M.Tech Dissertation
On

Design and Implementation of a Service

Oriented ARC Framework for C#/.NET
over LAN and Internet

Submitted in partial fulfillment of requirements
for the degree of
Master of Technology

By

T. Vamsi Kalyan.
Roll No: 01305605

Under the guidance of
Prof. Rushikesh K. Joshi.

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Mumbai, 400076

Dissertation Approval Sheet

This is to certify that the dissertation titled
Design and Implementation of a Service Oriented ARC Framework for
C#/.NET over LAN and Internet
By
T.Vamsi Kalyan.
(01305605)
is approved for the degree of Master of Technology.

Prof. Rushikesh K. Joshi.
(Guide)

Prof. Pushpak Bhattacharya
(Internal Examiner)

Mr. David D’lima
(External Examiner)

Prof. S. A. Khaparde
(Chairperson)

Date :

Acknowledgment

I express my sincere gratitude toward my guide Prof. Rushikesh K. Joshi for his con-
stant help, encouragement and inspiration throughout the project work.

T.Vamsi Kalyan.
IIT Bombay
November 21, 2003

Abstract

Anonymous Remote Computing (ARC) for C# over .NET is a service oriented framework
to support development of parallel and distributed programs in presence of mobility. The
report provides a detailed description of the framework and discusses an associated appli-
cations development process. The basic design features of this framework are services for
parallelism and distribution at object level. These include distribution of ARC objects,
support for dynamic load measurement, fault tolerance and dynamic leave and join services
for participating machines. In addition to these basic services, the framework is extended to
support multiple object hopping and object accessibility in presence of mobility. The design
and implementation of both the higher level and the kernel level in the ARC framework
are discussed in detail. ARC framework is extended to work over the Internet by keep-
ing software reuse as an objective. As a solution approach, webservices layer was added
to the ARC framework architecture to use ASP.NET XML webservices infrastructure for
communication between machines on the Internet. Some components of LAN version of
ARC software were modified to address the differences between LAN and the Internet en-
vironments. Design and implementation of ARC kernel are both based on object-oriented
technology. UML is chosen as a modeling language and implementation was carried out
in C#. The report also includes deployment modeling of ARC, and some examples of dis-
tributed application programs written on top of the framework that were implemented on
a cluster of Windows workstations.

Contents

Introduction
1.1 Scopeof Work
1.2 Organization of the Report

ARC Framework Architecture

2.1 Framework Capabilities oo

2.2 Architecture L
2.2.1 ARC User Upper Layer
2.2.2 ARC User Lower Layer
2.23 ARC Kernel Layer
2.2.4 Communication Layer

2.3 ARC Deployment View

Application Development using ARC

3.1 Application Development Process

3.2 Design of ARC User Lower Level
3.2.1 Interfaces and Generated Classes
3.2.2 Library Classes« . i

Design and Implementation of ARC Kernel Level for LAN

4.1 High Level Implementation View of ARC Software

4.2 ARC Object Services« . e
4.2.1 Registration Service oL
4.2.2 Migration Service Lo
4.2.3 Object Hopping

4.3 Developer Serviceso e e
4.3.1 HPF Service e
4.3.2 Fault Tolerance and Autoexecution Service
4.3.3 Object Arrival Intimation Service.
4.3.4 Activation and Deactivation Services

4.4 Node Administrator Services oo

10
10
10
10
12
12

14
14
16
17
20

5 Extending ARC over the Internet
Issues and Objectives in Extending ARC over the Internet

5.1

5.2
9.3
5.4

5. 1.1 Issues o e
5.1.2 Objectives
A Solution Approach 0oL
Architecture of ARC Software over the Internet
ARC Deployment View

6 Design and Implementation of ARC for the Internet

6.1

6.2

6.3

6.4

Implementation View of ARC Software
6.1.1 ARC Software at Participant Node
6.1.2 ARC Software at Central Node
ARC Object Services
6.2.1 Migration Service
6.2.2 Object Hopping
Developer Services
6.3.1 HPF Service
6.3.2 Fault Tolerance
Node Administrator Service

7 Example Applications

7.1

7.2

7.3

Distributed Copy Paste Application
7.1.1 Interface Specification
7.1.2 Implementation of the Interface
7.1.3 GUI of Distributed Copy Paste Application . . .
Workshop Organization Application
7.2.1 Office Object Interface Specification
7.2.2 Implementation of the Office Object Interface . .
7.2.3 GUI of Workshop Organization Application . . .
7.2.4 Handling Transactions at Local Organizing Sites
Disconnected Operation Using ARC over the Internet .
7.3.1 Interface Specification
7.3.2 Implementation of the Interface
7.3.3 User Application at Remote machine

8 Conclusion and Future Work

A ARC Package Installation

B Steps in Writing Hello World Application using ARC

43
43
43
44
44
45
45

48
48
48
50
o4
54
95
o6
o7
o8
60

64
64
65
65
66
67
68
68
69
69
70
70
71
72

73

77

79

List of Figures

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Use-Case Diagram for ARC,
ARC Framework Architecture oL
Deployment View of ARC Software

Container
Proxy and Real

Component Diagram of ARC Software
Sequence Diagram for Task Creation
Sequence Diagram for Nonblocking Push Operation.
Sequence Diagram when Sync is Called Before Return of Migrated Object .
Sequence Diagram Showing Working of Connect Construct
Class Diagram for HPF Service
Sequence Diagram for Acquiring Lockso
Activity Diagram for FTSService
Sequence diagram when at most 2 times with Autoexecution set
Class Diagram for AutoExecution Service
Design for Object Arrival Intimation Service.
Class Diagram for Activation and Deactivation Services
State Diagram for Join Server oL oL
Sequence Diagram for Leave Operation.

Architectural View of ARC for the Internet
Deployment View of ARC over the Internet

Component Diagram of ARC Software Present at a Participant Node
Component Diagram of ARC Software Present at a Central Node
Sequence Diagram for Nonblocking Push Operation.
Sequence Diagram Showing Working of Connect Construct
Sequence Diagram showing Acquiring Locks
Class diagram for HPFService at Central Node
Class diagram for HPFService at Participant Node
Activity Diagram for FTSService on Participant

11
13

17
18

6.9 Sequence diagram when at most 2 times with Autoexecution set 61
6.10 Sequence diagram for Join operationo 62
6.11 Sequence Diagram for Leave Operation. 63
7.1 Copy Paste Application Interface L. 67
7.2 Workshop Organization Application GUL 70
7.3 Notification Window at Local Organizing Site 71
7.4 Office Form Used to Model Interaction with Office Room in the Application 71

Chapter 1

Introduction

Anonymous Remote Computing(ARC) [11] is a framework to support development of par-
allel programs over a cluster of workstations in presence of heterogeneity, load and failures.
In an ARC environment, participating nodes may join and leave the system dynamically.
In [10], a design and implementation of a service-oriented ARC kernel over a LINUX cluster
has been discussed. Services are modeled through RPC based protocols. Though the mod-
eling of this kernel was done through object modeling techniques, the implementation is
procedural. Interfaces identified during modeling are translated into C-based RPC services
during implementation.

In this report, an ARC framework for C#/.NET [2][8] over LAN and the Internet are
presented. The framework is modeled using object oriented analysis and design techniques,
and also uses object oriented implementations. Object orientation at implementation level
provides interesting solutions such as automatic-proxy switching for object mobility, imple-
mentation of multiple interfaces for services and factories for object creation.

In addition to the above services, support for object level mobility and retraction services
are provided. Mobile objects introduced in the C# ARC framework are self-contained
autonomous objects which can move from machine to machine, performing assigned task.
While object move and perform tasks on remote machines, they remain addressable for the
originator through connection, and also to the current context where the object moves. A
migrated object may decide to hop to another machine or the originator application may
retract the object, or the object may be pushed onto another machine in its next hop by
the originator or by its current context.

ARC framework over the Internet is an extension to ARC framework over the LAN.
ARC over the Internet reuses the software components from the implementation of ARC
over the LAN. Abstraction given to the developer of applications over ARC framework is
same in both LAN and the Internet versions of ARC. ARC over the Internet uses ASP.NET
XML webservices infrastructure for communication between machines on the Internet.

1.1 Scope of Work

First design of ARC implementation on heterogeneous cluster of workstations is discussed
in [11]. In [10], Aruna et al. designed ARC using RPC based communication. Design was
made object-centric at interface level but the actual implementation was procedural. They
addressed distributed concepts like dynamic task distribution, fault tolerance, scalability
and heterogeneity.

Design work and implementation has been redone on .NET/C#. Mobility of objects is
introduced into ARC and supported at the programming language level. ARC framework
is extended to support object hopping. It also enables passing messages to the migrated
object from originator of the object and from remote environments.

ARC framework is extended to work over the Internet, nodes on the Internet can dy-
namically join and leave the ARC system. Distributed programs developer may write
applications using ARC constructs to run over the Internet.

1.2 Organization of the Report

This report presents the design and implementation of the services provided by ARC for
both LAN and the Internet versions. This report also presents example applications in
detail for the applications developer over the ARC. Chapter 2 presents ARC framework
features and ARC software architecture for the LAN environment. Chapter 3 discusses
application development issues, it also describes user level of ARC framework. Design and
implementation of ARC kernel over the LAN are presented in Chapter 4. Issues involved
and a solution architecture to extend ARC over the Internet are discussed in Chapter 5.
Design and implementation of ARC kernel over the Internet are presented in Chapter 6.
Example applications are given in Chapter 7. Conclusion and guidelines for future work are
given in Chapter 8. In Appendix A description of steps in installing ARC software is given
and Appendix B describes steps in writing a Hello World application over ARC framework.

Chapter 2

ARC Framework Architecture

ARC framework capabilities and its architecture are presented. Section 2.1 presents frame-
work capabilities. Section 2.2 shows architectural view of ARC and Section 2.3 presents a
deployment view of ARC over LAN environment.

2.1 Framework Capabilities

Frameworks and architectures such as PVM [1], CORBA [6], COM/DCOM [9] have intro-
duced interesting mechanisms for performing computations collaboratively over clusters of
workstations. Some examples of these mechanisms are typed interprocess communication,
synchronization mechanisms, remoting, naming services and remote method invocations.
Frameworks for mobility such as Aglets [7] and Voyager [12] implement mobility at object
level. As compared to various available message frameworks in these categories of parallel,
distributed and mobile computing frameworks, the ARC framework on .NET discussed in
this report specializes from the point of view of integrating anonymity, service orientation,
mobility and remoting in a distributed scenario. Lightly loaded participant machines may
join an ARC system dynamically or leave dynamically. An ARC computation may make use
of these services to benefit from available computing capacity in a network. A horse power
factor service and a fault tolerance service are provided as support services for computing in
presence of load and failures. The framework is also extended to support multiple hopping
of objects (including state and code) and remoting abilities to ARC objects.

Figure 2.1 shows a use-case diagram bringing out the functional view of the ARC frame-
work. Two kinds of actors namely Parallel/Distributed Application and Node Administrator
can be noted. Parallel or distributed applications use constructs provided by ARC system
to develop programs involving more than one machine. Node administrator deals with join
and leave services. The functionalities identified in the use case diagram are elaborated
below.

e Specifying an ARC object: An object is specified as an ARC object through inheri-
tance. An ARC object obtains all the capabilities provided by the ARC system.

Register
FTSService

GracefulRetract

i Push a
Node

Parallel/ Administrator
Distributed

Application

00

Release

AutoExecution

getHPFVector

Figure 2.1: Use-Case Diagram for ARC

Anonymity in Node selection: An application may select a machine by its Horse Power
Factor (HPF) value, while the machine remains anonymous for the application. HPFs
may be obtained via a call to getHPF Vector() to a local HPF server. An HPF value
is an instance of a class. An HPF server communicates with other HPF servers in the
network.

Explicit node selection: An application may also select a machine explicitly for mi-
gration through a call to getHPF Value() on local HPF server.

Migration Assurance: When an application obtains an HPF value of a machine, or a
vector corresponding to a set of machines, each value represents an assured slot for
receiving a migrating object. The slots are unlocked through a call to release() on the
local HPF server.

Migration: Migration of an ARC object to an anonymous machine. An ARC object
may be migrated by calling a method push() on the object. The method requires an
HPF value corresponding to an anonymous machine as its parameter.

Trigger: A method body to be executed after the object moves to remote machine is

implemented as an overridden implementation of method ¢rigger() by an ARC object.

Parallelism: While an application migrates an ARC-object to an anonymous remote
machine due to a call to push, it may continue in a non-blocking fashion. A result of
remote execution available as migrated object’s state.

Auto-retraction: Asynchronous return of an object after completing the task at remote
machine is a default retraction mechanism. After the object retracts, all invocations
on the object are performed locally. The application remains unaware of the location
of the object due to an internal automatic proxy switching mechanism.

Wait till retraction: An application may wait on an ARC object till it is retracted
through a call to sync() on the ARC object. If the object is already retracted, the
call is unblocked immediately.

Explicit Retraction: An object may be called back to originator when required through
a call to GracefulRetract() on the ARC object. The remote ARC object is intimated
via a flag which may be checked through a method isRetractionSet(). The trigger
method in an ARC object may be implemented to handle an incoming graceful retract
request.

Roaming: An object may re-hop over a network of machines by means of a call to
push() on the object. This call can be made by the originator, by its current context
or by the object itself. The protocol followed by push is the same as that followed
on its originating machine. For the originating application code, the object’s location
need not be known for call invocations on the roaming object. To establish this
communication, the originating application needs to call a connect() invocation on
its local ARC object handle. Proxy switching is performed internally in response to
connect.

Fault Tolerance: A desired fault tolerant behavior for an ARC object may be specified.
Before an ARC object is migrated, to access a failure recovery service, the object is
registered with a fault tolerance service (FTS) through a call to register() specifying
the desired fault tolerance semantics for a given ARC object. An FTS server commu-
nicates with remote FTS servers for failure detection. Upon a failure detection, the
FTS carries out resend operations through local ARC system interface.

Communicating Mobile Objects: Roaming objects may exchange messages between
each other. If the location of an object is known, an explicit proxy to the object may
be obtained. For communication among roaming objects their locations have to be
known to each other. An explicit proxy is required for all contexts other than the
originating code for communication with a roaming object.

Deactivation: An ARC object may be serialized to a harddisk file for later use. Ap-
plications may deserialize the object from the file to work with it.

e Reactivation: ARC object may be reactivated from serialized state on harddisk. Reac-
tivation and Deactivation together enables working in disconnected mode of operation.

e Dynamic join and leave: Machines may join or leave an ARC system dynamically
through a Join service and a Leave program. Every active participant exports a copy
of the Join server. The list of currently active nodes is updated by join service on
every machine.

2.2 Architecture

Figure 2.2 depicts the architecture of ARC framework. The ARC system is organized in
the four layers which are described below.

2.2.1 ARC User Upper Layer

This layer consists of user programs running on the ARC system. These programs are
distributed applications or node administrators. Distributed applications use services meant
for user applications. Node administrators are responsible for joining a machine into the
ARC network as well as disconnecting the machine from ARC network.

2.2.2 ARC User Lower Layer

Classes in this level include proxies for the ARC services and classes which may be generated
through a preprocessor operating on interface descriptions. The inheritance structure of
these classes is shown subsequently. Class Real is at the lowest level of inheritance and
user implements the interface in this class. This layer also consists of proxies to services
provided in ARC kernel level. These are obtained using .NET remoting infrastructure.

2.2.3 ARC Kernel Layer

This layer provides services to the layers above it. Depending on the user of the services,
these services are classified into 3 sub parts.

e ARC Object Services: It allows registration of newly created ARC objects, Mi-
gration (send and receive) of code and state, and activation and execution of trigger
on a newly arrived remote ARC object. When a migrated ARC object returns asyn-
chronously, the object is inserted into its original location by proxy switching through
ARC object proxy layer. ARC object proxy layer consists of proxies to locally reg-
istered ARC objects. The proxy layer is essential since the ARC object services are
located in a different address space than that of the user programs.

e Developer Services: Distributed or parallel programs uses these services through
proxies, which can be obtained using .NET remoting framework. These services can
also be used from ARC user lower layer. Services supported in this category are

10

]
R
-
UserLeve o
a8
UserProgram NodeAdmin Program ;
)
i 2
U “
Trandated Userinterface
ERREE g § b
< ; 2
. : 3 3
‘ Container ‘ ‘ARCObJect ‘ = T)
0 © S
3
Iy)
°) g <
g
| ARC Services Proxy Layer <
‘ ARCObject Proxy Layer
N
ARC Kernel Services
ARC Object Services Developer Services NodeAdmin Services .
Registra o
v — HPF Senvice in Service L
Migration Fault Tolerance & 'g
Service Auto Execution o)
Activation & Service o , 5
Trigger Service ijqurnva[Leave Service 7
Intimation Service <
c
S
. 8y
NET Remoting Infrastructure g_,%
S
S
e}
@)

Figure 2.2: ARC Framework Architecture

11

fault tolerance and auto execution, Horse Power Factor and remote slot locking and
unlocking, and asynchronous object arrival intimation services.

e Node Administrator Services: Node administrator can join a machine into the
ARC network and also can unsubscribe a machine from the ARC network. Node
administrator services include join and leave services. An active ARC computation
uses actively participating nodes at a given time.

2.2.4 Communication Layer

.NET provides remoting infrastructure which allows method invocation on a remote ma-
chine. Communication between any two machines takes place through this level. The .NET
services accessed in this layer consists of registration of services and creation of proxies.

2.3 ARC Deployment View

Figure 2.3 shows deployment view of ARC software over the LAN. A node in the LAN
may join ARC system to give its computational resources to other nodes present in ARC
network. Joined nodes form a logical ring to handle fail stop failures in ARC network.
Nodes in the ARC network contain ARC software components and provide different ARC
services accessible to remote machines through .NET remoting infrastructure over TCP.
Chapter 4 discusses the details of ARC software components and its services.

12

ARC
Sotware
Components

ARC
Sotware
Components

:logical
ring .-°

.
.

ARC
Nﬁtwork

=
<<TCH .NET
Remofing>>

<<T§P .NET ",
Renfoting>>

__
=

:a node not in
the ARC logical ring

: LAN

[<<TCP| .NET
\ Remoting>>

ARC
Sotware
Components

<<TC

.NET
Remdting>> Re

<<T¢P .NET
tingé>

.

B
a node in

ARC
Sotware
Components

.
.
.

Network

ical ring

ARC
Sotware
Components

Figure 2.3: Deployment View of ARC Software

13

Chapter 3

Application Development using
ARC

Application development process using ARC, and design and implementation of higher level
in the ARC framework are discussed in detail. Section 3.1 presents application development
process. Section 3.2 discusses the design and implementation techniques of ARC user level.

3.1 Application Development Process

An ARC application may be classified into broad categories of distributed, parallel and
mobility based applications. An application may also combine one or more of these features.
Applications may involve autonomous objects migrating over the network and exchanging
messages. These distributed objects carry unique identities and may work co-operatively
to serve a common purpose.

In an application involving parallelism, a large computation may be divided into small
individual subcomputations expressed as ARC objects. Using ARC constructs, these sub-
computations may be executed on remote machines in parallel. Results of remote executions
arrived at the originator asynchronously as ARC objects retract. Earlier work on paral-
lelism on an ARC platform is discussed in [11]. An application may also employ multiple
hopping of an ARC object to complete its work-flow. ARC system allows ARC objects to
be migrated over a specific path.

This section highlights a development process of ARC programs through an example. In
the example discussed, an ARC object is migrated to a remote anonymous machine, where
a specified task is triggered on arrival. The object retracts asynchronously to originator
context after completion of the triggered task.

Interface Specification

The development process begins with a specification of an ARC object interface as shown
below. The interface consists of public member functions that the ARC object exports.

14

These member functions are exported in addition to default ARC object members such as
a trigger executor. In the interface specification below, the ARC object interface inherits
a library interface IRefCount to add reference counting feature to ARC objects of type
IMyObject.

public interface IMyObject : IRefCount { // User specified interface
void task(); // a public member of the ARC object
}

Implementation of ARC Object

Implementation of the interface is done in class Real in the namespace corresponding to user
specified ARC interface. Skeleton of this class is generated from the ARC object interface.
The architecture of the generated classes is discussed in next section.

namespace NSIMyObject{
[Serializable]
public class Real: PReal{
public override void Trigger(){
Console.WriteLine(‘‘This Message is Expected
to be Displayed at Remote Node’’);
this.task(); //method to print Hello World!
}
public override void OnReturn(){ }
public override void OnRetract(){ }
public override void task(){
Console.WriteLine(‘‘Hello World!’’);
}

During implementation of Real, definitions of member functions need to be stuffed in
by the programmer. Method T'rigger() is automatically executed after the object migrates.
In this example, method task() is called from within Trigger(). The code for class Real,
which implements interface IMyObject is shown below. Methods Trigger(), OnReturn()
and OnRetract() are due to inheritance from interface ITrigger. The methods in interfaces
ITrigger and IMyObject are to be implemented in class Real.

Originator Application

Below is an example originator code. The originator program invokes a creation request on
the factory class available under the generated namespace corresponding to the ARC object
interface. After creation, the program sends instance of class Real to an anonymous remote

15

machine and executes a local method in parallel. Finally the program blocks through a call
to method Sync() till the migrated ARC object retracts.

namespace testHello{
public class HelloClass{

public static void Main(){

// 1. Connect to local HPFServer
UserInterface_HPFVector.IUser hpfvector;
UserInterface_HPFServer.IUser hpfserver =

(UserInterface_HPFServer.IUser)Activator.GetObject (
typeof (UserInterface_HPFServer.IUser),
"tcp://localhost:8105/HPFServerClass");

// 2. get HPFVector
hpfvector = hpfserver.getHPFVector(1);
int i = hpfvector.Size0fHPFVector();
UserInterface_HPFValue.IUser hpfl=null;
hpfl = hpfvector.getHPFValue(0);
// 3. Instantiate an ARCObject
NSIMyObject.IContainer arcobject = NSIMyObject.Factory.New();
// 4. send created object to remote machine
arcobject.push(hpfl);
// 5. do any work in parallel
Console.WriteLine(‘‘to be executed parallelly’’);
// 6. wait for object to come back
arcobject.sync();
// 7. end of program
Console.WriteLine(‘‘the end’’);
}
}
}

Note that the HPF value obtained through the HPF service represent a machine on
which the ARC object migrates. The remote machine remains anonymous to the originator
application program. After executing a predefined task in its trigger specification the object
retracts. In the meanwhile the originator performs an activity in parallel.

3.2 Design of ARC User Lower Level

Figures 3.1 and 3.2 show a view of the hierarchy generated from the given ARC object
interface. The classes and interfaces are classified into two categories of generated classes
and interfaces, and library classes and interfaces. The user application programs use some
of the generated classes either as it is or by specialization and stuffing. A naming conven-
tion is used to name the generated classes. Instead of naming each of the classes on user
specified ARC object’s interface, they are named with a standard scheme, but are placed
in a namespace. The namespace is in turn named on the ARC object’s interface. This

16

«interface» «interface»
IRefCount IPushCommand
+IncRefCount () : void +push (machine:HPFValue) : int
+DecRefCount () : void Lk
+RefCount () : int 1
JAN !
1 1
: «interface»
«interface» ISynC
|hAy()bjeCt +Sync () : void
- +GracefulRetract () : void
+myOperation (param: type) : type +connect ()
A

To Interfaces
IMYObject,
IPushRequest
o
1
1

.
«interface» «interface»

""" > |Container

_______________D

1 IMigratable
- A >
1 [}
1 1
1 1
UserProgram | | :
T X PContainer
1
1 1
«Kuge>» ! . .
1 1 «implem tation»
1 1
1 1
1 1
V L e e e e e = =
Factory «<instantiate» .
_____________ : la
Tew (T Ton] > Container {e

Figure 3.1: Container

convention is employed for the convenience of application programmers in handling various
interfaces and classes in an ARC program. The figures omit the details of namespaces. The
generated classes also reuse interfaces and implementations provided in the library. The
design of the hierarchies is discussed below.

3.2.1 Interfaces and Generated Classes

In this section, we will discuss the design of the generated classes, generated interfaces and
library interfaces, since these are concerned with application programs.

e Interface IMyObject: This interface represents the original interface description spec-
ified by the user. The user may access an ARC object through this interface polymor-
phically. In such a case, only the member functions on the interface are visible (e.g.
member function task(), and reference counting in this case). This interface is to be
implemented by the applications programmer.

17

«interface»
IRefCount
+IncRefCount () : void
+DecRefCount () : void
+RefCount () : int
1
«interface» «interface» «interface»
IMyObject IPushRequest IRealUtil
0 ti .t .t h hine:HPFVal . int +isRetractonSet () : bool
+myOperation (param: type) ype +push (machine 2 ji) 2 +RegisterForRemoteAccess () : void
1 1 1
1 | | m e e e e — !
L m— - = ———————a !
! !
«use» L ! : «interface»
- - EEL «interface» [Trigger
I IMigratable . .
. +Trigger () : void
| A A A +OnReturn() : void
| | +OnRetract () : void
1
1
1
1
1

| Container at Originator | imolementations

|
|
1
|
I
|
|
|
|
I
F]

e s >

T T T 1
| Nonoriginator Context | wse2 To MarshalByRefObject, I
T IMyObjectMigratable, 1
1 IFronEndRealUtil, 1
«uge» PFronig?dReal !
1 1
' ! .
- - X
Activator (.NET Remoting) Proxy | - <%2_ [FrontEndReal
+GetObject () : Object Real
T 1
! «instantiate» ! ! «use» !

Figure 3.2: Proxy and Real

o Interface ITrigger: For every ARC object, this interface needs to be implemented by
the applications programmer. The interface includes method Trigger(), which is called
upon migration to a remote destination. Similarly, methods and BeforeRetract() and
OnReturn() are respectively called before the object retracts from the remote machine
and after it returns to the originator.

o Interface IRefCount: It is useful in keeping track of number of external actors that
are referencing an ARC object. Implementation of members of this interface may be
provided in class Real. It is optional in the inheritance hierarchy and including it in
the hierarchy is left to the programmer.

e (Class Real: This class is to be implemented by the applications programmer. This
class shown in Figure 3.2 implements interfaces IMyObject and ITrigger. Observe that
figures 3.1 and 3.2 shows interface IMyObject as a subclass of interface IRefCount.
Reference counting has been a common feature used in component programming on

18

COM/DCOM models [9] to keep track of usage. This feature is useful for garbage
collection, especially to take care of references that an object may accumulate while
hopping from machine to machine. A library implementation of reference counting
may be used in class Real through inheritance.

Class Container: User program gets a handle to an instance of this class by invoking
method New() on class Factory. Class container acts as a handler to the real ARC
object which may migrate. It inherits from interface IMyObject through interface
IContainer to enforce the abstraction of the user specified ARC object. The container
either holds the real object when it’s resident, or holds a proxy to it when the object
migrates. It delegates the function invocations made by the user to the real instance
of class Real which may be available locally or may be migrated to a remote machine.
It employs an automatic proxy switching mechanism which makes makes migration
transparent to a local application program. After the migration, the application
program may invoke a method connect() on the container, and subsequently can
invoke member functions on it as if the ARC object is available locally. The container
reuses a library implementation PContainer through inheritance as shown in Figure
3.1.

Class Proxy: The class as shown in Figure 3.2, represents proxy to an instance of class
FrontEndReal. 1t’s instances are obtained through .NET remoting infrastructure on
invocation of method Activator.GetObject(). A proxy instance may be obtained from
any context on any machine provided that a request is made to activator where the
ARC object registers its front end for allowing remote accesses to it.

Class FrontEndReal: An instance of this class wraps the real ARC object when it
migrates to a machine. A front end is required to make a migrated ARC object
accessible to other contexts for public method invocation. It can be noted that in
order to make an ARC object migratable, class Real object does not inherit from
MarshalByRefObject, which is required for making it remotable. Hence, to allow
remote access to a migrated ARC object, a front end is used as a mechanism to
make a migrating object remotable. This class delegates user requests to Real. When
method RegisterForRemoteAccess() is called from inside Trigger(), an instance of class
FrontEndReal is created internally, and is initialized to point to the calling real object,
thus publish itself as a remotable object. As shown in Figure 3.2, class FrontEndReal
is inherited from the library class PFrontEndReal which provides its implementation
partially.

Class Factory: Application programs involving an ARC object use this class for cre-
ating instances of the ARC object. Application programs uses interface IContainer
to hold the instance returned by method call New() on class Factory. Factory returns
an instance of class Container.

19

3.2.2 Library Classes

The classes in this category provide partial or full implementations for some of the inter-
faces for classes Container, Real and FrontEndReal. These library classes include classes
PContainer, PReal and PFrontEndReal.

e Class PContainer: As shown in Figure 3.1, this class realizes interface ISync. Member
functions on the ARC object for the use of the originator application are implemented
in this class. They include member functions push() from interface IPushCommand
and member functions Sync(), GracefulRetract() and connect() from interface ISync.
Interface ISync and I PushCommand are visible to the originator application through
interface IContainer, as it can be traced through the class diagram in Figure 3.1.

Method push is used for migration of an ARC object. Method sync blocks the caller
till the object returns to the originating application. Method Graceful Retract sets
a flag on a migrated ARC object which may be checked by ARC object’s executing
code (such as Trigger). ARC object may return from trigger on observing this flag
to be true. Originator application uses method connect to establish connection to
migrated ARC object if the latter is registered for remoting after migration. After a
successful connect, application code may continue to invoke public member functions
on the migrated ARC object through its container.

e Class PReal: As shown in Figure 3.2, this class realizes interfaces IPushRequest and
IRealUtil. Class PReal implements methods that can be invoked from within the exe-
cuting code of a migrated ARC object, such as through Trigger. These methods in-
clude push() from interface I PushRequest, is RetractionSet(), Register For Remote Access
and Unregister For RemoteAccess from interface I RealUtil.

Method push from interface I PushRequest allows a migrated object to re-hop to
another remote machine. However, this non-blocking request is fulfilled only after
completion of an executing trigger. Method isRetractionSet is used to check the
status of retraction flag which is settable from originating application code as discussed
above. In addition to these two methods, a migrated ARC object may register itself for
remoting through Register For Remoting immediately after migration, and unregister
just before migration or retraction. These member functions are available for an ARC
object, and their use is optional.

e Class PFrontEndReal: As shown in Figure 3.2, this class inherits interface IPushRe-
quest. The implementation is used in class FrontEndReal to delegate calls to method
push() to the instance of class Real.

20

Chapter 4

Design and Implementation of
ARC Kernel Level for LAN

In this chapter, ARC services, their design and implementation techniques are presented.
The ARC framework on .NET has features of anonymity of participating nodes, service
orientation, mobility of objects, handling fail stop failures and load measurement services.
Participant machines may join an ARC system dynamically or leave dynamically. An ARC
computation may make use of various services to benefit from available computing capacity
in a network. A horse power factor service and a fault tolerance service are provided as
support services for computing in presence of load and failures. The framework is also
extended to support multiple hopping of objects (including state and code) and remoting
abilities to ARC objects. Services of ARC can be categorized into three classes based on
the user of those services. The three classes are, ARC object services, Developer Services
and Node administrator services. Section 4.1 presents an implementation view of ARC
software. Section 4.2 explains ARC object services, Section 4.3 presents developer services
and Section 4.4 presents node administration services.

4.1 High Level Implementation View of ARC Software

Figure 4.1 shows UML component diagram [5] of ARC. It shows a node called ARC Node,
which represents a machine/node in the ARC network. Each node in ARC network con-
tains component instances shown in Figure. These components exchange messages among
themselves to provide the supported services.

Table 4.1 categorizes components of ARC implementation into three classes depending
on the type of service they provide. Description of these components is given below. The
interface names of the components indicate their respective client components.

21

ARC Node
o b
. —o< — — — T T - \
o [0S T T -7 T
dll _Q >~ - Ve
Object \ ~ s |
Sdtlelrver —O< N ~ \
\\ -~ 7 ~ I \ Name ?
N ST ~ - Sd?lrver _
. NS T~ S
‘(]:cl)g;s.cs —O< \/_ __\ — ~ > - v
7 AN \ - [_ ~ 1 startUp i %
7 - Program
\ - N\ \ _— | e
e N - — Ve
FTs —%) - _ — g Config File 7
Sd?lrvice —Oé: - - I
. 7) -~ — — - AN \ 7
- - -~ N\ \ | /
ﬁ: — - .
HPF -~ 7
Server —()é User
dil O — — — — T = Program /
Figure 4.1: Component Diagram of ARC Software
ARCSystem

This component is used by UserProgram, FTSService and remote ARCSystem. It is re-
sponsible for maintaining registry of ARC objects. It redirects all the requests from local
and remote environments to proper classes. ARCSystem starts new threads when an object
comes for execution. It is also responsible for sending objects back to their originators after
completion of task. The interfaces for this component are listed in Table 4.2.

ARC Object Service | Developer Service | Node Administrator Service
Components Components Components
ARCSystem HPFServer JoinServer
Object Server FTSServer Startup Program

Code Motion Server NameServer

Table 4.1: Components Categorized based on Services

22

TARCODbject
ObjID getObjID()
void Register(ObjID id, ARCSystemInterface. ARCODbject.IARCSystem obj)
int push(Message msg)
void Retract(Message mesg)
void Hop(Message msg)
string WhichMachine(ObjID id, int pushno)
int WhichPort(ObjID id, string ip)
IFTSService
ArrayList getObjectsOnFailedNode(string ip)
void SendResendMessage(ResendMessage resendmsg)
void AutoExecuteLocally(ObjID objid)
void ReturnARCObject ToApp(ObjID objid)
bool completePendingWork()
IPeer
int SendMessage(Message msg)
int returnPortNo(ObjID id)

ISerializer
int SendMessage(Message msg)
IThreadExecutor
void MessageforNextHop(Message mesg)

Startup functions
void BufferThreadStart()

Table 4.2: ARC System Class

Object Server

This component is used by ARCSystem and ARC object of UserProgram. This class is
useful in implementing asynchronous return of migrated objects. It stores the objects that
are returned from a remote node. ARCSystem invokes method store_object on this class by
keeping an ARC object inside parameter. After receiving a notification from ARCSystem,
UserProgram interacts with ObjectServer to load the returned object. The interfaces for
this component are listed in Table 4.3.

NameServer

This component is used by ARC object and user applications on remote nodes. It is respon-
sible for implementing object arrival intimation service. User programs can register their
request for delivery of asynchronous intimations on incoming ARC objects. ARC object
can register themselves with NameServer to allow remote context to start accessing it. The

23

intimation service is provided for remote machine and not for the originator machine. The

TARCSystem

int store_object(Message msg)

ITARCObject

ITrigger load_object(ObjID objid, int pushnumber)

Table 4.3: Object Server Class

interfaces for this component are listed in Table 4.4.

TARCODbject

void Register(string classname, Object obj)
void UnRegister(string classname)

IUserProgram

void RegisterRequest(string classname, Object obj)

Startup functions

void startThreads()

JoinServer

This class is responsible for allowing nodes to join the existing ARC system without having
to interrupt the functioning of already joined nodes. The interfaces for this component are

listed in Table 4.5.

Table 4.4: NameServer Class

TPeer
bool eachresultjoinrequest(JoinMessage reply)
bool eachresultjoin()
JoinMessage requestJoin(JoinMessage message)
JoinMessage Join(JoinMessage message)

Startup Program
void boot/()

Table 4.5: Join Server Class

24

Code Motion Server

This component is used by ARCSystem and ARC object. This component is responsible
for storing code of an ARC object. CodeMotionServer in co-operation with ARCSystem
implements code transfer. The interfaces for this component are listed in Table 4.6.

TARCSystem
void catchfile(ObjID id, Code code)
Code getCode(ObjID id)
void setLockValue(ObjID id,int lockvalue)
ITARCObject
void LocalCopy(ObjID id, Code code)

Table 4.6: CodeMotion Server Class

Startup Program

This is responsible for starting all components of ARC kernel. StartupProgram uses config-
uration file to read configuration settings of the user, it uses this information while starting
all the components. It starts various services one by one as per their dependencies and
invokes the initialization member functions on them.

FTSServer

This component is used by JoinServer and UserProgram. This class is responsible for failure
detection of one neighbor machine in a ring configuration (node id + ip address). It also
maintains the information about all nodes in the ARC distributed system. UserProgram
interacts with this class to register A RCObject for fault tolerance service. This class provides
specified quality of fault tolerance as desired by the user. The interfaces for this component
are listed in Table 4.7.

HPFServer

This component is used by UserProgram and FTSServer. This class is responsible for giving
locks on local machine as well as acquiring locks from remote machines. This class calculates
HPF value of the local machine. UserProgram as well as FTSServer are able to query this
class for HPF values. HPF value is returned as an object of class HPFValue, which is a
type <ip-address, lock-no, actual hpf value>. The interfaces for this component are listed
in Table 4.8.

25

IUserProgram

int Register(Object obj , int howmany_resends)

1Join
setOfNodes requestNodeSet_Join()
void updateNodeSet WhenLeader(setOfNodes nodes)
void updateNodeSetWhenJoin(setOfNodes nodes)
void setNodeset(int myld, setOfNodes nodes)

ILeave

void LeaveBroadcast(LeaveMessage mesg)

setOfNodes Leaving()
int returnLocalnodeld()
TARCODbject
int registerFor AutoExecution(ObjID objid)
IPeer
int checkforliveness|()
int HandleFailure(FailureMessage mesg)

Startup functions
void start_thread()

Table 4.7: FTSServer Class

User Program

This is a distributed application, which makes use of constructs given by the ARC. It has a
reference to the instance of ARC object, which is the application ARC object. HPFServer,
FTSServer and NameServer are visible to the user applications. ARCSystem is accessed
from inside ARC object and not visible to the high level user applications. CodeMotion-
Server, JoinServer and ObjectServer are helper components and not visible to the user
applications.

4.2 ARC Object Services

ARC object services include registration of an ARC object, migration service and object
hopping across network of machines. These include services to create an ARC object, send
an ARC object from one machine to the other for multiple times across network of machines,
activation and execution of trigger on a newly arrived remote ARC object. ARC provides
constructs to wait for an object to return to originator machine and construct to retract an
object when required from originator application. ARC also provides construct to connect
to the migrated object from originator application and allows to exchange messages with
it.

26

4.2.1

A task is a unit of computation which can be executed at any machine. In ARC, a task
is modeled as method Trigger inside ARC object. Figure 4.2 shows the sequence diagram
for creating a task. UserProgram requests Factory to create ARC object. Class Factory
creates an instance of class Container. Constructor of class Container submits its code to
local CodeMotionServer and registers itself with A RCSystem. ARCSystem assigns a unique

IUserProgram

UserInterface. HPFVector.IUser getHPFVector(int size)
UserInterface HPFValue.IUser getHPF Value(string machaddr)
UserInterface . HPFValue.IUser atMostOneHPF Value(string[] machaddrarr)
int Release(Object hpfvalue)

TARCSystem

Object GetHPFValue(string machaddr)
ARCSystemlInterface_HPF Vector. IARCSystem GetHPF Vector(int size)

TARCSystem, IFTService

Object GetHPFValue()

IPeer

HPFServerInterface_HPF Value acquireLock()

ILeave

void doNotgiveLocks()

Startup functions

void start_thread()

Table 4.8: HPFServer Class

Registration Service

identifier to each ARC object.

UserProgram Factory ARCSystem CodeMotionServer
| New. Container
| ___ Create.
LocalCopy..
I
Register
ARCObject
]
]
]

Figure 4.2: Sequence Diagram for Task Creation

27

4.2.2 Migration Service

ARC supports parallelism at the programming language level. ARC provides two constructs
namely push and sync to send a subtask to remote machine and to wait for the return of
the migrated object. A subtask is an ARC object with a trigger method implemented by
the user.

Push Operation

This section describes working of push operation. Figure 4.3 shows UML sequence diagram
illustrating the working of push method invocation.

CodeMotion Remote Remote
i CodeMotion
UserProgram ARCSystem ObjectServer goer ARCSystem Server
ARCObject
push
push
make
entries
- <--------1 getCode
- T
catchfile
I I N
send
- -]
IS | e
ecutor
Trigger Remote
|~ Newmessage_, ﬁ}e}ndler ARCObject
-] ,,,,rcreate Trigg
send - ___Z
make
entries
store object
hronoys |
IAsynchronouys
Y not#)
load object
- 1]
————————— =
} nodel } node2 }

Figure 4.3: Sequence Diagram for Nonblocking Push Operation

Push is a non-blocking call such that user can proceed with other computation while
Trigger method executes on remote machine. User has to submit a lock present in HPF Value
returned by a call to getHPF Vector, while calling push method as a parameter to the method.

28

Procedure to acquire a lock is described in Section 4.3.1. Local ARCSystem makes proper
entries in its data structures such as machine address to which an ARC object is about to
be sent. ARCSystem packs the object in a message and sends it to the remote machine.

Asynchronous Return

Migrated object can asynchronously come back after completing execution of method Trig-
ger at remote node. ARCSystem receives asynchronous arrival of the object, stores the
object in ObjectServer and notifies the local ARC object container using registration infor-
mation. Subsequently, ARC object calls method load_object on ObjectServer to retrieve the
object.

Synchronization

Synchronization is one of the primitive operation that must be addressed by any distributed
programming language.

UserProgram ARCSystem ObjectServer Remote
ARCSystem
ARCODbject
push
push uence
,,,,,,,,,,, sendmessage
sync Execute Trigger
send
|
make
Dentrl es
are
object
Asynchronous™ "~~~ """ "7
na/i fy
get object
|_syncreturn [~ 77770
} nodel } node2 }

Figure 4.4: Sequence Diagram when Sync is Called Before Return of Migrated Object

In the sequence diagram shown in Figure 4.4, method Sync is called before return of
migrated object and this call will be blocked until object comes back. If sync is called after
return of migrated object then that call will be returned immediately. In any case, it is

29

assured that state of the object is synchronized to current state and object is local when
sync call returns.

4.2.3 Object Hopping

Other facet of ARC system is that it can act as a framework to support object mobility.
Using GracefulRetract construct originator of ARC object can bring back the migrated
object whenever required. ARC permits the originating application to execute methods on
migrated object at remote machine by connecting directly to the object. ARC also supports
multiple hopping of an object. An object can hop through multiple machines performing
some assigned task.

Retraction Construct

Graceful Retract operation on an ARC object brings back the migrated object from remote
machine. User may implement OnRetract method in class Real and this will be called at
remote machine by remote ARCSystem before sending the ARC object back. User may
use a function isRetractionSet to programatically check on remote machine inside trigger
method, whether retraction is requested or not. It is users responsibility to check for
retraction inside Trigger method. User has to program the Trigger method in such a way
that if retraction is set, execution of Trigger method should terminate. After execution of
Trigger terminates remote machine invokes method OnRetract on ARC object and sends
it back to the originator.

Connect Construct

Connect construct is used to connect to the remote ARC object. After calling push method,
user has to call connect method to be able to exchange messages with the migrated object
from the sending machine.

Figure 4.5 shows the interaction diagram illustrating the working of connect construct.
UserProgram calls push on the ARC object to send it to a remote machine. ARC object
registers a proxy to itself by calling method RegisterForRemoteAccess from Trigger method.
Originator program may call method connect on the ARC object to get connected to the
object, wherever it is present. When method connect is called on local ARC object, it
requests .NET Remoting framework to get a proxy reference to remote proxy. ARC object
subsequently calls method setProxyConnected on itself to direct any further messages on
it from local UserProgram to remote proxy. This is called automatic proxy switching
since all incoming messages to ARC object at originator machine are directed to remote
machine using acquired proxy. UserProgram sends messages to ARC object in the same
way before and after calling connect construct but the messages are processed locally in
one case and remotely in other case respectively. If method connect is called before ARC
object registers a proxy from inside Trigger method at remote machine raises an exception.

30

i Remote
UserProgram ARCSystem .NET Remoting ARcsystem

ARCODbject
Push
o
pw sendmessage
=--------- Thread
Executor Trigger Remote
_| NewMessage Handler ARCODbject
_create | Trigger
I Remote
Proxy RegisterFor
<4:reale2 RemoteA ccess
connect
getln local
= -1 GetObject proxy
| create
D setProxy
connected
I
func func
func| tunc
==
O) A
N I
e o]
— e | node2 |

Figure 4.5: Sequence Diagram Showing Working of Connect Construct

Multi-Hopping

ARC object can migrate from one machine to another over the network of machines before
returning to the originator. While roaming, it can carry current state of the object and
resume the operations at the new machine. This is referred to as multiple hopping of an
object.

Once ARC object has been pushed to some remote machine, it performs computations
specified in Trigger method. Following three actors has the ability to push a migrated ARC
object on to next machine.

1. Originator of the ARC object.
2. Current environment holding the object.

3. Object itself.

First two actors mentioned above use proxy to execute push method on the ARC object.
Third actor (i.e. ARC object itself) calls push method from inside Trigger method.

The feature of multiple hopping is to treat an ARC object as autonomous migrating
object. ARC object should not change its location while any application holds a reference
of its proxy. Any application that wants to use ARC object should increment reference
count of the ARC object by one and after finishing using the object it should decrement
the reference count by one, so that no other program can change the location of the ARC
object while the application is using the object through proxy.

31

4.3 Developer Services

ARC provides various services for distributed application program developers. ARC devel-
oper services include Horse Power Factory (HPF) service, Fault Tolerance Service (FTS),
Object Arrival Intimation service and, Activation and Deactivation of an ARC object. This
section presents design and implementation these services.

4.3.1 HPF Service

One of the main reasons of using distributed processing is to achieve speedup. Parallelism
in a distributed environment may be achieved by executing different independent tasks on
different machines simultaneously. ARC addresses parallelism at programming language
level by giving non-blocking object migration constructs. One of the key aspects in writing
parallel programs on a loaded cluster is dynamic load adaptability. Dynamic load adaptabil-
ity is the ability to select a lightly loaded node at runtime for executing a parallel subtask.
The HPF service provides a metric to measure the effective processing ability of a machine
at a given time.

HPF Service Protocol

This section describes design of HPF service protocol using UML class diagram. Figure
4.6 shows the class diagram for HPFServicee. HPFServer class contains LocalData, it is
responsible for maintaining locks and calculating HPF value of the local node.

In response to getHPF Vector call made by UserProgram using IUser interface, HPF-
Server makes acquireLock request on remote machines on behalf of user and returns the
received HPFValue containing lock in the form of a vector. Structure HPFValue is a type
<ip-address, lock-no, actual hpf value> and HPFVector is an array of HPFValues. User
is allowed to look into HPF value of individual items in the vector. HPFServer uses IPeer
interface to call acquireLock method on remote peer HPFServers.

Besides the user program, another user of HPF service is F'TSService. IFTSServer in-
terface on HPFServer is used by FTSService. If a remote machine fails after user sends
a task to it then FTSService is responsible for resending the same task to another avail-
able machine. FTSService requests local HPFServer using interface IFTSService shown in
Figure 4.6 to get a lock on any available machine.

Processor Selection

Processor selection deals with the ability to select a node to execute a parallel subtask.
Processor selection can be done statically and/or dynamically. ARC supports both static
and dynamic node selection. Static node selection can be done by hand-coding IP address
in the application program. Dynamic node selection is done as follows.

Dynamic node selection is the ability to select a node at the runtime of user applica-
tion. ARC gives a programming construct called getHPF Vector to acquire a lock on remote

32

«use» «interface» «interface»
SR > N1:lUser N2::IARCSystem
/\ /\ A
1 1 1

r
1
1
12
%
Iy
1
v
ol
&5
> 2
C
8
o)
¢
=2
B
55
G
tXoOnR
e
1Y
J-=I<a
w o
=y
@
3

1
HPFValue
___________ 1

1
1 «use» | I

1
:

«use»

| el ': -------------- -| Remote HPFServer
1
1
P ———— «user_ _ _ ; | «interface» «interface» |1 «interface»
N5::[User N6::IPeer : N7::IFTSServer
1 AN
1

>
R

N1:UserInterface HPFValue
N2:ARCSystemInterface HPFValue
N3:UserInterface HPFVector

N4 :ARCSystemInterface HPFVector
N5:UserInterface HPFServer
N6:PeerInterface_ HPFServer
N7:FTSServerInterface HPFServer
N8:HPFServerInterface FTSService

LocalData

{

1
1
1
1
1
1
1
1
1
|
1
HPFServer '
1
1
1
1
1
1
1
1
1
1
1
1

1
«uge»
\J

N8::IHPFServer
/\

FTSServer | --<882__.

Figure 4.6: Class Diagram for HPF Service

machine. A lock on remote machine is used by a user program to send a task onto that ma-
chine. Acquired lock also contains HPF value [10] of the machine. HPF value characterizes
the load on the machine and it helps the user in deciding whether to use that machine or
not.

Class HPFServer is responsible for giving locks on local machine as well as acquiring
locks from remote machines. This class calculates HPF value of the local machine. User-
Program as well as FTSServer are able to query this class for HPF values.

In the current implementation HPF value is calculated by measuring the amount of
time a processor is busy executing non-idle process. Lower HPF value indicates that the
processor is lightly loaded. Formula! for calculating HPF value is given below. Let H,
be the predicted value for the next HPF value. Then, for o, 0 < ae < 1,

Hy,1 =ac, + (1 —a)H,

!The method is mentioned in [4] for predicting value for the next CPU burst in Shortest-Job-First CPU
scheduling algorithm

33

Where, ¢, is amount of time the processor is busy executing non-idle process at current
instance of time and H, is past history. The parameter « controls the relative weight of
recent and past history in the prediction of next HPF value.

User Interface

IUser interface on HPFServer contains getHPF Vector method entry as a member in it.
User invokes this method on local HPFServer to get locks on remote machines. Every
machine maintains some fixed number of locks depending on their load and capacity to
service remote requests. Figure 4.7 shows the sequence diagram for acquiring locks from a
user program. User program specifies the number of locks required through a parameter
to getHPF Vector method. Local HPFServer requests remote machines for acquiring locks
until it gets as many locks as requested in presence of possible failures.

Remote
UserProgram HPFServer FTSServer HPFServer

getHPFV ector

* acquire Lock

H nodel } node2 }

Figure 4.7: Sequence Diagram for Acquiring Locks

getHPF Vector call returns the vector of HPFValues. User can use IUser interface on
HPFVector as shown in Figure 4.6 to know how many locks are returned and can also look
at individual HPF Values present inside the vector. User is also given interface on HPF Value
to know the value present in it. Depending on the HPF value user might decide on task
grain size to send to that machine. In general, it is desirable to send large grain tasks to
lightly loaded nodes and small grain size tasks to highly loaded nodes. HPF'Value is sent as
a parameter to method push, which sends an ARC object to the chosen remote machine.

4.3.2 Fault Tolerance and Autoexecution Service

Fault tolerance is an important feature of any distributed system. A distributed system
is said to be fault tolerant if the distributed applications can function normally in case of
some node/link failures. ARC gives the user a facility to specify how system should behave
in case of some failures. AutoExecution call on an ARC object is another facility given to
the user by the system. It ensures that 7Trigger method of ARC object will be executed
at least locally if it can not be executed at some remote node after following the semantics
specified by the user due to failures.

34

Failure Detection

Failure detection is done by forming a logical ring with nodes in the system [3]. Figure 4.8 is
UML activity diagram illustrating how FTSService is been implemented. In the logical ring
each node monitors its front node and will be monitored by its back node. This monitoring
is done periodically. Every node will have the same information about every other node.

isFrontNodeSet

—false - Block

true

update Monitor
nodeset Front Node
no failure .
wait for t sec

failure detected

update node set
and formnew ring

Pass Failure

M &aﬁe to
Front Node

Unblock
BackNode

Pass Failure
M e to
Front Node

Figure 4.8: Activity Diagram for FTSService

When a failure gets detected in the system, reformation of ring structure takes place.
In the ring formed before failure, the back node of the current failed node will notice the
failure and changes its nodeset (data structure containing information about all nodes; this
is same at all nodes), changes its front node pointer to point to the front node of failed node
in the logical ring and back node of its current new front node to point to itself. It passes
new nodeset information to its new front node by calling method HandleFailure method on
front node.

When HandleFailure message arrives at a node, it checks whether the originator of
the message is itself. If it is originator of the failure message received then that means
FuailureMessage has came back after passing through all nodes forming the ring. If it is
not the originator of the failure message then it updates its nodeset, starts a thread to
pass this message to its front node and unblocks the back node, which is waiting for return

35

of HandleFailure method. Each FailureMessage will be assigned a version number same
as originators nodeset version number when FuailureMessage is prepared. Every update to
nodeset information increments its version number by 1. By the time all FailureMessages
reach their respective originators, version number of nodeset at every node will be equal and
every node will have same knowledge of the whole distributed system. A failure message
version number is meant to indicate number of failures occurred in the system.

Specifying Fault Tolerance Semantics

ARC gives the user facility to specify what semantics user wants for an ARC object in the
case of failures. User has to register ARC object with the FTSService. Figure 4.9 shows
the interaction diagram for the scenario, where user registers an ARC object for at most k
times semantics with AutoFEzecution turned on and k=2.

As discussed previously, a node finds a failure when the node that it monitors fails
or when its back node invokes HandleFailure method to inform about failure of anohter
node. FTSServer then gets the list of objects that were sent to failed node by asking local
ARCSystem. FTSServer checks its local registry for the action to be taken for each object.
Depending on the conditions, FTSServer might decide one of three possible actions listed
below.

1. Resend the object to some other available machine.
2. Execute locally if auto execution is set and no resends need to be done.
3. Throw an exception to the user informing about the failure.

In the scenario shown in Figure 4.9, user has registered an ARC object for at most 2
times semantics and set AutoFxecution service ON. In Figure 4.9, after object is pushed by
ARCSystem to remote machine, failure of that machine is detected. FTSServer gets failure
notification and in cooperation with local ARCSystem and HPFServer resends the object
to some available second machine. Assuming that second machine also gets failed before
object returns, FTSServer receives failure notification. Upon receiving failure notification,
in cooperation with local ARCSystem, FTSServer decides to locally execute Trigger.

Auto Execution

AutoFEzecution is another feature given to the user by ARC. User has to set this service
on to make sure that Trigger method of the ARC object will be executed at local machine
in the case of failures. If Trigger can not be executed on remote machine after following
user specified fault tolerance semantics for an object, FTSServer checks for AutoExection
status. For this purpose F'TSServer maintains a registry of objects requiring to be executed
locally.

Figure 4.10 shows the class diagram surrounding AutoFEzecution service. ARC object
obtains the default implementation for AutoFEzecutionON method inside class PContainer.

36

CodeMaotion Remote
Server

R t
UserProgram ARCObject FTSServer HPFServer ARCSystem ObjectServer ARCSystem CoaeMotion

Server
Auto
AutoExecON Execution
register
f<---------4 <" " 777
FTSService
register
I
ush
P push
make
entries
e - -~ s Hi it | getCode
<--------—-F--—------- catchFile
=-—-------F-------- S
sen
Failure _— T ————————=
Notification
getObjects
e]
check >< Failure ><
Registry
etHPFValue Remote
9 Remote CodeMation
-] ARCSystem2 Vi
resend
ake changes
; in object
entries
s it getCode
i M catchFile
[O
Failure send
Notification (<---------4--——\——"~"“"-"4----------+1
r—y—
getObjects
- -]
heck >< Failure ><
chec
D Registry
check for
Dauto exec
execute
Locally
make changes
in object
entries Auto
Executor
execute NewThread A rcobject
L __create_ _
I B S | Trigger|
I
qend <------
store object
- __]
IAsynchronous
notify
get object
[
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, =

Figure 4.9: Sequence diagram when at most 2 times with Autoexecution set

37

«interfacg»
oo osuser | s N1::IContainer

«interface»

«u%e»

«use 1
1

1

! | |
| [Poontaier | '

1 1

1
- "= 1
1 1

JAN
1
1
«interface» : «interfacg»
N2::lUserProgram |1 N3::IARCObject
 — A N |

N4::IFTSServer

Y

1 N1:ARCobjectGeneratedInterfaces
«use» | ! N2:UserInterface FTSService

N3:ARCObjectInterface FTSService

L N4 :FTSSericeInterface ARCSystem
ARCSystem

1 1
FTSServer

Figure 4.10: Class Diagram for AutoExecution Service

From inside this method, it calls a method on FTSServer using interface IARCObject to

register for the service.

4.3.3 Object Arrival Intimation Service

Object arrival intimation service is used to export ARC object interface to the remote
environment. After reaching remote machine, ARC object registers a proxy to itself with
the NamingServer. Any program residing in remote environment can register a request at
the NameServer for an intimation when a required object of a class arrives at that machine.

Figure 4.11 shows the class diagram for object arrival intimation service. Class Name-
Server maintains the registry of registered objects and registered requests for objects.
NameServer notifies all the UserPrograms that register a request for an intimation on

an object arrival.

«interface»

NL::IUserProgram

«interface»

N2::IARCObject

«interface»

N3::INameServer

4 A

tuse»
F_p =

I
I
|
I
I
|
|
I
«use» «Uée»
————— NameServer \
I

A4

A A

N1:UserProgramInterface NameServer
N2:ARCObjectInterface NameServer
N3:NameServerInterface UserProgram

Figure 4.11: Design for Object Arrival Intimation Service

User Program Registration Interface

UserProgram uses interface IUserProgram to register a request with NamingService for an
intimation of arrival of an ARC object. UserProgram has to realize an interface called
INameServer in the Figure 4.11. NameServer class when notifying the UserProgram uses
this interface. Any UserProgram increments the reference count of ARC object before
executing methods on it. UserProgram decrements the reference count after completion of
accessing the object it, which is described in the Section 3.2.1. ARC object cannot change
its location if its reference count is greater than zero.

ARC Object Registration Interface

ARC object uses interface TARCObject realized by NameServer to register itself with the
NameServer. After receiving the register request, the NameServer stores the request in its
registry and notifies the UserPrograms, which have previously registered a request to get
notification of the arrival of object.

4.3.4 Activation and Deactivation Services

Activation and Deactivation services are useful in working in disconnected mode of opera-
tion. A node may want to leave the ARC network after receiving ARC objects, which are
programmed to be deactivated. In such a case, ARC objects may be serialized to a file on
the harddisk. Later, when node rejoins the system, some user application may activate the
ARC object from the serialized file on the harddisk. These two services are provided as user
library, which user may reuse. Table 4.9 lists static member functions in class Serializer.

static members
int SerializeAndDeactivate(string filename,Object arcobject)
Serialize(string filename, Object arcobject)
Object deserialize(string filename)
void deSerializeAndActivate(string filename)

Table 4.9: Serializer Class

Figure 4.12 shows class diagram for Activation and Deactivation services. Class Seri-
alizer uses interface ISerializer on ARCSystem to activate and deactivate an ARC object.
UserProgram and ARCObject use Serializer class.

Originator application that send ARC object to remote machine need to register the
ARC object with FTSService for disconnected operation. As parameter to call register
on F'TSService, orinator application sends -1. This indicates to the FTSService that if it
detects a node failure then ARC objects, which are registered for disconnected operation
and sent to failed node need no action to be performed on them.

39

_______ N1::ISerializer
! /\

-
T[]

1 1
| UserProgram | | ARCObject | N1:SerializerInterface ARCSystem

Figure 4.12: Class Diagram for Activation and Deactivation Services

4.4 Node Administrator Services

ARC addresses the problem of scalability through a dynamic join and leave protocol. In
ARC a new node can dynamically join or an existing node can leave the system without
affecting the functioning of other working nodes in the system.

Join Operation

Figure 4.13 shows the UML state diagram for the class JoinServer. This algorithm can be
found in [3]. Following is the description of states of JoinServerClass.

1. A node wants to enter into the system first sends a JoinRequest.

2. The node with largest id on receiving JoinRequest generates a new id for the joining
node and sends it as a reply; every other node sends null.

3. If no reply comes back within a timeout period then the joining node assumes that it
is the first node.

4. Update nodeset; pass this nodeset information to local FTSService class.
5. Broadcast Join message.

6. Every node on receiving Join message updates their nodeset and passes the same info
to their local FTSService classes.

Leave Operation

Figure 4.14 shows the UML sequence diagram for the leqve operation. This algorithm can
be found in [3]. Following are the sequence of steps that will take place when a node wants
to leave the system.

1. Contact local FTSService for local node id in the distributed system.

2. Inform local HPFService not to give further locks to any machine.

40

start T
—

Join Request
Broadcast
Active
Reply Received Waiting
[not from the lead to get reply

Reply Received
[time out] [From the leader] / Know id
/ first nod

[Join M essage Reached]
/ update nodeset

Join Broadcast Waiting
to get a message

[Join Re(?_u:;% R]eached]&& [Join Request Reached] & &
er 1
/ generate new id and send nodeset / send[r.]LI‘_“eader]
nodefails
Failure

Figure 4.13: State Diagram for Join Server

. Request FTSService for nodeset information.
. Modify the logical ring to reflect the fact that this node is leaving.
. Broadcast the modified nodeset information to all the nodes.

. All the nodes on receiving the modified nodeset updates their front node and back
node pointers.

41

Remote

Leave HPFService FTSService FTSService
Process
returnid
e

locks

leave
Broadcast

’% nodel i node2 ﬁ'

Figure 4.14: Sequence Diagram for Leave Operation

42

Chapter 5

Extending ARC over the Internet

Chapters 2, 3 and 4 have discussed the design and implementation of a LAN based ARC
framework. This chapter presents an approach to extend ARC over the Internet. Section 5.1
presents the issues involved and objectives in extending the ARC over the Internet. Section
5.2 presents a solution approach and in Section 5.3 architectural issues of the approach are
discussed. Section 5.4 presents deployment view of ARC over the Internet.

5.1 Issues and Objectives in Extending ARC over the Inter-
net

In today’s Internet age the ability to move the computation through multiple machines
and performing a specific activity is beneficial in resource sharing over the Internet. It has
advantages like reducing network load and autonomous execution of a specific task. Applica-
tions may work in presence of partially disconnected networks if the migrating computation
is allowed to be deactivated and reactivated. Deactivation stores the state of a migrating
computation to a harddisk file and reactivation restores the state of a computation from
the stored harddisk file and starts the computation.

5.1.1 Issues

Main differences between LAN environment and the Internet environment are connectivity
and the delay involved in communication. Broadcast algorithms that may be used in LAN
environments are practically impossible for use over the Internet due to large number of
machines, different configuration networks and delays in communication. Another issue
of concern for ARC over the Internet is the ability to select a nearby machine if multiple
machines are available while running programs to achieve speedup in execution because
communication delays involved might outweigh computational speedup.

43

5.1.2 Objectives

The objectives in extending ARC over the Internet are two fold. Firstly, the new func-
tionality is to be added on existing ARC implementation for LAN. Secondly, the evolution
process itself follow software engineering practices.

New functionalities aimed in extending ARC are listed below

1. ARC as mobile agent framework: Extending migration service to allow object
hopping over the Internet.

2. Distributed application development for the Internet: To facilitate developing
distributed applications involve cooperation among processes at participant nodes
available on the Internet.

3. Platform independence: Make all ARC services available on the Internet accessible
via XML web services to make ARC platform independent. This report does not
address this issue.

In terms of the software development process the objectives of extending ARC are identified
below.

1. Abstraction: Retaining same abstraction for the user as given in ARC for the LAN,
hiding internetworking details.

2. Design and code reuse: Reuse most of existing code of ARC for LAN.

3. Software reengineering: Identifying components which needs change in the imple-
mentation to work on the Internet.

5.2 A Solution Approach

To address the differences in connectivity and in the delay in communication, implementa-
tion of some components of ARC software for LAN environment has changed. For example
in LAN version joining a node uses broadcast based algorithm, which may not be efficient
on the Internet. Hence a special node is needed in ARC network to maintain registry of
all active nodes. This special node, some times referred to as central node in this report,
provides various services to participant nodes. Services provided by central node include
join service, leave service, HPF service and F'TS service. Communication between any two
machines takes place using XML web services over HT'TP. This facilitates to meet platform
independence requirement. While extending the ARC framework by adding functionali-
ties, the approach that is followed keeps the same abstraction of ARC services to the user
applications written on ARC framework for both LAN and the Internet. Internet version
of ARC software reuses most of the existing code of ARC written for LAN environment.
Components that need change are identified from the LAN version of ARC software and
modified to meet the objectives of extending ARC over the Internet.

44

5.3 Architecture of ARC Software over the Internet

Figure 2.2 presented architecture of ARC software for LAN. Figure 5.1 presents extended
ARC software architecture to run over the Internet.

Figure 5.1 shows remote communication layer in the ARC software architecture. Remote
communication layer in the architecture allows participant nodes of ARC over the Internet
to interact with each other. This layer contains .NET XML webservices infrastructure,
webservices and proxies to local ARC services. Web services are categorized into different
components depending on the kind of service for which they act as wrapper. This layer is
an incremental addition made to the architectural diagram of ARC over the LAN.

Some of the components in ARC kernel layer present in ARC software for LAN envi-
ronment have also changed. In the ARC kernel level of ARC architecture shown in Figure
5.1, components are grouped as two groups depending on whether that component is same
in both LAN and the Internet versions. These groups are shown using dotted rectangles
inside ARC kernel layer. Components in group represented by upper dotted rectangle are
same in both the versions of ARC and components in the group represented by lower dot-
ted rectangle in ARC kernel level have different implementations in LAN and the Internet
versions.

Components that need to communicate with remote node use XML webservice of that
remote machine. Web services on a node typically act as wrapper programs to actual
ARC service components. These webservices use proxies acquired using .NET remoting
infrastructure to communicate with local ARC service components. ARC user upper level
and ARC user lower level are same in both LAN and the Internet versions of ARC.

5.4 ARC Deployment View

Figure 5.2 shows deployment view of ARC software over the Internet. ARC over the Internet
has participant nodes and central node as shown in the figure. A special node acts as central
server providing different services to participant nodes. All participant nodes and central
server are connected to the Internet. All nodes in ARC network have Internet Information
Service (IIS) to allow access to webservices hosted on that machine to remote machines on
the Internet. All participant nodes form a logical ring among themselves, which is shown
as dotted ellipse in the figure.

Participant node and central node contain different ARC software components and pro-
vide different ARC services accessible over the Internet through HTTP and XML webser-
vices. These XML webservices at a node act as a external interface or wrapper programs
to the ARC software components at that node. Chapter 6 discusses the details of ARC
software at both participant node and central node.

45

o
&
-
UserLevel
:
‘ UserProgram ‘ ‘ NodeAdmin Program ;
o)
1T g
t -
Trandated UserInterface
‘ Factory ‘ Real Obj 8 § o
> 5; ®
- - 8 3
Container ‘ ARCObject = = ol
[$) © =
3
AN P B
£ z
>
3 g B
3 £ <
Ei
ARC Services Proxy Layer <
‘ ARCODbject Proxy Layer J w
y
ARC Kernel Services
ARC Object Services Developer Services NodeAdmin Services o
T 1T] &
| Registration Activation & ObjectArrival ! =
| Service Trigger Service Intimation Service ! '9
i : 2
[T I T ! g
! Join Service ! <<
| I Fault Tolerance & X !
! Migration Auto Execution HPF Service '
! Service Service !
i Leave Service i
I I
I I
I I
[I [| I
=
2
- |
.NET Remoting Infrastructure ?g %
R e |
£
£
Q
______________ T S U USRI & 28
g =
ARC Kernel Proxy & 2
o LR 5
= o o
& 55 %
< @ g
g
Web Service Layer | O
HPFService FTSService Msleg"Lz?Iégn Join Service Leave Service 4
Wrapper Wrapper Wrapper Wrapper Wrapper

.NET XML WebService Infrastructure

Figure 5.1: Architectural View of ARC for the Internet

46

s s
s
ARC Software ARC Software
components components
Iia;f)g’:rtlclpant at participant
ARC Software node
components
ﬁgggmcmant :participant
node :participant
node

articipant
node

<<HTTP
XML Webserylices>>

:Central s
server

ARC Software
components
at central
node

Figure 5.2: Deployment View of ARC over the Internet

47

Chapter 6

Design and Implementation of
ARC for the Internet

Design and implementation techniques of ARC services over the Internet are presented in
this chapter. Section 6.1 outlines ARC software implementation view. We follow same
approach as in Chapter 4 to present ARC services classifying them according to the user
of the services. Section 6.2 describes ARC object services, Section 6.3 describes developer
services and Section 6.4 describes node administrator services.

6.1 Implementation View of ARC Software

ARC over the Internet has following two kinds of nodes.

1. Participant node

2. Central node

Participant nodes can dynamically join into ARC network and leave ARC network.
Central node is a special node introduced in the Internet version of ARC to implement
join service, FTS service and HPF service. ARC software present at these two types of
nodes are not same. Section 6.1.1 shows implementation view of ARC software written for
participant nodes in ARC network. Section 6.1.2 presents implementation view of ARC
software written for central node.

6.1.1 ARC Software at Participant Node

ARC software at participant nodes is comparable with the ARC software over the LAN.
Table 6.1 summarizes the differences in ARC software over LAN and the ARC software at
participant node over the Internet. Entries in modified components column of table list
all the components that have changed from LAN to the Internet extension. The table also
identifies unmodified components and new components introduced in the Internet version
of ARC software.

48

Modified Fully Reused New
Components Components Components

ARCSystem Object Server PARCSystemWrapper
HPFServer | Code Motion Server | PHPFService Wrapper

FTSServer NameServer PFTSServiceWrapper
JoinServer Startup Program
Serializer

Table 6.1: Comparison between the LAN and the Internet version of ARC software

Figure 6.1 shows component diagram for ARC software developed for a participant
node. To avoid mixing of dependency lines, component Startup Program has not been
shown in Figure 6.1. Its functionalities are exactly same as shown in Figure 4.1. In the
remaining sections a description of newly introduced components is given. Prefix 'P’ is used
for participant node component names, prefix 'C’ is used for central node component names
and the rest of the component names are for participant node components.

PARCSystemWrapper

This component is used by remote A RCSystem components. It is responsible for acting as a
wrapper to local ARCSystem. It is accessible over the Internet to other nodes in the system.
Functionalities of ARCSystem Wrapper are listed in Table 6.2. These functionalities help in
transferring object and code from one node to another over the Internet. This component
is shown as Migration Service Wrapper in Remote Communication Layer in Figure 5.1.

Web Services
void ReceiveMessage(WrapperMessage message)
void ReceiveAsyncReturnMessage(AsyncReturnMessageClass message)

Table 6.2: ARC System Wrapper

PHPFServerWrapper

This component is used by remote HPFServer. This component is responsible for acting
as a wrapper to local HPFServer. It is accessible over the Internet to other nodes in the
system. Functionalities of HPFServer Wrapper are listed in Table 6.3. HPFServer acquires
locks on remote node by invoking web services published by this component.

49

ARC Participant Node
—
__oé PARC
ARC Syst
System V\yrzsgger —O
dll .asmx
CodeMotion :< - — - / HPFE
Server 0 — Server O
-dil —q — - Wrapper
_ — / .asmx
-_—
Obiject —O - —
Server —O< N [~ —
dil _ON \ _— - Name —CO
— Server
N N _ - / il é)
— -_—
\/ _ X / V2
—O — N
HPE e N / /
Sdtleln/er —% N AN /
<—7 > _ SN / s
Zal ~ N / s
FTS O N J
Servi
-dzlelrwce _OS - ~ N N / P
i?“* ~ <D
N ~ ~ N /
=~ ~ ~N D / s
~
gz;l\—/isce o Join - User
Wrapper Class.cs —O Program
.asmx

Figure 6.1: Component Diagram of ARC Software Present at a Participant Node

Web Services
HPFValue acquireLock()

Table 6.3: HPF Server Wrapper

PFTSServiceWrapper

This component

is used by remote FTSServer and central node. This component is re-
sponsible for acting as a wrapper to local FTSServer. It is accessible over the Internet to
other nodes in the system. Functionalities of FTSService Wrapper are listed in Table 6.4.
FTSServer of a node monitors front node of that node in ARC ring structure by calling a
webservice of PFTSService Wrapper at front node. Central node uses web services published

by PFTSService Wrapper in reforming the ARC ring structure in case of node failures.

6.1.2 ARC Software at Central Node

Central node is a special node introduced in ARC over the Internet. It implements join

service, F'TS service and HPF service. Figure 6.2 shows component diagram for ARC

software at central node.

50

Web Services

int LiveCheck()

void FailureNotification(Nodeld failednode)
void ChangeFrontNode(Nodeld nodeid)

Table 6.4: FTS Service Wrapper

ARC Central Node

CFTSWra, er CHPFServer CJoinServer
% .asmx PP —O Wrapper.asmx —O Wrapper.asmx

!

X
%ggg, —2% — — T Doem BF
=< _ et R

/

AN
% e 5
__?\ Y

-
Startup
% Program

Config File

Figure 6.2: Component Diagram of ARC Software Present at a Central Node

Table 6.5 categorizes components at central node based on their visibility to remote
nodes over the Internet. Wrapper components implement web services, which are hosted
on the Internet using Internet Information Service (IIS). Remaining components that are
not visible on the Internet implement ARC services. These components cannot be accessed
directly from remote machines and are accessed through wrapper components. Description

of these components is given below.

Visible Components
Components Not Visible to the Internet
CFTSServerWrapper CFTSServer
CHPFServerWrapper CHPFServer
CJoinServerWrapper CJoinServer
Startup Program

Table 6.5: Visibility of Components at Central Node over the Internet

o1

CFTSServer

This component is used by CFTSServer Wrapper, CHPFServer and CJoinServer. Interfaces
of this component are listed in Table 6.6. CJoinServer Wrapper uses interface IJoin to make
changes in ARC ring structure when new nodes join into the system. CFTSWrapper uses
the interface ICFTSServer Wrapper on CFTSServer to reform the ARC ring structure in
case of failures. CHPFServer uses interface ICHPFServer in implementing lock acquisition.

ICJoin
void insertNewNode(Nodeld newnode);
Nodeld frontNodeOf(Nodeld nodeid);
ICFTSServerWrapper
void HandleFailure(Nodeld failednode)
ICHPFServer
ArrayList getLiveNodes();

Table 6.6: Central FTS Service Component

CHPFServer

This component is used by CHPFServer Wrapper. It handles lock acquisition and lock
release. Table 6.8 lists interfaces of this component.

ICHPFServerWrapper
UserInterface HPF Vector.IUser getHPF Vector(int size)
UserlInterface HPFValue.IUser getHPFValue(string machaddr)
int Release(Object hpfvalue)

Table 6.7: Central FTS Service Component

CJoinServer

This component is used by IJoinServer Wrapper. In collaboration with CFTSServer, it
allows new nodes to register in the ARC ring.

IJoinServerWrapper
JoinResponse RegisterJoin(string ip, bool registerforNotifyalso)

Table 6.8: Central FTS Service Component

52

Startup Program

Start up program is responsible for starting all server components. StartupProgram uses a
configuration file to read configuration setting of the user. It uses this information while
starting all the components. It starts various services one by one as per their dependencies
and invokes the initialization member functions on them.

CFTSServerWrapper

This component is used by participant node FTSServer. This component is responsible for
acting as a wrapper to local CFTSServer. It is accessible over the Internet to other nodes
in the system. Functionalities of CFTSService Wrapper are listed in Table 6.9.

Web Services
void HandleFailure(Nodeld failednode)

Table 6.9: Central FTS Service Wrapper

CHPFServerWrapper

This component is used by participant node HPFServer. This component is responsible for
acting as a wrapper to local CHPFServer. It is accessible over the Internet to other nodes
in the system. Functionalities of CHPFServer Wrapper are listed in Table 6.10. Structure
HPFValue is a type <ip-address, lock-no, actual hpf value>.

Web Services
HPFVector getHPF Vector(int size)
HPFValue getHPF Value(string ip)

int Release(Object hpfvalue)

Table 6.10: Central HPF Server Wrapper

CJoinServerWrapper

This component is used by participant node JoinServer. This is responsible for acting
as a wrapper to local CJoinServer. It is accessible over the Internet to other nodes in
the system. Functionalities of CJoinServer Wrapper are listed in Table 6.11. Structure
JoinResponse contains the id that is allocated the newly joining node and the id of the
current front node, which is to be monitored by the newly joining node.

93

Web Services
JoinResponse Register(string ip, bool registerforNotifyalso)

Table 6.11: Central Join Server Wrapper

6.2 ARC Object Services

Section 4.2 discussed ARC object services for the ARC over LAN in detail. Table 6.12
categorizes ARC object services based on the need to communicate with some remote node
on the network to implement the service. Implementation of services that don’t require
communication with remote nodes is same in both LAN version of ARC and the Internet
version. Services which involve in communication with remote nodes are described in the
remaining section.

Locally implemented Constructs requiring
constructs communication with remote nodes
Registration Push
Sync Connect
Retraction
Multiple-hopping

Table 6.12: ARC object services based on need to communicate with remote nodes

6.2.1 Migration Service

Migration service deals with sending an ARC object to remote machines, executing method
Trigger, and synchronizing the state of the migrated object at original sender application.
Construct push is used to send an ARC object to remote machines and construct Sync is
used for synchronization. Implementation of construct push uses ASP.NET webservices for
sending the code and state of the ARC object. Implementation of Sync doesn’t require any
communication with remote nodes and it is same as in LAN version of ARC described in
Section 4.2.2.

Push Operation

Figure 6.3 shows sequence diagram for push operation in the Internet version. While sending
an ARC object to remote machine, ARCSystem uses web service wrapper of destination
machine. Wrapper at remote machine passes received object and code to ARCSystem.

54

Remote

. CodeMotion . Migration Miaration Remate Remote
UserProgram ARCObject ARCSystem Saver ObjectSever oo Wr%pper ARCSsem COdS%er\ll(e)Elon
BufferReader
Thread g rer
push
push
meke
D entries
write
Pea— —
signdl
P— 9 —> read
G —
=TT = TgetCode
i send
send. Thread Trigger
= —seiCodg, EXECLIOT ey
Newlesate | crene ARRe(r:n&?ect
--=
I N Trigg
B N N R R <------1
send <= 'l
send)
make
Dentnes %)I’
onject
e I
Asynchronous
%tl?v g6t object
,,,,,,,,,,,,,,, N
} nodel } node2 }

Figure 6.3: Sequence Diagram for Nonblocking Push Operation

Asynchronous Return

ARCSystem receives the asynchronous arrival of migrated ARC object, through web service
wrapper at the local node. Remote node invokes a method on wrapper to return object.

6.2.2 Object Hopping

ARC services to support object hopping are GracefulRetract, connect and multi-hopping.
Implementation of construct GracefulRetract is same in LAN version of ARC and the In-
ternet version of ARC. Description of GracefulConstruct can be found in Section 4.2.3.
Implementation of construct connect has changed to use ASP.NET webservices in the In-
ternet version. Implementation of multi-hopping also uses ASP.NET webservices to send
an ARC object through multiple machines.

95

Connect Construct

Implementation of connect construct uses ASP.NET webservices. User has to write web-
services code as wrapper to ARC object at remote node. Webservice code is transmitted
to remote node along with ARC object code while pushing the ARC object to any remote
node. At remote node webservice code is published for remote access by copying it into IIS
virtual directory.

Figure 6.4 shows sequence diagram for connect construct. When method connect is
called, a proxy to the webservice is created and its URL is assigned to ARC object’s current
location. Subsequent local method calls on ARC object are delegated to remote ARC object
through proxies.

Remote

UserProgram ARCSystem ARCSystem
ARCObject
Push
Thread Trigger
push sequence cendmessage Executor Handler Remot
,,,,,,,,, emote .
= NewM essage - ARCObject CVRCOb]ect
create| rapper
connect local e~ - > Trigger p
getlp proxy Remote
,,,,,,,,,,,,,,,,,,, - ___ create Proxy RegisterFor
etURL gga;g 7DRemoteAccess
) setProxy
connected
o ___]
func func .
unc
func
func_|
-
,,,,,,,,,,,,,,,,, =
i e

e I

|
} nodel } node2 }

Figure 6.4: Sequence Diagram Showing Working of Connect Construct

6.3 Developer Services

ARC developer services include HPF service, FTS service, Auto Execution service, Object
Arrival Intimation service and, Activation and Deactivation services. Section 4.3 discussed
ARC developer services in LAN environment. Table 6.13 categorizes ARC developer services
based on the need to communicate with some remote node on the network to implement the
service. Implementation of services that doesn’t require communication with remote nodes
is same in both LAN version of ARC and the Internet version. Services which communicate
with remote nodes are described in the remaining section.

o6

Locally implemented Services requiring

services communication with remote nodes
Object Arrival Intimation Service HPF Service
Activation and Deactivation Service FTS Service

Auto Execution Service
Activation and Deactivation Service

Table 6.13: ARC object services based on need to communicate with remote nodes

6.3.1 HPF Service

HPF service includes providing user interface to get HPF value of remote machines and
acquiring locks to send ARC objects. This section presents processor selection and corre-
sponding user interface given by HPF service to the distributed programs developer. Sub-
sequently HPF service protocol used to acquire locks from remote machines in the Internet
version of ARC is presented.

Processor Selection

Figure 6.5 shows sequence diagram of acquiring a lock on remote machine. User makes a
request to get HPF value on local HPF server. Local HPF server passes the request to
central node, which requests other active participant nodes for locks and returns to the
requesting HPF server hence to the calling user program. User interface in both versions of
ARC are the same.

Remote

Central Central i
Participant Remote
User HPFSVer prwrapper HPFSever 1o HPFSer
Program apper ver
getHPFV ector
getHPFV ector
getHPFV ector
* acquireLock
& acquireLock
[<o
oo
e
| nodel | node2 | node3 |

Figure 6.5: Sequence Diagram showing Acquiring Locks

HPF Service Protocol

Figure 6.6 shows class diagram for HPF service at central node. Central node HPF sever
uses participant node’s HPF service wrapper to acquire locks. CHPFServiceClass also uses
central node FTS service to know about active participant nodes.

o7

[CentralHPFWrapper |
T N

"
! [ParticipantHPFServer |

«udes

A2
[_CentralHPFServer | =usex | ParticipantHPFWrapper |

T
«uge»

Ni1::IHPFServer
7AN
T
'

CFTSServer

N1:CHPFServerInterface FTSService

Figure 6.6: Class diagram for HPFService at Central Node

«usex» «interface» «interface»
"""""""""" N1::IUser N2::IARCSystem
N\ /\ A N1:UserInterface HPFValue
' ' ! <use», N2
' '

:ARCSystemInterface_HPFValue
N3:UserInterface HPFVector

N4 :ARCSystemInterface HPFVector

'
'
<use» \ N5:UserInterface HPFServer

' N6 :CentralNodeInterface HPFServer
'

'

'

'

________ «interface» «interfaces»

'
'
'
'
'
'
'
r e < ' »
' NS:IUser N4"'ARCS)I’,\Stem HPFValue N7:FTSServerInterface HPFServer
T _4 1 [N8:HPFServerInterface_FTSService
! | oo suser_ 4.
' 4 . ARCSystem
' [ARCSystem |
: HPFVector [N
' A fm=------- R '
' ' y ' '
[«use» 1 «interface» «interface» 1 «interface» 1
e T- N5::1User N6::ICetralNode 1 L_N7::IFTSServer ,
,) ' L '
'
. fommmm e e bommmmmmm - T ' '
----------------- ' '
! ' CHPFServer
R -
LocalData i 1
'
'
'

HPFServer

«ube»
5

|
|
y ,
| N8::IHPFServer \
A 1

; !
|

FTSServer |------ cuser_ _ ____ . !

Figure 6.7: Class diagram for HPFService at Participant Node

Figure 6.7 shows class diagram for HPF service at participant nodes of ARC network.
HPF server at participant node uses webservices published by CentralHPF Wrapper to re-
quest central node for locks on remote participant nodes. Central node in turn uses interface
ICentralHPF Server on HPFServer of participant node to acquire locks on behalf of request-
ing participant node.

6.3.2 Fault Tolerance

Section 4.3.2 described fault tolerance service of ARC over the LAN. In the Internet version,
ARC central node maintains the ARC ring structure. Participant nodes inform central node
upon detecting a failure. Following is the description of failure detection method used in
the Internet version of ARC.

o8

Failure Detection

Failure detection is done by forming a logical ring with participating nodes in the system.
Each node in the logical ring monitors its front node and it is monitored by its back node.
A participant node knows only about its front node. It has no knowledge about any other
participant node in the system.

start

Incoming Message Handler Liveness Check

=

Local
Check Leave
Status

waitsfora

Change

isFrontNodeSet
FrontNode

fdse
Block

| true

Liveness Check T
blocked? e h Monitor front node
‘ |
nofailure .
wait for t sec

failure detected
_ Inform
CentralNode

Figure 6.8: Activity Diagram for FTSService on Participant

set FrontNode .
Register MyARC
Object

Figure 6.8 is UML activity diagram illustrating implementation of FTSService in the
Internet version. A participant node upon detecting a failure of its front node in the
logical ring passes the failure message to central node. Central node reforms the ring by
deleting failed node’s entry from the ring structure. Central node finds new front node for
the participant node, which has detected a failure, and calls a webservice on it to update
its front node information. Central node notifies all active participant nodes about the
failure. Upon receiving a failure notification, FT'SServer at participant nodes implement
fault tolerance semantics specified by user applications for ARC objects. FTSServer uses
ARCSystem to know about ARC objects that were sent to the failed node.

99

Specifying Fault Tolerance Semantics

Figure 6.9 shows the interaction diagram for the scenario, where user registers an ARC
object for at most k times semantics with AutoFEzecution turned on and k=2. Sequence of
messages is similar to sequence of messages shown in Figure 4.9 for the LAN environment.
In the Internet version, communication between any two machines takes place through
webservices published by wrapper components.

6.4 Node Administrator Service

In ARC over the Internet any node can dynamically join or leave the ARC network. Section
4.4 discussed node administrator services of ARC over the LAN environment. In the Inter-
net version of ARC, a participant node uses bootstrapping node rather than broadcasting
algorithms as in LAN version of ARC to join or leave the system. Bootstrapping node,
which is referred to as central node through out the report is responsible for allowing par-
ticipant nodes to join and leave the system. The join and leave sequence is discussed below.
Front node is the node that is monitored by the newly joining node and back node moni-
tors the newly joining node. Appropriate monitoring configuration may be programmed in
CentralFTSServer.

Join Operation

Figure 6.10 shows the UML sequence diagram of join operation. Newly joining node has
to know the location of central node server beforehand. Central node allocates a new id
to the newly joining node. It returns the allocated node id and front node information as
response to the join request. Following are the steps that take place when a node wants to
join the system.

1. A node wants to enter into the system first sends a JoinRegister request to central
node.

2. Central node in co operation with central FTSServer assigns a new id to requesting
node.

3. Central FTSServer makes changes in ring structure.

4. Central FTSServer informs a node about change in front node depending on whether
its current front node has changed due to new join request.

5. Central JoinServer returns new id and information about front node to the requesting
node.

60

Remote
FTSServer CodeMotion Remote
. : ARCSystem
UserProgram ARCObject FTSServer Wrapper ~ HPFServer ARCSystem ObjectServer geryer Wrapper ARCSystem
Auto
AutoExecO| Execution
register
f<-------=--4 < -1
FTSService
register
I
push
push
make
entries
|l o __ ey s A A getCode
I R send
send
I AN =
Failure Failure
Notification ><
~y
********** = getObjects
Ccheek | T
Registry
getHPFValue
<-—-------f--——------- resend
charjges
m ol eec‘t g
entries
ity Bttt Attty | getCode
I R send
send
D ——————
I A
>< Failure
Failure
Notification
~y—
7777777777 =
getObjects
I DR
check
Registry
check for
to exec
ju execute
Locally
make %han es
In objec
Dem”% Auto Executor
execute _| NewThread
ARCODbject
- |- -create—| Trigger)
I R R e
send
store object
- ____-]
Asynchronoys
notify
get object
s Y g
,, =

Figure 6.9: Sequence diagram when at most 2 times with Autoexecution set

61

Join Central Central Central Participant Participant
Program JoinWrapper JoinServer FTSServer ~ FTSWrapper FTSServer

New Node Redist
ister
eg Join Recist
egister
-oin, insert
Newnode Set Set
FrontNode| EroniNode
S <t
Back Node -
FrontNode
,,,,,,,,,,
,,,,,,,,,,
Front Node e __]
% NewNode } Central Node } BackNode—=|

Figure 6.10: Sequence diagram for Join operation

Leave Operation

Figure 6.11 shows UML sequence diagram of leave operation. Following are the steps that
take place when a node wants to leave the system.

1. Contact local FTSServer for local node id.
2. Inform local HPFServer not to give further locks to any machine.
3. Send leave message to central node

4. Central node CJoinServer removes leaving node id and invokes method HandleLeave
on local CFTSServer

5. CFTSServer calls method ChangeFrontNode of a participant node if that participant
node’s front node changes due to current leave request.

6. CFTSServer informs all active participant nodes about the leave.

62

Leave HPFService FTSService CloinServer CJoinServer CFTSServer PFTSServer PFTSServer

Process Wrapper Wrapper
returnid
N B —
donot give
lock
< ______—]
leave
leave
Dremove! d
handle
start
leave| |gavethread
|
o I create All PETSServer

it pitei it Bl Wrapper

change

frontnode change

frontnode
- ____T
e - N
notify
* leave
|
| |

‘ nodel ‘ node2 i node3 i

Figure 6.11: Sequence Diagram for Leave Operation

63

Chapter 7

Example Applications

High level ARC program constructs have been discussed earlier in Sections 4.2.2, 4.2.3,
4.3.1, 4.3.2, 4.3.3, 4.3.4, and 4.4. This chapter presents three example applications to
demonstrate programming using these constructs. Section 7.1 explains a copy paste ap-
plication that involves executing methods at remote node from the originator machine of
ARC object. Section 7.2 presents workshop organization application, which involves export-
ing ARC object interface to the remote environment after reaching remote machine. Section
7.3 demonstrates a method to write applications, which operate in disconnect mode.

As described in Section 3.1, application development process using ARC involves fol-
lowing steps.

e ARC object interface specification
e Implementation of Real class.
e Use of implemented ARC object inside an application.

This Chapter presents example applications by describing above mentioned steps for the
applications.

7.1 Distributed Copy Paste Application

Distributed copy paste application is useful in copying text at one machine and pasting it at
another machine. An ARC object stores the text and acts as messenger between originator
and remote machine. ARC object migrates to a remote machine and registers a proxy
to enable access to its interface from remote environments. Remote machine environment
extracts the text from it and displays the text on a form. Originator machine uses connect
construct to subsequently read and modify the copied text. Every machine runs a copy
paste daemon, which registers a request with NameServer at startup for an intimation of
arrival of CopyPasteA RCObject. Text may be pasted and retrieved from this daemon. This
daemon is responsible for using ARC framework for transmitting text. Various components
of the application are described below.

64

7.1.1 Interface Specification

Following interface is used in copy paste application to create an ARC object.

using System;
using InterfaceToUI;
namespace CPObjectInterface

{
public interface ICP
{
Object getData();
void setData(Object data);
void setDataAndNotify(Object data);
void RegisterApp(IUI app);
}
}

This interface is used in creating Generated Interfaces, specified in Section 3.2. User applica-
tions at both ARC object originator machine and remote machine use Generated Interfaces
to interact with ARC object.

7.1.2 Implementation of the Interface

Interfaces ICP and ITrigger are implemented in class Real. A proxy to the ARC object is
created inside Trigger method and it is registered to allow access to it from remote environ-
ments. Trigger method also registers the proxy at the NameServer. NameServer notifies all
applications, which have registered a request for intimation of arrival of CopyPasteARCOb-
ject. Code for class Real is shown below.

public class Real:PReal,CPObjectInterface.ICP,ITrigger {
private Object Lock = new Object();
public void Trigger(O{
// 1. create and register a proxy
RegisterForRemoteAccess();
// 2. register with nameserver
ARCObjectInterface_NamingService.IARCObject nameserver = null;
if (this.Proxy != null){
Object proxy = this.Proxy;
nameserver = (ARCObjectInterface_NamingService.IARCObject)
Activator.GetObject (typeof (
ARCObjectInterface_NamingService.IARCObject),
"tcp://localhost:9123/NameServerClass") ;
nameserver .Register ("CopyPasteARCObject" ,proxy) ;

65

// 3. block
Monitor.Enter (Lock) ;
Monitor.Wait (Lock);
Monitor.Exit (Lock);
// 4. unregister proxy
UnRegisterForRemoteAccess();
// 5. unregister with nameserver
if (nameserver != null)
nameserver.UnRegister ("CopyPasteARCObject");
} // end of Trigger method
public void setData(Object dat){
// implementation
}
public void setDataAndNotify(Object dat){
// implementation
}
public Object getData(){
// implementation
}
public void RegisterApp(IUI app){
// implementation
}
public void OnReturn(){
// implementation
}
public void OnRetract(){
// implementation
}

} //end of class definition

7.1.3 GUI of Distributed Copy Paste Application

Figure 7.1 shows the GUI of Copy Paste Application. The application registers a request for
CopyPasteARCObject with NameServer. It gets the notification, when CopyPaste ARCOb-
ject registers a proxy with the NameServer through a call to method register on NameServer
from method Trigger.

Figure 7.1 has string, “test string” in one of the Textboxes. When button labeled
Copy/Modify located immediately next to “test string” is clicked for the first time, an ARC
object is instantiated. String in the Textbox is stored into the ARC object and sent to the
destination machine, in this case, address of destination machine is 10.105.152.13.

ARC object creates a proxy to itself and registers it with the NameServer from inside
method Trigger method. NameServer then notifies all the registered applications.

Remote Copy Paste Application gets the notification from NameServer. It extracts the

66

string and sender machine IP to display the message string.

_ ol x|

To Machine Data
TR | Copy M adify Refresh
| or052473 |test string Copytadify Fiefresh

Data From Machine

L S LR

kd adify | k4 odify |

Figure 7.1: Copy Paste Application Interface

Proxy to the object can be acquired from sender machine by calling method connect.
Clicking on Refresh button at originator machine makes corresponding Textbox to show
current value of string of ARC object. Any modifications to the string data from original
sender machine requires a click on Copy/Modify button and any modification to the string

data from remote environment requires a click on Modify button.

7.2 Workshop Organization Application

This section presents an application to organize workshops. In a simplified scenario, it is
assumed that a seminar room and refreshments from canteen are needed to organize a work
shop. Workshop Organization Application uses ARC objects to book the seminar room and

67

to place orders with a canteen. Two different ARC objects carry the requests on behalf of
the organizer, one for seminar room and other one for refreshments.

System may be automated by making required information like availability of seminar
room available to the incoming object at machine representing office room. ARC object may
be coded to have more intelligence so that it can take decisions on behalf of the organizer,
or it may be coded such that a notification window pops up at the remote machine when
an object arrives. It then waits for user to perform actions on it. Various components of
the application are described below.

7.2.1 Office Object Interface Specification

Following interface is used to create an ARC object in workshop organization application.

using System;
namespace OfficeObjectInterface{
public interface IOfficef{

void setRoom(string room);
string getRoom() ;
void setDate(string date);
string getDate();
void setAvail(string status);
string getAvail();
void Permit();
bool isPermitted();

}

The ARC object created using above interface is used in modeling interaction with office
room. Similar interface is used to create another ARC object to model interaction with
canteen room in the example application. These interfaces are used to create Generated
Interfaces of respective ARC objects.

7.2.2 Implementation of the Office Object Interface

Implementation of interface IOffice and interface ITrigger are done in class Real. Trigger
method creates a proxy to the ARC object and registers the proxy. It also registers the
proxy at the NameServer, which results in intimation to office application program. Trigger
method terminates when office executive performs some events to permit the object to go
back.

public class Real:PReal,0fficeObjectInterface.I0ffice,ITrigger {
. private data member definitions ...
public void Trigger(O{
// 1. create and register proxy

68

RegisterForRemoteAccess();
// 2. register with nameserver
ARCObjectInterface_NamingService.IARCObject nameserver = null;
if(this.Proxy != null){
Object proxy = this.Proxy;
nameserver = (ARCObjectInterface_NamingService.IARCObject)
Activator.GetObject (typeof (
ARCObjectInterface_NamingService.IARCObject),
"tcp://localhost:9123/NameServerClass") ;
nameserver .Register ("0fficeARCObject",proxy);
}
// 3. wait until permitted to go back
while(!this.isPermitted()){
Thread.Sleep(2000) ;
}
// 4. unregister proxy
UnRegisterForRemoteAccess();
// 5. unregister with nameserver
if (nameserver != null)
nameserver.UnRegister("0fficeARCObject");

. implementation of other member functions ...

7.2.3 GUI of Workshop Organization Application

Figure 7.2 shows the GUI for workshop organization application. Organizer has to open and
fill up both office form and canteen form. Filling the forms will enable send buttons. Click-
ing on the enabled send buttons pushes ARC objects to respective destination locations.
Clicking on send buttons disables corresponding open buttons.

As shown in Section 7.2.2, office ARC object is coded such that it goes to the office and
registers its proxy with the NameServer. Program representing office gets a notification
from the NameServer. Office executive has to commit the reply to permit the office ARC
object to go back to the sender. When object comes back to the originator, open button
will be enabled. Clicking on open button shows office form including the changes made at
remote machine.

7.2.4 Handling Transactions at Local Organizing Sites

Local organizing sites, like office room and canteen room in the current example application,
run daemons to handle incoming ARC objects. These daemons get an intimation from
NameServer on arrival of a new ARC object. Figure 7.3 shows a notification window,

69

-0l

Open Office Form Setdta Ofhce

Open Canteen Form Sendito Cantesn

Figure 7.2: Workshop Organization Application GUI

which pops up on receipt of an intimation from NameServer about arrival of an ARC
object . At office site, clicking on OK button of notification window shows office form as
shown in Figure 7.4. Office executive may fill up the required data and click Done button
to return the ARC object to the originator machine.

7.3 Disconnected Operation Using ARC over the Internet

This section illustrates use of Activation and Deactivation services over the Internet with
an example. In the disconnected operation, an ARC object migrates to a machine and
deactivates itself by writing its state to harddisk file. Subsequently machine may get dis-
connected and user applications at that machine may deserialize the object state to work
with it. Finally an application may serialize the object to a file on harddisk. When machine
is connected to the network, ARC object may be reactivated and sent out of the machine.
Various components of the application are described below.

7.3.1 Interface Specification

Following is the interface of an ARC object.

using System;

70

A NatificationWindow -0 x|

Mew Request has Amved

4

Figure 7.3: Notification Window at Local Organizing Site

1o x|

Room Reguired Igg
Drate Time |-| a42M20073
Availability Status I‘-(',E,S

Figure 7.4: Office Form Used to Model Interaction with Office Room in the Application

namespace ARCobjectInterfaceq
public interface Iarcobject{
// member functions of ARC object
void setStatus(int i);
int getStatus();

7.3.2 Implementation of the Interface

ARC object, after reaching a remote machine serializes itself to a file on the harddisk of
remote machine. Applications at remote machines may deserialize the object and work
with the object before reactivating. Following implementation of method Trigger shows
that when ARC object is reactivated, the ARC object goes back to originator application

71

due to termination of method Trigger.

[Serializable]
public class Real:PReal,ARCobjectInterface.Iarcobject,ITrigger{
private bool flag = false;
public void Trigger(){
if (1flag){
flag=true;
SerializationNamespace.Serializer.
SerializeAndDeactivate("ARCobject.tvk",this);

}
public void setStatus(int i){
// code that changes object status

}
public int getStatus(){
// code that returns object status

}

. other member functions ...

7.3.3 User Application at Remote machine

User applications at remote machine may deserialize the object state from the serialized
file on the harddisk to work with it. Following code sample shows the usage of the library
provided for Activation and Deactivation service described in Section 4.3.4.

public class Classi{
public static void Main(){

//Deserialize ARC object from a harddisk file
ARCobjectInterface.Iarcobject obj = (ARCobjectInterface.Iarcobject)
SerializationNamespace.Serializer.deserialize("filepath");

//Work with the object locally

//Serialize ARC object to a harddisk file
SerializationNamespace.Serializer.Serialize("filepath",obj);

//Deserialize and Activate the ARC object
SerializationNamespace.Serializer.deSerializeAndActivate("filepath");

72

Chapter 8

Conclusion and Future Work

Goal of the project was to design and implement an object-oriented ARC framework over
Microsoft .NET platform. The report discussed architectural issues, deployment techniques
and, design and implementation techniques for features of ARC framework software over
the NET. UML diagrams are extensively used to present these issues of ARC framework.
The report also presented application development process over ARC framework.

Emphasis of the work was on applying a software development process for the frame-
work. In the process, it was observed that building an architectural view of the framework
simplified the software development process. Layered architecture for the LAN version
of ARC software simplified extending ARC over the Internet by adding an extra layer to
address differences between LAN and the Internet environments. It allowed software com-
ponent reuse and also facilitated maintaining same abstraction of ARC framework for both
LAN and the Internet versions.

ARC software is written on .NET Beta 2 version using C# programming language. Both
LAN and the Internet versions of ARC were tested on four Windows 2000 workstations.
Table 8.1 summarizes the project work by identifying various ARC services, their purpose,
status of implementation of these services in both LAN and the Internet versions, and how
these services are made available.

Some guidelines for future work from the implementation point of view are identified
below.

e Security issues are not addressed in current work and needs to be addressed.

e Data structure for ring configuration in the Internet version can be modified to address
geographic location advantage.

e getHPF Vector for the Internet version has not been implemented, currently, getHPF-
Value is used to acquire a lock on a single machine.

e Leave operation for both LAN and the Internet versions has to be developed. At
present, killing the Join process is used for leaving.

73

e Applications presented in the report demonstrates the working of the ARC framework.
Applications that involve some real world problem need to be found and solved using
ARC features.

74

Services Purpose of LAN | Internet Provided as
the Service version | version | Daemon/Library
(D/L)
ARC object Gets an object ID yes yes L
Registration
getHPF Vector Anonymity in node yes no D
selection
getHPF Value Explicit node yes yes D
selection
Lock in Migration Assurance yes yes An attribute
HPF value in D
Release Release acquired lock yes no D
push ARC object Migration yes yes L
Trigger A method of ARC object yes yes L
that is to be executed
after object migration
Parallelism Non-blocking nature yes yes L
of push operation
Auto Retraction Asynchronous return yes yes L
of migrated
ARC object
sync Wait till yes yes L
retraction
Roaming Multiple hopping yes yes L
of an ARC object
FTS Service Specify fault yes yes D
register tolerance behavior
Auto-Execution Guaranteed execution yes yes L
of trigger method
in case of failures
ARC object Export interface yes yes L
registration of the ARC object
with NameServer to remote context
after migration
User program Register a yes yes D
registration request for notification
with NameServer | of an ARC object arrival
connect Enables message invocation yes yes L

on migrated ARC object
from originator application

75

Services Purpose of LAN | Internet Provided as
the Service version | version | Daemon/Library
(D/L)
Join Dynamic join yes yes D
of a node
Leave Dynamic leave yes no D
of a node
Activation | Deserialize and activate yes yes L
an ARC object from
harddisk file
Deactivation Deserialze an ARC yes yes L

object to harddisk file

Table 8.1: Summary of the project

76

Appendix A

ARC Package Installation

What do you need?

ARC Software is available as a zip file. Unzipping the file creates various directories.
Directory compile contains makefile. Running command nmake in that directory from a
console creates executable Join.eze and all dll files within that directory. Current imple-
mentation is tested for execution on .NET Beta 2 platform.

Important files in the compile directory:

e join.exe

configARC

e hosts

e And some dlls, which are discussed in Appendix B
Making changes in configARC file and hosts file:

configARC file:
ConfigARC file should contain three entries each separated by a new line character.

1. port number (eg. 9123)

2. home directory, i.e. path of the directory containing all the downloaded files. (eg.
D:\\physical\ \path_to\\downloaded\ \directory\)

3. Number of locks that the joining machine can give away to the requesting remote
machines. (eg. 7)

Hosts file:

Hosts file contains IP addresses of all machines that could possibly join into ARC distributed
network. Only, machines listed in this file can be used. A line in the file should contain
only one IP address.

77

Note:
1. Port number should be equal at all machines whose IPs are listed in hosts file.
2. hosts file should be same every where.
3. Number of locks and directory location can be different and is left to users choice.

4. Notice that while specifying home directory in configARC file we have used two back-
slashes. This is necessary for using it directly inside c# program.

Starting ARC distributed system:

For joining a machine into ARC network execute join.exe file contained in the compile
directory.

Note:

Currently, to take the machine out of ARC network, kill the join.exe process that was
started earlier. Graceful shutdown is yet to be tested.

78

Appendix B

Steps in Writing Hello World
Application using ARC

Writing distributed application:

Writing application over ARC framework involves two parts, A and B. Part A is to make
an ARC object and Part B is to develop distributed application using the ARC object made
in Part A.

Part A:

This section assumes that the reader knows, what is namespace and related things. It is
also assumed that the reader has used Microsoft Visual Studio before and knows things like
creating a dll file and adding references to a project opened in Visual Studio. Though these
are not essential to understand the process but for developing the application its required.

Making an ARC object involves 3 steps. Below we see them one by one.
Step 1:

Interface specification:

Open a new project and write an interface of the ARC object. Build the project to
create the dll.

Ezxample:
Below we see a sample interface. HelloInterface is the name given to the project. When
we build the project we get helloInterface.dll inside \bin\debug directory of the project

directory.

Code sample:

using System;

79

namespace HelloInterfaceq{
public interface IHelloq{
void sayHello();
}
}

Step 2:

Creating Generated Interfaces Namespace:

In this step, developer needs to hand code some of the required interfaces mentioned in
the inheritance hierarchy. The inheritance hierarchy can be found in class diagrams shown
in Figure 3.1 and Figure 3.2.

Ezample:

e Create a new project.

e Name it as HelloGeneratedInterface

o delete Classl.cs

e add IContainer and IMigratable classes to the project.

e add references to following dll files. Browse into the directory you have downloaded
for these dll files.

Hellolnterface
PushCommandInterface
PushRequestInterface
Synclnterface
UserInterface_ZHPF Value

A

Note:

HelloInterface.dll is the dll created in step 1 above. Next sub step is to write IContainer
and IMigratable interfaces. Following is the code sample of GeneratedInterfaces. It is easy
to verify the inheritance relations by looking at class diagrams.

Code sample:
HelloGeneratedInterfaces.IContainer

using System;
using HelloInterface;
using SyncInterface;
namespace HelloGeneratedInterfaces{
public interface IContainer :
HelloInterface.IHello,SyncInterface.ISync {}

80

HelloGeneratedInterface. IMigratable

using System;
using PushRequestInterface;
using HelloInterface;
namespace HelloGeneratedInterfaces{
public interface IMigratable:
PushRequestInterface.IPushRequest,HelloInterface.IHello{}
¥

Build the project to get HelloGeneratelnterfaces.dll.

Step 3:
main namespace generation:

In this step the developer needs to hand code some default classes as well as needs to
implement the interface given in step 1.

Ezxzample:
e create new project. Name it as HelloNamespace.
e Add Container.cs, Real.cs, FrontEndReal.cs, and Factory.cs class files to the project.
e Add references to following dll files

ARCObjectInterface_ ARCSystem.dll
ARCODbjectInterface_ObjectServer.dll
ARCSystemInterface. ARCObject.dll
CodeMotion.dll
CodeMotionServer.dll
FTSServicelnterface. ARCObject.dll
HelloGeneratedInterfaces.dll
Hellolnterface.dll
MessageDefinition.dll
NextHoplInterface.dll

. ObjectInfolnterface.dll

. ObjectIdInterface.dll

. PartialClassNamespace.dll

. PortMapper.dll

. PushCommandInterface.dll

© ° N W N

e e e e e

81

16. PushRequestInterface.dll

17. RealObjectInterface_Proxy.dll
18. RealUtillnterface.dll

19. RetractionInterface.dll

20. Synclnterface.dll

21. TriggerInterface.dll

22. Userlnterface HPFValue.dll

All these dll files can be located inside the compile directory except dlls starting with Hello,
since these are developed in previous steps. Container and FrontEndReal classes also,
contain implementation of methods present in the interface specified in step 1. In both
classes method body is typically delegation of function call to actual real object. Inside
Factory.cs file the developer needs to mention the names of dll files to be transferred to
remote machine. These files contain compiled code of ARC object. In our example these
files are

1. Hellolnterface.dll

2. HelloGeneratedInterface.dll
3. PartialClassNamespace.dll
4. HelloNamespace.dll

Inside RealODbj.cs, the developer needs to implement Trigger method and sayHello
method. Building the project creates helloNamespace.dll file in the project’s bin\debug
directory.

This completes creation of ARC object. It could be noticed that the development of
ARC object started with specifying an interface of ARC object and ended with implement-
ing that interface plus Trigger method. In-between steps are supposed to be generated by
preprocessor when given an ARC object interface as an input. Current development process
requires hand coding all these files and hence needs special care in keeping proper names
at required places.

Part B:
Generated ARC object may be used in writing the distributed application. This part
shows development of a sample distributed application, which sends an ARC object to a

remote machine to print Hello message at that remote machine.

Ezample:

e Create new project and name it as hellotest

82

Refer all dlls present in HelloNamespaces bin\debug directory.
Add reference to UserInterface HPFServer.dll

Code the application logic.

Build the project to create hellotest.exe file in its bin\debug directory.

Copy following files to hellotests bin\debug directory before executing the application.

HPFServer.dll

PeerInterface_HPF Server.dll
ARCSystemInterface HPF Value.dll
ARCSystemInterface_ HPF Vector.dll
ARCSystemInterface HPFServer.dll
Leavelnterface_ HPFServer.dll

SAERAT ol o

Execute the program.
Note:

Point to be noted here is that above mentioned files are dependencies of HPFServer, and
because it is used from hellotest project, these files needs to be copied. Similarly if FTSSer-
vice or NameService were to be used then corresponding server’s dependencies should also
be present to avoid runtime exceptions.

Code Sample:

using System;

using System.Threading;

using HelloGeneratedInterfaces;

using HelloNamespace;

using UserInterface_HPFServer;

using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Tcp;

namespace hellotestq{
public class Classi{
public static void Main(){

TcpChannel chan = new TcpChannel (8106) ;

ChannelServices.RegisterChannel(chan);

UserInterface_HPFServer.IUser hpfserver =

(UserInterface_HPFServer.IUser)Activator.GetObject

(typeof (UserInterface_ HPFServer.IUser),
"tcp://localhost:9123/HPFServerClass");

UserInterface_HPFValue.IUser hpfl=null;

83

hpfl = hpfserver.getHPFValue("10.105.24.13");
HelloGeneratedInterfaces.IContainer arcobject = Factory.New();
arcobject.push(mach13);

arcobject.sync();

Console.WriteLine("press enter to exit");

Console.ReadLine();

84

References

Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy Sunderam, Al Geist, Adam
Beguelin. PVM 3 Users guide and reference manual. 1994.

Tom Archer. Inside C#. Microsoft Press, September 2001.

L. Aruna. Support for dynamic task distribution on an RPC based ARC kernel. Mas-
ter’s thesis, Indian Institute of Technology Bombay, Jan 2001.

Silberschatz, Galvin. Operating System Concepts. Addison Wesley, fifth edition, 1999.

James Rumbaugh, Ivar Jacobson, Grady Booch. The Unified Modeling Language Ref-
erence Manual. Addison Wesley, 1999.

Object Management Group. Common Object Request Broker Architecture Specifica-
tion. http://www.omg.org/, 2002.

Danny B. Lange and Mitsuru Oshima. Mobile Agents with Java: The Aglet APIL
World Wide Web Journal, 1998.

David S. Platt. Introducing Microsoft .NET. Microsoft Press, January 2003.
Dale Rogerson. Inside COM. Microsoft Press, 1997.

Aruna L., Yamini Sharma, Rushikesh K. Joshi. Object-centric Design of an ARC
Kernel. In Proceedings of HPCN, volume 2110, pages 251-262, 2001.

D. Janaki Ram, Rushikesh K Joshi. Anonymous Remote Computing, A paradigm for
Parallel Programming on interconnected Workstations. IEEE Transactions on Software
Engineering, pages 75-90, Jan/Feb 1999.

Thomas Wheeler. Reducing Development Effort using the Voyager ORB.
hitp://www.recursionsw.com, 2003.

85

