pdf.

