Indian Institute of Technology, Bombay

CS 101: Computer Programming and Utilisation
Project Report

Sudoku Auto-solver

B ChaiJranya Kajegh 140050073
Chitroong Murdia 140050023
K V N Sreenivasulu 140050078

Slot: N C’n”ouP: N



Table of Contents

Abstract

o Acknowledgements
® Introduction

o History of Sudoku
o General Description of Sudoku
o Variants of Sudoku
Design of Algorithm
Detailed Algorithm
Evaluation
Conclusions and future scope
References



Abstract

This projects aims to design a C++ implementation of a Sudoku Auto-solver.

Sudoku Auto-solver is a program that can solve a normal Sudoku of any degree
of toughness as desired by the user.

Our program can also solve its variants like diagonal sudoku, window sudoku
and jigsaw sudoku.

We have included certain other features like displaying only one more number
tile and checking a solution given by the user.

The program can also be used to check if a given Sudoku has a solution or not.



Acknowledgements

We would like to express the deepest gratitude to our instructors Professor
Deepak B Phatak and Professor Supratik Chakraborty, who have shown the
attitude and the substance of a genius: they continually and persuasively
conveyed a spirit of adventure in regard to the subject matter, and an excitement
in regard to teaching. Without their supervision and constant help this project
would not have been possible.

We are also highly indebted to Miss Firuza Aibara and Mister Nagesh Karmali
for their guidance and constant support. Their willingness to motivate us
contributed tremendously to our project.

We would also like to thank to our CLTA , Miss Prerna Gupta for the valuable
guidance and advice. She inspired us greatly to work in this project.

Furthermore we would like to acknowledge with much appreciation the crucial
role of the staff of CSE department, IIT Bombay who gave the permission to use
all required equipment and the necessary materials to complete the project

Besides, we would like to thank the authority of Indian Institute of Technology
(IIT), Bombay for providing us with a good environment and facilities to
complete this project.

We would also thank the developers of simplecpp.

Finally, an honorable mention goes to all the TAs and friends for their
understandings and supports on us in completing this project. Without helps of
the particular that mentioned above, we would face many difficulties while doing
this.



Introduction

Sudoku is a logic-basedcombinatorial number - placement puzzle. The
objective is to fill a 9x9 grid with digits so that each column, each row, and
each of the nine 3x3 sub-grids that compose the grid contains all of the
digits from 1 to 9. The puzzle setter provides a partially completed grid,
which for a well- posed puzzle has a unique solution.

History of Sudoku

In late nineteenth century number puzzles appeared in newspaper when
French puzzle setters began experimenting with removing numbers From
magic squares. Le Siécle, a Paris-based daily, published a partially completed
9x9 magic square with 3x3 sub-squares on November 19, 1892. It was not a
Sudoku because it contained double-digit numbers and required arithmetic
rather than logic to solve, but it shared key characteristics: each row, column
and sub-square added up to the same number.

On July 6, 1895, La France, refFined the puzzle so that it was almost @ modern
Sudoku. It simpliFied the 9x9 magic square puzzle so that each row, column
and broken diagonals contained only the numbers 1-9, but did not mark the
sub-squares. Although they are unmarked, each 3x3 sub-square does indeed
comprise the numbers 1-9 and the additional constraint on the broken
diagonals leads to only one solution.

DIVERTISSEMENTS QUOTITHENS

B* 3579 — CARRE MLSWOUE DLBOLIQUE
Par M. B Meyail
Ceonpliter lg ramd Si-deissas oo t-np1-:-|,-u-|
bet eoul premices oembres chacan saal fois
manites que lsn bEciosalates, les ‘I"".I'

i T I
T T

i e e R S 1

o [wfofo|-]ale]e]s
%
=
&

o [ O o e B

b

o carrd deven d2pe didleabipit, Crciaidice
gue la carnd restara eagiqoe i Paa ploce s
wgme Boringetals oh wid Oelosns vedcicdle d
& suine a8 donsen bes awiras.

"

From La France newspaper, July 6, 1895.



The puzzle was introduced in Japan by Nikoli in tThe paper Monthly Nikolist in
April 1984 as Saji wa dokushin ni kagiru , which also can be translated as "the
digits must be single”. At a later date, The name was abbreviated to Sudoku by
Maki Kaji taking only the First characters of compound words to Form a
shorter version.Sudoku is a registered trademark in Japan and the puzzie is
generally reFerred To as Number Place.

General Description of Sudoku

Sudoku is a puzzle game which tests the logical capabilities of the solver. Sudoku is
played over a 9x9 grid each element of which is called a tile, divided to 3x3 sub grids
or boxes. The objective is to fill a grid with digits so that each column, each row, and
each of the nine boxes that compose the grid contains all of the digits from 1 to 9 and
each digit appears once.

1 3 5 1161413297 |8|5
2|3 7 419 5(2|3(8|7|6]|1(4/|9

9 4 6 9/7/814/5|1]6|3|2

8 3 1 819|5(6(4|3|2(1|7
4 1 8 6/14/712(1|5|8|9|3

3 7 5 3/112(9(8|7]4|5|6

2 S 9 2/3/1(5(6|8|9|7 4
5|6 9|4 2|8 7/5/611|9/4|3|2|8

4 7 4/8|9(7/3|2]|5/6|1
A typical Sudoku puzzle The same puzzle with solution



Variants of Sudoku

Diagonal Sudoku

Diagonal Sudoku is also played over a 9x9 grid divided to 3x3 sub grids or boxes. The
objective is to fill a grid with digits so that each column, each row, and each of the
nine boxes that compose the grid contains all of the digits from 1 to 9 and each digit
appears once. Also the main diagonals of the grid contains all of the digits from 1 to 9
and each digit appears once.

119 312 518|1]9|6|3]12 |47

1 8 4191211781635

3 8 3|16F712|4|5§119]|8

73 2|9 7131481161529

9|15(8]13|2|7]14|6|1

1|2 8|3 112|6]5|/9|417/8|3

4 4 271916813 |5|4

7 9 6r4:)3|7|5|9]18}112

ol 4 2|19 811(5]14|3|2]19|7|6
Diagonal Sudoku puzzle The same puzzle with solution

Window Sudoku (Hypersudoku)

Window Sudoku is also played over a 9x9 grid divided to 3x3 sub grids or boxes. The
objective is to fill a grid with digits so that each column, each row, and each of the
nine boxes that compose the grid contains all of the digits from 1 to 9 and each digit
appears once. Also there are four additional boxes in the grid that contain all of the
digits from 1 to 9 and each digit appears once.



1 9146|8327 |1|5

2 34 1/5(2|6/9(7]|8|3|4
511 7/3|8|4/5/1|2(|9]|6

6|5 8(1/9|7/2|6|5|4|3

7 3 8 417/513/1/9]16|8)|2
3 2/6/315/4/8]1]7|9

8 312/7(9/8/5]14|6/|1

5(8 9 5/8/411/6/3]|9(2|7
6|9 6/9/112|7/4]3/5|8
Window Sudoku puzzle The same puzzle with solution

Jigsaw Sudoku (Nonomino)

Jigsaw Sudoku is also played over a 9x9 grid, divided to nine irregular shaped sub
grids or boxes of 9 tiles each. The objective is to fill a grid with digits so that each
column, each row, and each of the nine irregular boxes that compose the grid contains
all of the digits from 1 to 9 and each digit appears once.

Jigsaw Sudoku puzzle The same puzzle with solution



Design of Algorithm

The algorithm is based on backtracking that incrementally builds candidates to the
solutions, and abandons each partial candidate ¢ as soon as it determines that ¢ cannot
possibly be completed to a valid solution.

The basic algorithm is
1. Set up an iteration that repeats itself till the sudoku is completely solved.
2. Find the first empty square
3. Set up another iteration that repeats for each of the numbers 1 to 9
4. Check if the number is valid i.e. it should not be present in the corresponding row,
column or 3x3 box
Call the sudoku solving function recursively
. If at any point the number is invalid or the callee function returns false then go for
next step of iteration.
7. If none of the numbers 1 to 9 satisfy above condition then return false
8. Finally if the sudoku gets solved then return true
9. Uniqueness of solution can be checked by filing the numbers in ascending and
descending order
10.If the two solutions are same then the problem has a unique solution
11. If true value is returned by the first caller function then print the solved sudoku and
if false value is returned then print that given sudoku cannot be solved.

o



Detailed Algorithm

Here we have given the detailed algorithm with complete details of variables and
functions. Minor changes may be done in the course of coding the algorithm.

1. main (type int)

a. Print “What type of sudoku do you wish to solve?”

b. Give option to solve normal sudoku, diagonal sudoku, window sudoku and jigsaw
sudoku by displaying appropriate message

c. Call the required function

d. Return the value returned by function

2. Normal (type int)
a. Declare a 9x9 int array called sudoku_grid

a0 o

inp

S oo

Initialize all elements of sudoku grid to 0
Declare a local int variable inp
Call int function InputGrid with formal parameter sudoku grid and store its value in

If inp equals -1 then return -1

Validate sudoku_grid using ValidN, if invalid return -1

Start an iteration

Give option to solve sudoku, show a tile, check sudoku and exit by displaying

appropriate message

—

1.

il.

iii.

1v.

If user selects to solve sudoku

Declare a int variable sudoku_solve with value obtained by calling function
NSudoku with formal parameter sudoku_grid

If sudoku solve is 1 then print “Solution is unique” and call function
DisplaySudoku with formal parameter sudoku grid and return 0

If sudoku_solve is 0 then print “Solution is not unique” and call function
DisplaySudoku with formal parameter sudoku grid and return 0

If sudoku_solve is -1 then print “No solution exists” and return -2

j. Ifuser selects to show a tile

1.

1i.
iii.
v.

V1.

Vil.

Print “specify row and coloumn of tile to be displayed”

Declare two int variables row and col

Input values of row and col

If row or col does not lie between 1 to 9 print “Invalid input” and start next
iteration

Declare a 9x9 int array called solution_grid same as sudoku_grid

Declare an int variable sudoku solve with value obtained by calling function
NSudoku with formal parameter solution_grid

If sudoku solve is 1

10



k.

1.

1. Ifelement in sudoku_ grid corresponding to row - 1 and col - 1 is not
zero print “Tile already displayed” and start next iteration
2. Else copy value of that element from solution_grid to sudoku_grid
3. Call function DisplaySudoku with formal parameter sudoku_grid
viii.  Ifsudoku solve is 0 then print “Solution is not unique” and return 0
ix.  Ifsudoku solve is -1 then print “No solution exists” and return -2
If user selects to check sudoku
i.  Print “Give solution”
ii.  Input and validate solved grid
iii.  Declare a bool variable check sol with value obtained by calling function
CheckNSudoku with formal parameter sudoku grid and solved grid
iv.  Ifcheck solis true then print “Solution is correct” and return 0
v.  Ifcheck sol is false then print “Solution is incorrect” and return 1
If user selects to exit return 0

3. Diagonal (type int)

a.

Ao o

5@ oo

—

J-

Declare a 9x9 int array called sudoku_grid
Initialize all elements of sudoku_grid to 0
Declare a local int variable inp
Call int function InputGrid with formal parameter sudoku_grid and store its value in
inp
If inp equals -1 then return -1
Validate sudoku_grid using ValidD, if invalid return -1
Start an iteration
Give option to solve sudoku, show a tile, check sudoku and exit by displaying
appropriate message
If user selects to solve sudoku
i.  Declare an int variable sudoku_solve with value obtained by calling function
DSudoku with formal parameter sudoku_grid
ii.  Ifsudoku solveis 1 then print “Solution is unique” and call function
DisplaySudoku with formal parameter sudoku_grid and return 0
iii.  If sudoku_solve is 0 then print “Solution is not unique” and call function
DisplaySudoku with formal parameter sudoku_grid and return 0
iv.  Ifsudoku solve is -1 then print “No solution exists” and return -2
If user selects to show a tile
i.  Print “specify row and coloumn of tile to be displayed”
ii.  Declare two int variables row and col
iii.  Input values of row and col
iv.  Ifrow or col does not lie between 1 to 9 print “Invalid input” and start next
iteration
v.  Declare a 9x9 int array called solution grid same as sudoku_grid
vi.  Declare an int variable sudoku_solve with value obtained by calling function
DSudoku with formal parameter solution grid

11



k.

L.

vii.  Ifsudoku solve is 1
1. If element in sudoku_grid corresponding to row - 1 and col - 1 is not
zero print “Tile already displayed” and start next iteration
2. Else copy value of that element from solution_grid to sudoku_grid
3. Call function DisplaySudoku with formal parameter sudoku grid
viii.  If sudoku_solve is 0 then print “Solution is not unique” and return 0
ix.  Ifsudoku solve is -1 then print “No solution exists” and return -2
If user selects to check sudoku
i.  Print “Give solution”
ii.  Input and validate solved grid
iii.  Declare a bool variable check sol with value obtained by calling function
CheckDSudoku with formal parameter sudoku grid and solved grid
iv.  Ifcheck solis true then print “Solution is correct” and return 0
v.  Ifcheck sol is false then print “Solution is incorrect” and return 1
If user selects to exit return 0

4. Window (type int)

a.

pao o

S0 oo

—

J-

Declare a 9x9 int array called sudoku_grid
Initialize all elements of sudoku_grid to 0
Declare a local int variable inp
Call int function InputGrid with formal parameter sudoku grid and store its value in
inp
If inp equals -1 then return -1
Validate sudoku_grid using ValidW, if invalid return -1
Start an iteration
Give option to solve sudoku, show a tile, check sudoku and exit by displaying
appropriate message
If user selects to solve sudoku
i.  Declare an int variable sudoku_solve with value obtained by calling function
WSudoku with formal parameter sudoku_grid
ii.  Ifsudoku solveis 1 then print “Solution is unique” and call function
DisplaySudoku with formal parameter sudoku grid and return 0
iii.  If sudoku solve is 0 then print “Solution is not unique” and call function
DisplaySudoku with formal parameter sudoku_grid and return 0
iv.  Ifsudoku solve is -1 then print “No solution exists” and return -2
If user selects to show a tile
i.  Print “specify row and coloumn of tile to be displayed”
ii.  Declare two int variables row and col
iii.  Input values of row and col
iv.  Ifrow or col does not lie between 1 to 9 print “Invalid input” and start next
iteration
v.  Declare a 9x9 int array called solution_grid same as sudoku_grid

12



L.

vi.  Declare an int variable sudoku solve with value obtained by calling function
WSudoku with formal parameter solution_grid
vii.  Ifsudoku solve is true
1. If element in sudoku_grid corresponding to row - 1 and col - 1 is not
zero print “Tile already displayed” and start next iteration
2. Else copy value of that element from solution_grid to sudoku_grid
3. Call function DisplaySudoku with formal parameter sudoku grid
viii.  If sudoku_solve is 0 then print “Solution is not unique” and return 0
ix.  Ifsudoku solve is -1 then print “No solution exists” and return -2
If user selects to check sudoku
i.  Print “Give solution”
ii.  Input and validate solved grid
iii.  Declare a bool variable check sol with value obtained by calling function
CheckWSudoku with formal parameter sudoku_grid and solved grid
iv.  Ifcheck solis true then print “Solution is correct” and return 0
v.  Ifcheck sol is false then print “Solution is incorrect” and return 1
If user selects to exit return 0

5. Jigsaw (type int)

a.

e 3O AT TE@® MO QST

i

Declare an object type jig consisting of 9x9 int array called box, a 9x9 int array called
grid and a 9x10 bool array called present

Declare a jig variable named sudoku

Initialize all elements of sudoku.box and sudoku.grid to 0 and sudoku.present to false
Call int function InputBox with formal parameter sudoku.box

If InputBox returns -1 then return -1

Call bool function ValidBox with formal parameter sudoku.box

If ValidBox returns false then return -2

Declare a local int variable inp

Call int function InputGrid with formal parameter sudoku.grid and store its value in
inp

If inp equals -1 then return -3

Validate sudoku.grid using ValidJ, if invalid return -3

Call bool function InputPresent with formal parameter sudoku

. If InputPresent returns false then return -4

Start an iteration

Give option to solve sudoku, show a tile, check sudoku and exit by displaying

appropriate message

If user selects to solve sudoku

i.  Declare an int variable sudoku_solve with value obtained by calling function
JSudoku with formal parameter sudoku
ii.  Ifsudoku solve is 1 then print “Solution is unique” and call function

DisplaySudoku with formal parameter sudoku.grid and return 0

13



iii.

1v.

If sudoku_solve is 0 then print “Solution is not unique” and call function
DisplaySudoku with formal parameter sudoku.grid and return 0
If sudoku_solve is -1 then print “No solution exists” and return -2

q- Ifuser selects to show a tile

1.

i.
1.
iv.

vi.

Vii.

viii.
IX.

Print “specify row and column of tile to be displayed”
Declare two int variables row and col
Input values of row and col
If row or col does not lie between 1 to 9 print “Invalid input” and start next
iteration
Declare a jig variable called solution same as sudoku
Declare an int variable sudoku_solve with value obtained by calling function
JSudoku with formal parameter solution
If sudoku solve is 1
1. If element in sudoku.grid corresponding to row - 1 and col - 1 is not
zero print “Tile already displayed” and start next iteration
2. FElse copy value of that element from solution.grid to sudoku.grid
3. Change the value of element in sudoku.present corresponding to
required box and value to true
4. Call function DisplaySudoku with formal parameter sudoku.grid
If sudoku_solve is 0 then print “Solution is not unique” and return 0
If sudoku_solve is -1 then print “No solution exists” and return -2

r. Ifuser selects to check sudoku

S.

1.
i.
1il.
iv.
V.
Vi.
Vii.
Viii.
1X.

X1.
Xil.

Print “Give solution”

Declare a jig variable named solved

Initialize all elements of solved.grid to 0 and solved.present to false

Copy sudoku.box to solved box

Declare a local int variable inp

Call int function InputGrid with formal parameter solved.grid and store its
value in inp

If inp equals -1 then return -3

Call bool function InputPresent with formal parameter solved

If InputPresent returns false then return -4

Declare a bool variable check sol with value obtained by calling function
ChecklJsolved with formal parameter sudoku and solved

If check sol is true then print “Solution is correct” and return 0

If check_sol is false then print “Solution is incorrect” and return 1

If user selects to exit return 0

6. InputGrid (type int; formal parameter sudoku_grid)

Print “Input the sudoku grid (0 for blank box)”

Set up an iteration with index1 initialized to 0 and increases by 1 upto 8
Set up an iteration with index2 initialized to 0 and increases by 1 upto 8
Take input

a.

b.
C.
d

14



S0 oo

—

If any input does not lie between 0 to 9 then display error message and return -1
Otherwise store it in the element in sudoku_grid corresponding to index1 and index2
Start next iteration

Print “Given sudoku is:”

Call function DisplaySudoku with formal parameter sudoku_grid and return 0

7. InputBox (type int; formal parameter box_grid)

a.

SR omoe a0 o

—

Print “Input the jigsaw sudoku boxes”

Set up an iteration with index1 initialized to 0 and increases by 1 upto 8

Set up an iteration with index2 initialized to 0 and increases by 1 upto 8

Take input

If any input does not lie between 1 to 9 then display error message and return -1
Otherwise store it in the element in box_grid corresponding to index1 and index2
Start next iteration

Print “Given sudoku boxes are:”

Call function DisplaySudoku with formal parameter box_grid and return 0

8. ValidBox (type bool; no formal parameter; member of structure jig)

a.

oo o

i
k.
L
m.

Declare four bool variables booll, bool2, bool3 and bool4

Declare a 9 element int array box_tile with all elements zero

Set up an iteration with index1 initialized to 0 and increases by 1 upto 8

Set up an iteration with index2 initialized to 0 and increases by 1 upto 8
Increment element in box _tile corresponding to value of element in box_grid
corresponding to index1 and index2 by one

booll is true if index1 is more than zero and element in box_grid corresponding to
index1-1 and index2 is same as element corresponding to index1 and index2
bool2 is true if index2 is more than zero and element in box_grid corresponding to
index1 and index2-1 is same as element corresponding to index1 and index2
bool3 is true if index1is than eight and element in box_grid corresponding to index1+1
and index2 is same as element corresponding to index1 and index2

bool4 is true if index2 is less than eight and element in box_grid corresponding to
index1 and index2+1 is same as element corresponding to index1 and index2

If are all false then print “Invalid jigsaw sudoku boxes” and return false

Start next iteration

Check if all elements of box _tile are 9. If not return false.

If no value has been returned then return true

9. InputPresent (type bool; no formal parameter; member of structure jig)

a.

Ao o

Initialise the array present to all zeroes

Declare int varibles grid num and box_num

Set up an iteration with index1 initialized to 0 and increases by 1 upto 8
Set up an iteration with index2 initialized to 0 and increases by 1 upto 8

15



e. If element in sudoku.grid corresponding to index1 and index2 is zero start next

iteration
f. Else
i.  Define grid num equals to element in sudoku.grid corresponding to index1 and
index2
ii.  Define box_num equals to element in sudoku.box corresponding to index1 and
index2

iii.  If element in sudoku.present corresponding to box num and grid num is false
then make it true
iv.  Ifitis already true print “Invalid jigsaw sudoku grid” and return false
g. Start next iteration
h. Ifno value has been returned then return true

10. SolveNSudoku (type bool; formal parameter sudoku_grid and a)
a. Declare two local int variables row and col
b. Call bool function FindBlank with formal parameters sudoku grid, row and col (passed
by reference)
c. If FindBlank returns false then return true as sudoku is solved
d. If FindBlank returns true

i.  Declare an int variable num
ii.  Setup an iteration with num initialized to 5-4a and changes by a upto 5+4a
iii.  Call bool function CheckNumN with formal parameters sudoku_grid, row, col
and num

iv.  If CheckNumN is true then change the value of element in sudoku grid
corresponding to row and col to num
v.  Call the function SolveNSudoku recursively with formal parameter
sudoku_grid
vi.  If SolveNSudoku is true then return true
vii.  If SolveNSudoku is false then change the value of element in sudoku grid
corresponding to row and col back to 0
viii.  Start next iteration
e. Ifafter iteration for all 9 values of num sudoku has not been solved return false

11. SolveDSudoku (type bool; formal parameter sudoku_grid and a)
a. Declare two local int variables row and col
b. Call bool function FindBlank with formal parameters sudoku_grid, row and col (passed
by reference)
c. If FindBlank returns false then return true as sudoku is solved
d. If FindBlank returns true

i.  Declare an int variable num
ii.  Setup an iteration with num initialized to 5-4a and changes by a upto 5+4a
iii.  Call bool function CheckNumD with formal parameters sudoku_grid, row, col
and num

16



1v.

vi.
Vil.

Viii.

If CheckNumbD is true then change the value of element in sudoku grid
corresponding to row and col to num

Call the function SolveDSudoku recursively with formal parameter
sudoku_grid

If SolveDSudoku is true then return true

If SolveDSudoku is false then change the value of element in sudoku_grid
corresponding to row and col back to 0

Start next iteration

e. If after iteration for all 9 values of num sudoku has not been solved return false

12. SolveWSudoku (type bool; formal parameter sudoku_grid and a)
a. Declare two local int variables row and col
b. Call bool function FindBlank with formal parameters sudoku_grid, row and col (passed
by reference)
c. IfFindBlank returns false then return true as sudoku is solved
d. If FindBlank returns true

1.
il.
iii.

1v.

vi.
Vil.

Viii.

Declare an int variable num

Set up an iteration with num initialized to 5-4a and changes by a upto 5+4a
Call bool function CheckNumW with formal parameters sudoku_grid, row, col
and num

If CheckNumW is true then change the value of element in sudoku grid
corresponding to row and col to num

Call the function SolveW Sudoku recursively with formal parameter
sudoku_grid

If SolveWSudoku is true then return true

If SolveWSudoku is false then change the value of element in sudoku grid
corresponding to row and col back to 0

Start next iteration

e. If after iteration for all 9 values of num sudoku has not been solved return false

13. SolveJSudoku (type bool; formal parameter sudoku and a)
a. Declare two local int variables row and col
b. Call bool function FindBlank with formal parameters sudoku.grid, row and col (passed
by reference)
c. IfFindBlank returns false then return true as sudoku is solved
d. If FindBlank returns true

1.

ii.
ii.
1v.

Declare an int variable num

Define int variable box num as element in sudoku.box corresponding to row
and col

Set up an iteration with num initialized to 5-4a and changes by a upto 5+4a
Call bool function CheckNumlJ with formal parameters sudoku, row, col and
num

17



v.  If CheckNuml] returns true and element in sudoku.present corresponding to
box num and num is false then change the value of element in sudoku.grid
corresponding to row and col to num
vi.  Also change the value of element in sudoku.present corresponding to respective
box and num to true
vii.  Call the function SolveJSudoku recursively with formal parameter sudoku
viii.  If SolveJSudoku is true then return true
ix.  If SolveJSudoku is false then change the value of element in sudoku.grid
corresponding to row and col back to 0
x.  Also change the value of element in sudoku.present corresponding to respective
box and num back to false
xi.  Start next iteration
e. If after iteration for all 9 values of num sudoku has not been solved return false

14. FindBlank (type bool; formal parameters sudoku_grid, row and col - passed by reference)
a. Set up an iteration with row initialized to 0 and increases by 1 upto 8
Set up an iteration with col initialized to 0 and increases by 1 upto 8
If elements in sudoku_grid corresponding to row and col has value 0 then return true
Start next iteration
If no value has been returned so far then no element in sudoku_grid is 0 and so return

°o oo o

false

15. CheckNumN (type bool; formal parameters sudoku grid, row, col and num)
a. Call bool function CheckRow with formal parameters sudoku_grid, row, col and num
b. Call bool function CheckCol with formal parameters sudoku grid, row, col and num
c. Declare local int variables rowstart equal to 3*(row/3) and colstart equal to 3*(col/3)
d. Call bool function CheckBox with formal parameters sudoku_grid, row, col, rowstart,
colstart and num
e. Ifall functions return false then return true else return false

16. CheckNumbD (type bool; formal parameters sudoku grid, row, col and num)
a. Iftile lies on diagonall i.e. row equals col
i.  Call bool function CheckRow with formal parameters sudoku_grid, row, col,
and num
ii.  Call bool function CheckCol with formal parameters sudoku_grid, row, col,
and num
iii.  Declare local int variables rowstart equal to 3*(row/3) and colstart equal to
3*(col/3)
1v. Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num
V. Call bool function CheckDial with formal parameters sudoku_grid, row, col
and num
vi.  Ifall functions return false then return true else return false

18



b. Iftile lies on diagonal2 i.e. row + col equals 8

1.
il.
1il.

1v.

Vi.
c. Else

il.
1il.

1v.

Call bool function CheckRow with formal parameters sudoku_grid, row, col,
and num

Call bool function CheckCol with formal parameters sudoku_grid, row, col,
and num

Declare local int variables rowstart equal to 3*(row/3) and colstart equal to
3*(col/3)

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

Call bool function CheckDia2 with formal parameters sudoku_grid, row, col
and num

If all functions return false then return true else return false

Call bool function CheckRow with formal parameters sudoku_grid, row, col,
and num

Call bool function CheckCol with formal parameters sudoku_grid, row, col,
and num

Declare local int variables rowstart equal to 3*(row/3) and colstart equal to
3*(col/3)

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

If all functions return false then return true else return false

17. CheckNumW (type bool; formal parameters sudoku grid, row, col and num)
a. Iftile lies on windowl1 i.e. row equals 1, 2 or 3 and col equals 1, 2 or 3

1.

il.

1il.

1v.

vi.

Vii.

Call bool function CheckRow with formal parameters sudoku_grid, row, col,
and num

Call bool function CheckCol with formal parameters sudoku_grid, row, col,
and num

Declare local int variables rowstart equal to 3*(row/3) and colstart equal to
3*(col/3)

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

Redefine rowstart equal to 1 and colstart equal to 1

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

If all functions return false then return true else return false

b. Iftile lies on window?2 i.e. row equals 1, 2 or 3 and col equals 5, 6 or 7

1.

ii.

Call bool function CheckRow with formal parameters sudoku_grid, row, col,
and num

Call bool function CheckCol with formal parameters sudoku_grid, row, col,
and num



C.

d.

iii.

1v.

Vi.

Vil.

Declare local int variables rowstart equal to 3*(row/3) and colstart equal to
3*(col/3)

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

Redefine rowstart equal to 1 and colstart equal to 5

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

If all functions return false then return true else return false

If tile lies on window?3 i.e. row equals 5, 6 or 7 and col equals 1, 2 or 3

1.

il.

1il.

1v.

V1.

Vii.

Call bool function CheckRow with formal parameters sudoku_grid, row, col,
and num

Call bool function CheckCol with formal parameters sudoku_grid, row, col,
and num

Declare local int variables rowstart equal to 3*(row/3) and colstart equal to
3*(col/3)

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

Redefine rowstart equal to 5 and colstart equal to 1

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

If all functions return false then return true else return false

If tile lies on window4 i.e. row equals 5, 6 or 7 and col equals 5, 6 or 7

1.

ii.

iii.

1v.

V1.

Vil.

Else

il.

1il.

1v.

Call bool function CheckRow with formal parameters sudoku_grid, row, col,
and num

Call bool function CheckCol with formal parameters sudoku_grid, row, col,
and num

Declare local int variables rowstart equal to 3*(row/3) and colstart equal to
3*(col/3)

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

Redefine rowstart equal to 5 and colstart equal to 5

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

If all functions return false then return true else return false

Call bool function CheckRow with formal parameters sudoku_grid, row, col,
and num

Call bool function CheckCol with formal parameters sudoku_grid, row, col,
and num

Declare local int variables rowstart equal to 3*(row/3) and colstart equal to
3*(col/3)

Call bool function CheckBox with formal parameters sudoku_grid, row, col,
rowstart, colstart and num

20



V. If all functions return false then return true else return false

18. CheckNumJ (type bool; formal parameters sudoku, row, col and num)

a.

b.

C.

Call bool function CheckRow with formal parameters sudoku.grid, row, col, and num
Call bool function CheckCol with formal parameters sudoku.grid, row, col, and num
If all functions return false then return true else return false

19. CheckRow (type bool; formal parameters sudoku_grid, row, col and num)

a.
b.
C.

Declare local int variable index

Set up an iteration with index initialized to 0 and increases by 1 upto 8

If element in sudoku_grid corresponding to row and index has value num and it does
not correspond to row and col then return true

Else start next iteration

If no value has been returned so far then return false

20. CheckCol (type bool; formal parameters sudoku_grid, row, col and num)

a.
b.
C.

Declare local int variable index

Set up an iteration with index initialized to 0 and increases by 1 upto 8

If element in sudoku_grid corresponding to index and col has value num and it does not
correspond to row and col then return true

Else start next iteration

If no value has been returned so far then return false

21. CheckBox (type bool; formal parameters sudoku_grid, row, col, rowstart, colstart and num)

a.
b.

Declare local int variables index1 and index2

Set up an iteration with index|1 initialized to rowstart and increases by 1 upto rowstart +
2

Set up an iteration with index2 initialized to colstart and increases by 1 upto colstart + 2
If element in sudoku_grid corresponding to index1 and index2 has value num and it
does not correspond to row and col then return true

Else start next iteration

If no value has been returned so far then return false

22. CheckDial (type bool; formal parameters sudoku_grid, row, col, and num)

a.
b.
C.

Declare local int variable index

Set up an iteration with index initialized to 0 and increases by 1 upto 8

If element in sudoku_grid corresponding to index and index has value num and it does
not correspond to row and col then return true

Else start next iteration

If no value has been returned so far then return false

23. CheckDia2 (type bool; formal parameters sudoku_grid, row, col, and num)

a.

Declare local int variable index

21



Set up an iteration with index initialized to 0 and increases by 1 upto 8

If element in sudoku_grid corresponding to index and 8 - index has value num and it
does not correspond to row and col then return true

Else start next iteration

If no value has been returned so far then return false

24. DisplaySudoku (type void; formal parameter sudoku_grid)

a.

@ o a0 o

Declare local int variables index1 and index2

Set up an iteration with index1 initialized to 0 and increases by 1 upto 8
Set up an iteration with index2 initialized to 0 and increases by 1 upto 8
Print the element in sudoku_grid corresponding to index1 and index2
Print “  (space character)

Start next iteration for index2

Start new line

Start next iteration for index|1

25. CheckNSudoku (type int; formal parameters sudoku_grid and solved grid)

a.

oo o

Validate solution by calling ValidN with formal parameters solved grid

If ValidN returns false return 0

Set up an iteration with row initialized to 0 and increases by 1 upto 8

Set up an iteration with col initialized to 0 and increases by 1 upto 8

If elements in sudoku_grid corresponding to row and col has value 0 then return -1 start
next loop

Else check if elements corresponding to row and col in solved grid and sudoku grid
are same

If they are different return 0

Start next iteration

If no value has been returned so far then return 1

26. CheckDSudoku (type int; formal parameters sudoku_grid and solved grid)

a.

oo o

Validate solution by calling ValidD with formal parameters solved grid

If ValidD returns false return 0

Set up an iteration with row initialized to 0 and increases by 1 upto 8

Set up an iteration with col initialized to 0 and increases by 1 upto 8

If elements in sudoku_grid corresponding to row and col has value 0 then return -1 start
next loop

Else check if elements corresponding to row and col in solved grid and sudoku_grid
are same

If they are different return 0

Start next iteration

If no value has been returned so far then return 1

22



27. CheckWSudoku (type int; formal parameters sudoku grid and solved grid)

a.

°o oo o

Validate solution by calling ValidW with formal parameters solved grid

If ValidW returns false return 0

Set up an iteration with row initialized to 0 and increases by 1 upto 8

Set up an iteration with col initialized to 0 and increases by 1 upto 8

If elements in sudoku_grid corresponding to row and col has value 0 then return -1 start
next loop

Else check if elements corresponding to row and col in solved grid and sudoku_grid
are same

If they are different return 0

Start next iteration

If no value has been returned so far then return 1

28. CheckJSudoku (type int; formal parameters sudoku and solved)

a.

I

Validate solution by calling ValidJ with formal parameters solved

If ValidJ returns false return 0

Declare two local int variables row and col

Set up an iteration with row initialized to 0 and increases by 1 upto 8

Set up an iteration with col initialized to 0 and increases by 1 upto 8

If elements in sudoku.grid corresponding to row and col has value 0 then return -1 start
next loop

Else check if elements corresponding to row and col in solved.grid and sudoku.grid are
same

If they are different return 0

Start next iteration

If no value has been returned so far then return 1

29. ValidN (type bool; formal parameters sudoku grid)

a.
b.
C.

Set up an iteration with i initialized to 0 and increases by 1 upto 8

Set up an iteration with j initialized to 0 and increases by 1 upto 8

Call bool function CheckNumN with formal parameters sudoku grid, i, j and element
in sudoku_grid corresponding to i and j

If CheckNumN returns false return false

Start next iteration

If no value has been returned so far then return true

30. ValidD (type bool; formal parameters sudoku_grid)

a.
b.

C.

Set up an iteration with i initialized to 0 and increases by 1 upto 8

Set up an iteration with j initialized to 0 and increases by 1 upto 8

Call bool function CheckNumD with formal parameters sudoku_grid, 1, j and element
in sudoku_grid corresponding to i and j

If CheckNumN returns false return false

Start next iteration

23



f.

If no value has been returned so far then return true

31. ValidW (type bool; formal parameters sudoku grid)

a.
b.

C.

Set up an iteration with i initialized to 0 and increases by 1 upto 8
Set up an iteration with j initialized to 0 and increases by 1 upto 8

Call bool function CheckNumW with formal parameters sudoku_grid, 1, j and element

in sudoku_grid corresponding to i and j

If CheckNumN returns false return false

Start next iteration

If no value has been returned so far then return true

32. ValidJ (type bool; formal parameters sudoku)

a.
b.
C.

Fromoe o

Set up an iteration with i initialized to 0 and increases by 1 upto 8
Set up an iteration with j initialized to 0 and increases by 1 upto 8

Call bool function CheckNumJ with formal parameters sudoku.grid, i, j and element in

sudoku.grid corresponding to i and j

If CheckNuml returns false return false

Start next iteration

Call InputPresent as a member of solved

If InputPresent returns false return false

If no value has been returned so far then return true

33. NSudoku (type int; formal parameters sudoku grid)

a.

o a0 o

Validate sudoku_grid using ValidN and if invalid return -1

Call function SolveNSudoku with parameters sudoku grid and 1/-1
If SolveNSudoku is false return -1

Otherwise if the two solution grids match return 1

If two solution grids do not match return 0

34. DSudoku (type int; formal parameters sudoku grid)

a.

oo o

Validate sudoku grid using ValidD and if invalid return -1

Call function SolveDSudoku with parameters sudoku grid and 1/-1
If SolveDSudoku is false return -1

Otherwise if the two solution grids match return 1

If two solution grids do not match return 0

35. WSudoku (type int; formal parameters sudoku_grid)

a.

o a0 o

Validate sudoku_grid using ValidW and if invalid return -1

Call function SolveWSudoku with parameters sudoku grid and 1/-1
If SolveWSudoku is false return -1

Otherwise if the two solution grids match return 1

If two solution grids do not match return 0

24



36. JSudoku (type int; formal parameters sudoku grid)

a.

o a0 o

Validate sudoku_grid using ValidJ and if invalid return -1

Call function SolveJSudoku with parameters sudoku grid and 1/-1
If SolveJSudoku is false return -1

Otherwise if the two solution grids match return 1

If two solution grids do not match return 0

25



Evaluations

So far we have been able to code the normal sudoku solver and it is able to solve all

valid sudoku puzzles given to it. Note that valid here refers to puzzles having unique

solutions.

We feeded several easy puzzles and each of them was solved in less than 0.04

seconds.

The following is an easy puzzle and that our program solved.

003|020]600
900305001
001[806[400
008|102]900
700|000]008
006|708]200
002|609]500
800203009
005/010]300

Finnish mathematician Arto Inkala described his 2006 puzzle as "the most difficult
sudoku-puzzle known so far" and his 2010 puzzle as "the most difficult puzzle I've
ever created.”" Our program solves them in under 0.35 seconds each.

483921657
967 345|821
251|876[493
548|132|976
729|564]138
1361798245
372|689|514
814|253|769
695417382

8|5 2
T2
4
1 7
3 5
4
8
117
3|6

859612437
723854169
164]379[528
986|147|352
375|268|914
241|593(786
432981675
617|425|893
598|736|241

26



145327698
839654127
6721918|543
496(185|372
218|473]956
753(296(481
367542819
984|761]235
521|839|764

In case of sudoku puzzles that possess multiple solutions our program gives any one

possible solution and tells whether unique solution is possible or not.
On giving blank grid (all zeroes) a solution is given in less than 0.03 seconds.

In case of diagonal sudoku and window sudoku also it takes almost the same amount

of time.However for jigsaw sudoku it requires more time owing to larger number of

steps to be performed.

The following is a jigsaw sudoku puzzle and was solved in 0.08 seconds

3 4

3581196274
492|567 138
613]978[425
175|842|693
826453719
249|731|856

987 324|561
7341615982
561289347

27



The algorithm that we have used is based on the idea of brute force and hence it
involves more number of computations as compared to other more advanced
algorithmes. It is possible that if an extremely tough version of a variant is given then it
may lead to segmentation faults or other errors.

28



Conclusions and Future Scope

® The project desiﬁneol is capable ofF solving hormal sudoku and its
variants like diaaonal sudoku, window sudoku and figsaw sudoku of
any dear'ee ofF toughness.

® This model can adlso be extended to solve larger .aricls and more
complicated variants.

e We have incorpora’red a gr‘aphica\ user interfoce so that the
progrom becomes more user-Friendly.

29



References

CS101

o http://www.cse.iitb.ac.in/~cs101/project.html

o http://www.cse.iitb.ac.in/~cs101/Project/Manual_Code::Blocks_Si

mplecpp.pdf

o Past year projects
wikipedia

o http://en.wikipedia.org/wiki/Sudoku

o http://en.wikipedia.org/wiki/Sudoku_solving_algorithms

o http://en.wikipedia.org/wiki/Backtracking
http://www.geeksforgeeks.org/backtracking-set-7-suduku/
norvig.com/sudoku.html
http://rohanrao.blogspot.in/2010_04_01_archive.html
http://usatoday30.usatoday.com/news/offbeat/2006-11-06-sudoku_x.ht
m
http://www.mirror.co.uk/news/weird-news/worlds-hardest-sudoku-can-y
ou-242294
http://www.tifr.res.in/~cccf/index.php/interns/77-general/127-how-to-wr
ite-a-structured-project-report

30



