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Tension between Mathematics and Engineering

I.  How do Mathematicians actually represent curves and surfaces?

e  Algebra -- Formulas and Algorithms

2. How do Scientists and Engineers want to represent curves and surfaces?

e  Geometry -- Interpolation and Approximation



Straight Lines

Equation = ?



Linear Interpolation

Straight Line
e Pt)=P+t(Q-P)
e PH)y=(-0)P+1t0

Observations
e PO)=P

« PH=0

Q=P
P(1)

P = P(0)



Linear Interpolation

Q= P(1)
P(t)

P=P(0)

Q= P(t)
P(t)

P=P(t0)



Linear Interpolation Revisited

Straight Line
* Ry@m)=01-f0)P + (P
* f(tp)=0 and f(#))=1

y— axis

(t() ’ O)



Linear Interpolation Revisited

Linear Interpolation

. f(1)= (t-1p)

(1 — 1)

* f(tg)=0 and f(r;)=1.

Straight Line
H —t r—1

« By(t)=—"—PR+—2>n
I — 1y I =1y

* P@ty)=P P(t)=0

Q= P(t)
Ry (1)

P=P(lo)



Normalized

Linear Interpolation

I=1
-1y
A
tl -
Ry (1) =
I =1y

Ry (tg) =Fy

P0+

Unnormalized

I—1

sl
=1

Poi(t1) = A



Quadratic Interpolation

)

Problem

Find a smooth curve Fy{,(¢) such that:

Rya(th) = R Rya(t) =R Ryp(tp) =P,



Quadratic Interpolation

Linear Interpolation

fo—1 f—t

¢ By(t)=—"—R+—2R
I =1 =1
th —t t—1

e Py()= A+ P,
Ih =14 Iy -4

Quadratic Interpolation

th —t t—t
o Pya(t)=—2—PRy(1)+ L P (1)
I =1 I =1y



Verification of Quadratic Interpolation

th —t t—t
Py12(1) = Ry (1) + %P (1)
Ih =1y I =1y

L Ryalto) = F(tg) =Py
. Ryp(n)=Pr(n)=Ph

ty — 1 t — 1,
. FBypp(t) = Py (1) + B, ()
Ir =1y Iy =1y
Z2 _tl tl —to
-2 A p A o p
I =1 I =1y
By = Ry2(1p) P =Pys(t))

P, = Py (t)



Neville’s Algorithm for Quadratic Interpolation

Ry ()
h V f—fo
R @) Ry (t)
’1‘/ ‘X"‘O fz—/' -1
PO Pl Pz

Fy12(tx ) = Py



Cubic Interpolation

Problem

Find a smooth function Fy;,3(#) such that:

Ry123(tg) = Ry Py123(t1) = P Ryip3(ty) =B Py123(t3) =P



Neville’s Algorithm for Two Quadratic Curves

Fo12(t) R23(t)

) —f/' Xto ts - / "Ktl

R1(0) B () B (1) P3(t)

A _/ \—ZO ) —l/ ytl %) —t/ \t—tl t3—t/ ytz
o i b d Py B

By (®) B3 (0)



Neville’s Algorithm for Cubic Curves

Ry @)
& / XZO
fon ) Rys(0)
By (@) By (1) P (1)

A ANAN,

Fy123 (1) = B



1.

1v.

Verification of Cubic Interpolation

t3 —t t—tg
Ry123(1) = Ry12(2) + Py3(1)
I3 =1 I3 =1y
Fy123(tg) = Ry12(ig) = Ry
Ry123(t3) = Ax3(t3) = B3
tr —t t, —t
31 1~ 1o
Ryip3(ty) = Ry (1) + P5(1))
l3—l0 1‘3—1‘0
tr —t t —t
_Bohp il p
I3 — I I3 =1

- A

Bys3(th)=P (same as proof for #)



Neville’s Algorithm for LLagrange Interpolation

Theorem: Given points Fy,..., B, and parameters t,...,t,, there exists a polynomial
curve Fy..., (t) of degree n that interpolates the given points at the specified

parameter values. That is,
B.,t)=F k=0,.,n.

Proof: By induction on n. Define

t, —1t -1
By ()=——P  _O)+—2P  (1).
t, — 1 t, —tg

Applying the same arguments we used in the quadratic and cubic cases, you can easily
verify that

PO---n(tk)=Pk k=0,..n.

Since Fy...,_1(t) and ..., (¢) are polynomials of degree n —1, it follows that R,..., (¢)

is a polynomial of degree n. ¢



Neville’s Algorithm -- Recursive Calls

Ry123(0)

PN

Ry3(t)

/NN

A /2\ /P%\



Neville’s Algorithm -- Dynamic Programming

Ry123()
I3 / XZO
fo2) A3 (1)
R)l(t P12 })23

A ANAN,

Fy123 (1) = B



Polynomial Algebra

Theorem: A non-zero polynomial of degree less than or equal to n can have

at most n roots.

Proof: Recall that if P(¢) is a polynomial, then
ris aroot of P(t) < t—r is a factor of P(¢).
Now a polynomial of degree at most n can have at most » linear factors.

Therefore a polynomial of degree less than or equal to n can have at most » roots.

¢

Corollary: The only polynomial of degree less than or equal to n with more than n

roots is the zero polynomial.



Uniqueness of L.agrange Interpolation

Theorem: Given points Fy,..., B, and parameters t,,...,t,, there exists only one
polynomial curve F..., (t) of degree n that interpolates the given points at the

specified parameter values. That is, the curve generated by Neville’s algorithm

s unique

Proof: Suppose that there are two polynomials of degree n such that
B..,t)=FB k=0,.,n

QO---n(tk)=Pk k=0,...n.
Define

Ry..,(t)=0p..,(t)=Py..., (1).

Then R,...,(¢) is a polynomial of degree at most n. But

RO---n(tk)=QO---n(tk)_ PO---n(tk)= 0 k=0,...n,

SO Ry...,(¢) has n+1 roots. Therefore R,...,,(#) must be the zero polynomial, so

PO---n(t)=Q0...n(t). ¢



Uniqueness of Lagrange Interpolation (continued)

Corollary: The Lagrange interpolant reproduces polynomials. That is, if the points

FRy,..., P, lie at the parameters ty,...,t,, on a polynomial P(t) of degree less than or

equal to n, then Ry...,(t)=P(t).

Observations
* Uniqueness applies only for fixed nodes.

e Changing the nodes f¢,..., t,,, changes the Lagrange interpolant,

even if the interpolation points £y, ..., P, are exactly the same.



Tensor Product Surface Interpolation

Setup
=13
Fos P33 P3 Pss
R P, P P
s =50 s =55 02 12 22 32
B A1 By By
Foo Ho Ho B
t=t,
(a) Domain -- Rectangular Grid (b) Range -- Rectangular Array of Points
Problem

Find a smooth surface P(s,?) such that:

P(Siatj)=})ij



Surface Interpolation




Surface Interpolation




Neville’s Algorithm for Tensor Product Surfaces

P(s,t)
SZV )

R)l P12(S)
S17’ \SO y \
R(1) R() B
l‘z —/ y—to 12 —/ N IO tz—/ t—to
N \

Py, (1) Ry (1) Ra (1) Ri®) Ry

A A AT A

Ry



Lofted Surface

Us(1)




Neville’s Algorithm for Lofted Surfaces

Ly (s,1) = Ug123(s,1)

Up12(s,1) U3 (8,1)

82 f \SO S3/ X—Sl

Uoi(s,1) Uy, (s,1) Uns(s,1)

517‘ &So 82—/‘ &m S37‘ \—52
Up (1)

U1 @) U, (1) Us (1)



Ruled Surface

’/
//

Uy (?) Uy ()
i
RGs,1) = L2 Uy () +—2U, (1)

S1 =950 S1 =50



Summary

Key Ideas
e Linear Interpolation
* Dynamic Programming -- Neville’s Algorithm
* Extensions to Surfaces
e Tensor Product
* Lofted
e Ruled



Themes

Linearity
e Mathematics is Easy

* Represent Complicated Curves and Surfaces by (Successive) Linear Interpolations

Polynomial Curves and Surfaces

e Lagrange Interpolation -- Neville’s Algorithm

» Bezier Approximation -- de Casteljau’s Algorithm
e B-Splines -- de Boor’s Algorithm

* Blossoming





