Team Members:

CS 101

Project Report on

SUDOKU

(Sudoku-Game Cum Auto-Solver)

Roll numbers:

Amey Gupta (Team leader)........cccoeevereeeereeeereerereceereenenen, 140050026
SUMIt. ... 140050081
Pramod V... 140050076
Lohith R...oo e, 140050041

Instructors: Prof. Deepak B Phatak
Prof. Supratik Chakraborty
Autumn 2014
CLTA: Sadagopan N S

Abstract.

In this report, we present the detailed development and
implementation of simple Sudoku game. The project is to create a
program using C++ that can be used to play the game sudoku and also
solve any sudoku given by the user.The sudoku game consists of
Graphic User Interface, auto-solver, and sudoku-game.

The basic idea is to store all the inputs in the grid using multi-
dimensional array and solve the sudoku using backtracking algorithm .It
checks whether the input is a valid input as per the basic rules of sudoku
and continues further.

History of Sudoku.

The name Sudoku comes from Japan and consists of the Japanese
characters Su (meaning 'number') and Doku (meaning 'single') but the was not
invented in Japan. Sudoku originated in Switzerland and then traveled to Japan
by way of America.

Sudoku has its deep roots in ancient number puzzles. For many centuries
people have been interested in creating and solving puzzles. Puzzles of all kinds
continue to be the basis of developing important new mathematics.Completed
puzzles are always a type of Latin square with an additional constraint on the
contents of individual regions. For example, the same single integer may not
appear twice in the same row, column or in any of the nine 3x3 subregions of the
9x9 playing board.

As there are so many Sudokus printed these days, surely all the possible
grids have now been solved? Well you may think so.After a little thought it is
clear there are quite a few new puzzles left and we are unlikely to run out of
Sudokus in the near future

Fortunately some clever people have used super sized calculators to do
the maths and claim there are 6,670,903,752,021,072,936,960 unique Sudoku
grids of size 9x9.

But if you then start determining symmetries including rotations and
swaps then the number of 'effectively different' puzzles goes down to
5.472,730,538.

This large number means that is you solved one puzzle every second
you would not need to repeat the same one in over a hundred years. These

puzzles would all require different strategies to be used for their solution.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLatin_square&sa=D&sntz=1&usg=AFQjCNEfuxEuzMnLKmtfL_O5j3pt3qMNgQ
http://www.google.com/url?q=http%3A%2F%2Fwww.sudokudragon.com%2Fforum%2Fhow-many-puzzles.htm&sa=D&sntz=1&usg=AFQjCNHEwGX1Q7XRHs6UzytYQre3RwwjmQ
http://www.google.com/url?q=http%3A%2F%2Fwww.sudokudragon.com%2Fforum%2Fhow-many-puzzles.htm&sa=D&sntz=1&usg=AFQjCNHEwGX1Q7XRHs6UzytYQre3RwwjmQ

Algorithm for Auto-Solver:

Part 1:

3D array sudoku[9][9][10] in which sudokuli][j] is an array consisting
{‘'value’,1,2,3,4,5,6,7,8,9} where ‘value’ gives the value at the
corresponding cell.

Zero or one are possible assignments to each element indexing
from 1 to 9 of every element of array sudokuli][j]

Initialize each element to 1 indicating that all 1 to 9 are possible.

e Take input from user(while checking its VALIDITY).
e If the cell is filled(i.e sudokuli][j][0]!=0),change all elements in array

o
QO
—

sudokuli][j] except the first element, to 0 except the index with value
same as that contained in that cell.

According to the inputs, the possible values for

remaining cells are eliminated using its row,column,grid.

Filling the elements having only one possible value

over entire matrix.
2:

Iterate over elements of matrix whose int value is 1.
Insert the 1st possible value into element and
fill the possible value(updated) onto 2nd element
and so on till the last box is reached.
If a break occurs in middle i.e, if for any element
there are no possible values then backtrack the
assignment.

3: (backtracking)

Go to the previous element and insert the next possible
value and check the feasibility of matrix again.

If again there are no possible values then repeat the
process with next possible value till all the possible
values are exhausted.

If so repeat the above 2 steps again till we reach the
final element.

Algorithm for Sudoku-Game:

Part 1:(for the checking part)

e The puzzle given to the user is solved by the auto-solver algorithm.

e The answer submitted is compared with answers generated by the
Auto-solver.

e [f the number in any particular does not match with the answer the
corresponding square is highlighted by changing its colour to red.

e |[f all the squares match then the time taken by the user is
compared with the scores in the high scores file.

e [f the score is more than any one of the scores in the high scores
then the high scores are updated.

Part 2:(for the solve part)

e The Algorithm for the solve part of the Sudoku-game is same as the
Auto-solver.

e The initial sudoku that is given to the user to solve taken from the
input files is solved by the above algorithm and the result is given
as output along with the part submitted by the user as two sudoku
grids in the same window

SCOPE FOR FUTURE WORK:

e There is scope for making a Sudoku generator(using an algorithm),
in which the digits in the Sudoku (depending on the level), will
randomly be generated and placed accordingly in the grid.

e There is a scope of using algorithmX (dancing links algorithm) for
the autosolver part which is more efficient in comparision to back
tracking algorithm.

e |n the game, we could also check if the user is playing according to
the rules after every digit he inputs.

e Also, we could highlight the conflicting entries (same digit in a row
or a column or a 3X3 box) if there are any.

e A pause button could be done to pause the timer if the user wants
to take a break in between the game.

e Saving a current game and loading a previously saved game could
also be done.

e We could also have better graphics, like changing the colour of the
background.

e Input for digits can be provided by mouse by selecting the input
choices provided by us at the bottom of the sudoku.

e Many types of sudoku puzzles such as diagonal sudoku,jigsaw
sudoku,grid sudoku and many others may be provided

Code Description:

The cpp files used are:
1)main.cpp : creates a new window in gtkmm.

2)mywindow.cpp : creates the main menu window containing the options
New game, Auto-solver and High scores.

3)mywindow_mem.cpp: creates a new window on clicking each of the
options in main menu.

4)mywindow?2.cpp: creates all the buttons in the window for Auto-solver.

5)mywindow?2_mem.cpp: contains the algorithm for solving the sudoku
and opening the corresponding window.

6)mywindow3.cpp: creates the buttons in the window for new
game(easy, medium, and difficult).

7)mywindow3_mem.cpp: It creates the windows for each of the difficulty
levels.

8)mywindow4.cpp: It reads and writes the high scores of each of the
difficulty levels.

9)mywindow4 mem.cpp:lt switches the tabs in the high scores window.

10)mywindow6.cpp:creates a window

11)mywindow6 mem.cpp: It contains the algorithm to solve and check
the sudoku game and creates the corresponding windows for each of the
difficulty level.

12)mywindow?.cpp:creates a window

13)mywindow?7_mem.cpp: takes the input into a square of the grid and
validates the input.

14)mywindow8.cpp: creates a window

15 mywindow8 mem.cpp: creates a window to give both the submitted
sudoku and the correct solved sudoku by the computer in a new window
on clicking the Solve button.

The corresponding header files used are:
1)mywindow.h

2)mywindow?2.h
3)mywindow3.h
4)mywindow4.h
5)mywindow6.h
6)mywindow?7.h
7)mywindow8.h

Acknowledgements

We wish to express our sincere gratitude to CS 101 Course Instructors
Prof.D.B.Phatak, Prof.S.Chakraborty for their guidance and
encouragement in carrying out this project.

We also like to thank our CLTA: Sadagopan for rendering his help during
the period of our project work.

We like to thank Prof.A.G.Ranade for his book
-”An Introduction To Programming Through C++”

We will also like to thank: www.google.com
en.wikipedia.org
stackoverflow.com
cplusplus.com
blog.mpshouse.com
MS word
Google Docs
Gnome Developers
Contributors of gtkmm package
Rohan Kumar(Batchmate)

Shubham Goel(Batchmate)

