SOFTWARE REQUIREMENTS

SPECIFICATIONS

SUDOKU AUTO-SOLVER

B Chaitanya Rojesh 140050073
Chitraang Mordia 140050023
KV N Sreenivasolu 140050078

Slot: N Group: 11

TABLE OF CONTENTS:

1.

INTRODUCTION

1.1. PURPOSE

1.2. SCOPE OF PROJECT
1.3. GLOSSARY

1.4. REFERENCES

1.5. OVERVIEW

OVERALL DESCRIPTION

2.1.
2.2.

2.3.
2.4,

SYSTEM ENVIRONMENT

FUNCTIONAL REQUIREMENTS SPECIFICATIONS

2.2.1. Use case: Main
2.2.2. Use case: Normal sudoku
2.2.3. Use case: Diagonal sudoku
2.2.4. Use case: Window sudoku
2.2.5. Use case: Jigsaw sudoku
2.2.6. Use case: Solve sudoku
2.2.7. Use case: Show a tile
2.2.8. Use case: Check solution
2.2.9. Use case: Exit

USER CHARACTERISTICS

NON-FUNCTIONAL REQUIREMENTS

REQUIREMENT SPECIFICATION

3.1.
3.2

EXTERNAL INTERFACE REQUIREMENTS

FUNCTIONAL REQUIREMENTS

3.2.1.
3.2.2.
3.2.3.
3.2.4.
3.2.5.
3.2.6.

Main

Normal sudoku

Diagonal sudoku

Window sudoku

Jigsaw sudoku

Solve sudoku

O 0 N N N N oo o v BSdOPs

o o S o S o o T T e T e O g S S SE G T
O O N O oo »un L LD M DM W N N R O

3.2.7.

3.2.8.

3.2.9.
3.2.10.
3.2.11.
3.2.12
3.2.13
3.2.14.
3.2.15.
3.2.16
3.2.17.
3.2.18.

3.3. DETAILED NON-FUNCTIONAL REQUIREMENTS

3.3.1.

Index

Show a tile
Check solution
Exit
SolveSudoku
CheckNum
Input
ValidBox
DisplaySudoku
CheckSudoku
Check

Valid

Sudoku

Logical structure of data

19
19
20
20
21
21
22
22
23
23
24
24
25
25
27

1 INTRODUCTION
1.1 PURPOSE

The Purpose of the project is to design a program that can solve a
normal Sudoku. It can also solve variants like diagonal sudoku,
window sudoku and jigsaw sudoku of any degree of toughness as
desired by the user.

1.2 SCOPE OF THE PROJECT

It has a scope of solving the Sudoku given by the user of any degree
of toughness. It can also solve various variants of Sudoku that are
diagonal Sudoku, window Sudoku (hypersudoku) and Irregular
Sudoku (nonomino). It can also display a single tile or check a
solution as instructed by the user.

1.3 GLOSSARY

Term Definition

Sodoko A logic-based combinatorial nomber-placement pozzle. The
objective is to fill a 9%9 grid with digits so that each column,
each row, and each of the nine 3x3 sub-grids that compose
the grid contains all of the digits from 1 to Q.

Boyx A 3x3 sub-grid that composes the main grid. Each digit
most appear once in a boy.

Tile A single element of the 9% grid. It contains only one digit.

Diagonal sudoko

A variant of Sudoko in which the numbers 1to 4 most
oppear once in the principal diagonals as well.

(Window sudoko A variant of Sudoko with 4 additional boxes defined in
hich the numbers 1to a9 moust appear once. These four new
ersudoku ® op
(Hy P) areas are overlapping with the nine boxes of a Sudoko.
Jigsaw Sodoko A variant of Sudoko in which the boxes are not squares bot
(Nonomino) irregular connected regions of nine tiles .
Inpot An entrance or change that is given to a system and which
activate or modify a process.
User Person handling the program.
Software A docoment that completely describes all of the fonctions
Requirements of a proposed system and the constraints onder which it
. . most operate.
Specification P

1.4 REFERENCES

o CS101

o http://www.cse.iitb.ac.in/~cs101/project.html

o http://www.cse.iitb.ac.in/~cs101/Project/Manual _Code
::Blocks_Simplecpp.pdf

o Past year projects

e wikipedia

o http://en.wikipedia.org/wiki/Sudoku

o http://en.wikipedia.org/wiki/Sudoku_solving_algorithms
o http://en.wikipedia.org/wiki/Backtracking

e http://www.geeksforgeeks.org/backtracking-set-7-suduku/

e norvig.com/sudoku.html

e www.cse.msu.edu/~chengb/RE-491/Papers/SRSExample-
webapp.doc

1.5 OVERVIEW OF DOCUMENT

The next chapter, the Overall Description section, of this document gives an
overview of the functionality of the product. It describes the informal
requirements and is used to establish a context for the technical requirements
specification in the next chapter.

The third chapter, Requirements Specification section, of this document is
written primarily for the developers and describes in technical terms the details
of the functionality of the product.

Both sections of the document describe the same software product in its
entirety, but are intended for different audiences and thus use different
language.

2 OVERALL DESCRIPTION
2.1 SYSTEM ENVIRONMENT

The program can only accommodate a single user. The user can access
the program by running the appropriate file on his computer.

2.2 FUNCTIONAL REQUIREMENTS SPECIFICATIONS

This section outlines the use cases for the user.

2.2.1 Use case : main

Diagram
Normal
sudoku
Diagonal
sudoku
USER

Brief Description

The user is initially asked what type of sudoku does he wish to choose.

Step-by-step Description

1. The user runs the program.
2. The user is asked him what type of sudoku does he wish to choose.

3. He s given the options normal sudoku, diagonal sudoku, window sudoku

and jigsaw sudoku.

4. User chooses appropriate option.

XREF: sec. 3.2.1

2.2.2 Use case : Normal sudoku

Diagram

Solve
sudoku

Give input

Check

solution

USER

Brief Description

The user is asked to give input. Then he chooses what he wants to do next.

Step-by-step Description

1.
2.
3.

4.
5.
6.

The user is asked to input the sudoku.

The user inputs the sudoku.

The program checks the given input, if the given input is invalid
appropriate error message is displayed and program exits.

Then the user is asked what does he wish to do next.

He is given the options solve sudoku, show a tile, check solution and exit.
User chooses appropriate option.

XREF: sec. 3.2.2

2.2.3 Use case : Diagonal sudoku

Solve
sudoku

Give input

Diagram

Check
solution

The user is asked to give input. Then he chooses what he wants to do next.

USER

Brief Description

Step-by-step Description

1. The user is asked to input the sudoku.

2. The user inputs the sudoku.

3. The program checks the given input, if the given input is invalid
appropriate error message is displayed and program exits.

4. Then the user is asked what does he wish to do next.

5. He is given the options solve sudoku, show a tile, check solution and exit.

6. User chooses appropriate option.

XREF: sec. 3.2.3

2.2.4 Use case : Window sudoku

Solve
sudoku

Give input

Diagram

Check
solution

The user is asked to give input. Then he chooses what he wants to do next.

USER

Brief Description

Step-by-step Description

1. The user is asked to input the sudoku.

2. The user inputs the sudoku.

3. The program checks the given input, if the given input is invalid
appropriate error message is displayed and program exits.

4. Then the user is asked what does he wish to do next.

5. He is given the options solve sudoku, show a tile, check solution and exit.

6. User chooses appropriate option.

XREF: sec. 3.2.4

10

2.2.5 Use case : Jigsaw sudoku

Diagram

Solve
sudoku

Give input

Check

solution

USER -H

Brief Description

The user is asked to give input of layout and sudoku. Then he chooses what
he wants to do next.

Step-by-step Description

1.

W

N

The user is asked to input the layout of the jigsaw sudoku.Here he has to
specify the boxes in sudoku.

The program checks the layout input, if it is invalid appropriate error
message is displayed and program exits.

The user is then asked to input the.

The user inputs the sudoku.

The program checks the given input, if the given input is invalid
appropriate error message is displayed and program exits.

Then the user is asked what does he wish to do next.

He is given the options solve sudoku, show a tile, check solution and exit.
User chooses appropriate option.

XREF: sec. 3.2.5

11

2.2.6 Use case : Solve sudoku

Brief Description

The program solves the sudoku and exits.

Step-by-step Description

1. The program solves the given sudoku

2. If solution exists then it displays solution.
3. Otherwise it gives error message.

4. The program exits on its own.

XREF: sec. 3.2.6

2.2.7 Use case : Show a tile

Diagram

Solve
sudoku

Select tile to
be shown

USER

Brief Description

The user is selects the tile that he wants the program to show. Appropriate
tile is displayed. Then he chooses what he wants to do next.

12

Step-by-step Description

4.
5.
6.

. The user is asked to input the location of the tile he wants to see.
. The user inputs the location as row and column.
. The program checks the given input, if the given input is invalid

appropriate error message is displayed.

Then the user is asked what does he wish to do next.
He is given the options solve sudoku and exit.

User chooses appropriate option.

XREF: sec. 3.2.7

2.2.8 Use case : Check solution

Diagram

Q Give your
‘ solution

USER

Brief Description

The user is asked to give his solution. The program checks the solution and
displays appropriate message.

Step-by-step Description

1. The user is asked to input his solution.
2. The user inputs the solution.

13

3. The program checks the given input, if the given input is invalid
appropriate error message is displayed and program exits

4. Then the program checks whether the solution is correct or not.

5. Appropriate message is displayed.

6. The program exits on its own.

XREF: sec. 3.2.8

2.2.9 Use case : Exit

Brief Description

User can select this option to exit from the program.

Step-by-step Description

1. The program gets terminated and exits.
2. Appropriate values are returned.

XREF: sec. 3.2.9

2.3 USER CHARACTERISTICS

The User is expected to be familiar with C++ and be able to navigate
his way while the program is running.

He should be able to give inputs in format as desired by the program.
For this it is recommended that the user has gone through the User
Manual.

2.4 NON-FUNCTIONAL REQUIREMENTS

The computer should have all the required C++ program files.

14

3 REQUIREMENT SPECIFICATION
3.1 EXTERNAL INTERFACE REQUIREMENT

GNU-GCC compiler and Simplecpp interpreter must be installed on
the user’s computer.

3.2 FUNCTIONAL REQUIREMENT

3.2.1 Main
Use case name Main
Xref sec. 2.2.1
Trigger The user runs the program

Pre-condition

Program starts.

Basic path

2. He is given the options normal sudoku, diagonal sudoku,

1. The user is directed to a new window that asks him what
variant of sudoku does he desire to select.

window sudoku and jigsaw sudoku.
3. User chooses appropriate option.

Post-condition

User is directed to selected variant.

Execption paths

User can abandon the program any time.

3.2.2 Normal Sudoku

Use case name

Normal Sudoku

Xref

sec.2.2.2

Trigger

User selects normal sudoku.

Pre-condition

sudoku_grid has been declared and initialised as blank.

Basic path

1. The user is asked to input the sudoku.
2. Inputs is taken into sudoku_grid using InputGrid function.

15

3. The program validates the given input using ValidN
function.

4. Ifitis invalid, appropriate error message is displayed and
program returns.

5. Then the user is asked what does he wish to do next.

6. He is given the options solve sudoku, show a tile, check
solution and exit.

7. User chooses appropriate option.

Post-condition

User is directed to selected option

Exception paths

User can abandon the program any time.
User can select exit option.

3.2.3 Diagonal Sudoku

Use case name

Diagonal Sudoku

Xref

sec. 2.2.3

Trigger

User selects diagonal sudoku.

Pre-condition

sudoku grid has been declared and initialised as blank.

Basic path

1. The user is asked to input the sudoku.

2. Inputs is taken into sudoku grid using InputGrid
function.

3. The program validates the given input using ValidD
function.

4. If it is invalid, appropriate error message is displayed
and program returns.

5. Then the user is asked what does he wish to do next.

solution and exit.
7. User chooses appropriate option.

6. He is given the options solve sudoku, show a tile, check

Post-condition

User is directed to selected option

Exception paths

User can abandon the program any time.
User can select exit option.

16

3.2.4 Window sudoku

Use case name

Window sudoku

Xref

sec. 2.2.4

Trigger

User selects window sudoku.

Pre-condition

sudoku grid has been declared and initialised as blank.

Basic path

1. The user is asked to input the sudoku.

3. The program validates the given input using ValidW
function.

4. Ifitis invalid, appropriate error message is displayed and
program returns.

5. Then the user is asked what does he wish to do next.

6. He is given the options solve sudoku, show a tile, check
solution and exit.

7. User chooses appropriate option.

2. Inputs is taken into sudoku_grid using InputGrid function.

Post-condition

User is directed to selected option

Exception paths

User can abandon the program any time.
User can select exit option.

3.2.5 Jigsaw Sudoku

Use case name

Jigsaw sudoku

Xref

sec. 2.2.5

Trigger

User selects jigsaw sudoku.

Pre-condition

sudoku has been declared and initialised to blank.

Basic path

1. The user is asked to input the layout of the jigsaw sudoku.

Here he has to specify the boxes in sudoku.

2. Input is given to sudoku.box using InputBox function.
3. The program validates the layout input using ValidBox

function.

17

W

9.

If it is invalid, appropriate error message is displayed and
program returns.

The user is asked to input the sudoku.

Inputs is taken into sudoku.grid using InputGrid function.
The program checks the given input using ValidJ function.
If the given input is invalid, appropriate error message is
displayed and program returns.

Then the user is asked what does he wish to do next.

10. He is given the options solve sudoku, show a tile, check

solution and exit.

11. User chooses appropriate option.

Post-condition

User is directed to selected option

Exception paths

User can abandon the program any time.
User can select exit option.

3.2.6 Solve sudoku

Use case name

Solve sudoku

Xref

sec.2.2.6

Trigger

User selects Solve sudoku.

Pre-condition

Sudoku has been input into sudoku_grid or sudoku.

Basic path

1. The program solves the given sudoku using appropriate
Sudoku function.

2. If solution exists then it displays solution using
DisplaySudoku function.

3. Otherwise it gives error message.

Post-condition

If solution exists, it has been stored in sudoku grid or sudoku
and has been displayed. Otherwise error has been printed.

Exception paths

User can abandon the program any time.
Program returns on its own.

18

3.2.7 Show atile

Use case name Show a tile
Xref sec. 2.2.7
Trigger User selects Show a tile.

Pre-condition

Sudoku has been input into sudoku_grid or sudoku.

Basic path

1. The user is asked to input the location of tile he wants to
see.

2. Inputs is taken and validated.

3. Ifitis invalid, appropriate error message is displayed and
program returns.

4. The program solves the given sudoku using appropriate
Sudoku function.

5. If solution exists then it displays requested tile using

DisplaySudoku function.

Otherwise it gives error message and program returns.

Then the user is asked what does he wish to do next.

He is given the options solve sudoku and exit.

User chooses appropriate option.

Y

Post-condition

If solution exists, desired tile has been displayed and change
has been made in the grid. User is directed to selected option.
Otherwise error has been printed.

Exception paths

User can abandon the program any time.
User can select exit option.

3.2.8 Check solution

Use case name

Check solution

Xref

sec. 2.2.8

Trigger

User selects Check solution.

Pre-condition

Sudoku has been input into sudoku_grid or sudoku.

Basic path

1. The user is asked to input his solution.

19

2. Inputs is taken into solved grid or solved.grid using
InputGrid function.

3. The program validates the given input using appropriate
CheckNum function.

4. Ifitis invalid, appropriate error message is displayed and
program returns.

5. Then the program checks whether the solution is correct
or not using appropriate CheckSudoku function.

6. Appropriate message is displayed.

7. The program returns on its own.

Post-condition

User is told whether his solution is correct or not.

Exception paths User can abandon the program any time.
Program returns on its own.
3.2.9 Exit
Use case name Exit
Xref sec. 2.2.9
Trigger User selects Exit.

Pre-condition

Sudoku has been input into sudoku_grid or sudoku.

Basic path

1. The program gets terminated
2. Appropriate values are returned.

Post-condition

Program returns.

Exception paths

Program returns on its own.

3.2.10 SolveSudoku

Function name

SolveNSudoku, SolveDSudoku, SolveW Sudoku,
SolveJSudoku

Xref

sec. 3.2.6, sec. 3.2.7

Trigger

Function is called while solving sudoku or displaying a tile.

20

Pre-condition

Sudoku has been input into sudoku_grid or sudoku.

Basic path

1. First blank tile is located using FindBlank function.

2. Possible values of digit in above tile is found using
appropriate CheckNum function.

3. Temporarily, that value is assigned to above tile.

Function is called recursively.

5. If solution exists then it gets stored in grid and function
returns true.

6. Otherwise temporary assignment is undone and other values
are tried.

7. If no value satisfies the condition, function returns false.

o

Post-condition

If solution exists, it has been stored in sudoku grid or sudoku
and true value has been returned. Otherwise false value has been
returned.

Exception paths

If solution does not exist, function returns false.

3.2.11 CheckNum

Function name

CheckNumN, CheckNumD, CheckNumW, CheckNumJ

Xref

sec. 3.2.2, sec. 3.2.3, sec. 3.2.4, sec. 3.2.5, sec. 3.2.8, sec. 3.2.10

Trigger

Function is called while validating inputs, solving sudoku or
checking solution.

Pre-condition

Sudoku has been input into sudoku_grid or sudoku. A tile and
digit to be entered has been selected.

Basic path

1. It calls functions to check if the given digit is present in the
corresponding row, column, box, diagonal etc.

2. If digit is present in any of these then it is invalid and
function returns false.

3. Otherwise, it returns true.

Post-condition

Validity of digit in desired tile has been checked.

21

3.2.12 Input

Function name

InputGrid, InputBox

Xref

sec. 3.2.2, sec. 3.2.3, sec. 3.2.4, sec. 3.2.5, sec. 3.2.8

Trigger

Function is called to input sudoku or solution.

Pre-condition

Sudoku or solution has been initialised to blank.

Basic path

S

Prints message asking for input.

Input is stored in respective location.

Checks if the input is within the range.

If not, then it displays error message and exits.
Otherwise, prints input using DisplaySudoku function.

Post-condition

If input is within range, it has been stored in appropriate
location.

Exception paths

If input is not in range, function returns -1.

3.2.13 ValidBox

Function name ValidBox
Xref sec. 3.2.5
Trigger Function is called to validate boxes of jigsaw sudoku.

Pre-condition

Boxes have been defined and stored in sudoku.box

Basic path

1.

2.
3.
4.

Checks whether each tile has at least one neighbour
having same box.

Checks if all boxes have exactly 9 tiles.

If not it gives error message and returns false.
Otherwise, it returns true.

Post-condition

Validation of boxes in jigsaw sudoku has been done.

Execption paths

If boxes are invalid, function returns false.

22

3.2.14 DisplaySudoku

Function name

DisplaySudoku

Xref

sec. 3.2.6, sec. 3.2.7, sec. 3.2.12

Trigger

Function is called to print sudoku while taking input, solving
sudoku or displaying a tile.

Pre-condition

Required grid has been input in sudoku_grid.

Basic path

1. Prints the grid row by row

Post-condition

Required grid has been printed.

3.2.15 CheckSudoku

Function name

CheckNSudoku, CheckDSudoku, CheckWSudoku,
CheckJSudoku

Xref

sec. 3.2.8

Trigger

Function is called while checking solution.

Pre-condition

Sudoku puzzle and solution are present in sudoku_grid/sudoku
and solved grid/solved respectively.

Basic path

If any tile in solution is blank it returns -1

Checks whether a non blank tile in puzzle matches solution
Checks if all tiles satisfy required conditions.

If any of the above is violated, it returns O.

Otherwise it returns 1.

Nk

Post-condition

Solution has been checked.

Execption paths | If tile is empty, function returns -1.
3.2.16 Check
Function name CheckRow, CheckCol, CheckBox, CheckDial,
CheckDia2, CheckJBox
Xref sec. 3.2.11
Trigger Function is called from appropriate CheckNum function.

23

Pre-condition

Sudoku is present in sudoku_grid or sudoku

Basic path

1.

3.

Checks whether any tile in given row, column, box,
diagonal etc. has value same as required digit.

If above is holds for a tile except for a tile corresponding to
row and col, it returns true.

Otherwise it returns false.

Post-condition

Presence in corresponding row, column, box, diagonal etc.has
been checked.

3.2.13 Valid

Function name

ValidN, ValidD, ValidW, ValidJ

Xref

sec. 3.2.2, sec. 3.2.3, sec. 3.2.4, sec. 3.2.5, sec. 3.2.15

Trigger

Function is called to validate the sudoku from CheckSudoku
or just after input

Pre-condition

Sudoku is present in sudoku_grid or sudoku

Basic path

1. Uses appropriate CheckNum function over all tiles to see
if they abide to the rules of that sudoku

2. In case of Jigsaw sudoku it also checks if InputPresent
returns true

3. Ifall rules are followed, then it returns true

Post-condition

Validation of sudoku has been done.

Execption paths

If sudoku is invalid, function returns false.

3.2.14 Sudoku

Function name

NSudoku, DSudoku, WSudoku, JSudoku

Xref

sec. 3.2.6

Trigger

Function is called to solve the sudoku

Pre-condition

Sudoku is present in sudoku_grid or sudoku

Basic path

1. Uses appropriate SolveSudoku function to solve the
sudoku

24

2. Ifno solution exists then it returns -1
3. If solution exists and it returns 1 for unique solution and
0 for non-unique solution

Post-condition

Sudoku has been solved and uniqueness of solution is
checked

Execption paths

If cannot be solved, function returns -1.

3.3 DETAILED NON-FUNCTIONAL REQUIREMENTS

3.3.1 Logical Structure of the Data
The data descriptions of each of these data entities is as follows:

Data item

Type Description Comments

sudoku_grid

9x9 int array grid containing sudoku
puzzle or solution.

np int value returned by Input used to validate input
sudoku_solve int value returned by calling checks if given sudoku has
SolveSudoku solution or not
row int row of a tile
col int column of a tile
solved grid 9x9 int array grid containing solution
check sol bool value returned by calling checks if given solution is
CheckSudoku correct or not
jig object details of jigsaw sudoku consists of arrays box, grid
and present
box 9x9 int array boxes of jigsaw sudoku part of jig
grid 9x9 int array grid containing jigsaw part of jig
sudoku puzzle or solution.
present 9x10 bool array | if a given digit is present part of jig
in a box or not
sudoku jig jigsaw sudoku puzzle or
solution

25

solved jig jigsaw sudoku solution

index int row or column of tile used in loops
index|1 int row of tile used in loops
index2 int column of tile used in loops
box_grid 9x9 int array boxes of jigsaw sudoku

box_tile 9 int array number of tiles in a box

grid num int digit in given element

box num int box of given element

rowstart int starting row of box

colstart int starting column of box

26

Index

Box 5, 11,17, 21, 22, 23, 24, 25, 26

Column 5, 13, 21, 23, 24, 25, 26

Diagonal 4,5,7,9, 15, 16, 21, 23, 24

Display 4, 8,9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23

Exit 8,9, 10,11, 12,13, 14, 16, 17, 18, 19, 20, 22

Grid 5, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26

Input 5, 8,9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23

Jigsaw 4,5, 7,11, 15,17, 22, 25, 26

Main 5,7, 15

Normal 4,7, 8, 15

Row 5, 13, 21, 23, 24, 25, 26

Solution 4, 8,9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23,24, 25, 26
Solve 3,8,9, 10,11, 12, 13, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26
Sudoku 4,5, 7,8,9, 10,11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
Tile 4,5,8,9, 10,11, 12,13, 16,17, 18, 19, 20, 21, 22, 23, 24, 25, 26
User4,5,7,8,9,10, 11, 12, 13, 14, 15,17, 18, 19, 20

Window 4,5, 7, 10, 15, 17

27

