
 SRS DOCUMENT

GAME: CHAIN REACTION

About the game:

Chain reaction is a strategy game for 2.The objective of

the game is to take control of the board by eliminating

the opponent’s balls.

Players take it in turns to place their balls in a cell.

Once a cell has reached critical mass the balls explode

into the surrounding cells adding an extra ball and

claiming the cell for the player. A player may only

place their balls in a blank cell or a cell that contains

balls of their own colour. As soon as a player loses all

their balls they are out of the game.

Boxes in the corners can have only one ball. When they

have more than one ball they explode.

Similarly boxes on the edges other than the corners can

have a maximum of two balls. If they have more than

two they explode .Boxes other than those on the edge

can have a maximum of three balls so they explode

when they have more than three balls.

When the balls explode into the adjacent boxes having

balls of the opponents the opponent loses the balls and

the balls are gained by the player.

The objective is to remove all balls of the opponents.

In our program we have implemented a two player

version of the game.

ALGORITHM:

 At the start user is required to click on “ONE

PLAYER” or “TWO PLAYER” to play a game

versus the computer or to play with another player.

 Each time the user clicks on the box (or a box is

selected by the computer at random), the number

of balls in the box (box of the grid) increases by

one. If the mass exceeds the critical mass, the ball

explodes.

 From click input, specific box is located .User

cannot select a box occupied by the opponent’s

balls.

 The grid is represented by a 2 dimensional array.

The array has 10 rows and 6 columns. Empty

boxes have the value 0, nonempty boxes store data

about player number and number of balls.

 A ball is added to the box. This is updated in the

array by increasing the number of balls in the

particular position of the array by 1.

 If the number of balls exceeds the maximum

possible number of balls in the particular position,

the ball explodes in all possible directions (only

vertical and horizontal directions allowed).The

number of balls in the adjacent positions of the

array are incremented. The number of balls in the

positions where a ball goes is increased by one.

 If after exploding any of the adjacent boxes has

number of balls more than the maximum number,

then this box also explodes, and the process

continues recursively.

 The game terminates when all the balls of one

player have been lost to the other player.

 So after each explosion or after each addition of

ball checking is done to see if either of the players

has won the game.

 If all the balls belong to one player then

 that player will win the game.

 At each stage the array is displayed using the

graphics features of simplecpp.

 After completion of the game the user is given the

option of viewing a replay of the game.

 The user is asked whether the game is to be played

again .If the user clicks on YES the game starts

again otherwise the game stops.

 MOVEMENT OF BALLS FROM CORNER AFTER EXPLODING

 MOVEMENT OF BALLS FROM BOUNDARY BOXES OTHER

 THAN CORNERS AFTER EXPLODING

 MOVEMENT OF BALLS FROM BOXES IN THE INTERIOR OF

 THE ARRAY AFTER EXPLODING

 ABOUT THE CODE :

FUNCTIONS AND VARIABLES:

 int checkWin(int **grid,int player_no)

This function accepts the grid .The current

configuration of the grid is stored in grid 2d array.

The function checks whether the player player_no

is the winner or not .If the player player_no is the

winner then all the balls in the grid belong to this

player and the opponent does not have any balls.

In this case the 2d array stores player number data

as the number of the winner in all the non-empty

boxes .If this condition is satisfied then the player

player_no is the winner otherwise the player

player_no is not the winner. This function is used

to check whether the game is over or not.

 int isBorder(int i,int j)

This function checks whether position (i+1,j+1) lies

on the boundary of grid or not. The function is used

to check for border balls when adding balls or

exploding balls.

 int isCorner(int i,int j)

This function checks whether position (i+1,j+1) is a

corner box of the grid or not. The function is used

to check for corner balls when adding balls or

exploding balls.

 void add(int i,int j,int **grid,int player_no)

This function adds a ball to the (i+1,j+1) position

of the grid .This is a ball belonging to player

player_no.

If the box is a corner and the number of balls is

more than 1 or the box is on the boundary but not

on the corner and the number of balls is more than

2 or the box is in the interior and the number of

balls is more than 3 the balls in the box explode.

This is implemented by the function add which

recursively calls itself.

Before each call it is checked whether the game has

already been won by any player .If the game is over

the recursion stops and the result is declared.

 void display(), void display(int grid[10][6])

These 2 overloaded functions display the grid and

the orbs using simplecpp graphics.

Grid is compared with 2 dimensional array (prev) to

check for any changes in the positions of the grid.

 int validateInput(int **grid,int i ,int j, int

player_no)

This function validates the input .It checks whether

user has clicked inside any valid square or not.

It also checks whether position selected is inside a

square occupied by opponents square or not.

 int main()

In main a grid is printed at the start of each new

game .Input is obtained from user click or

computer generated random data. Input is

validated and then add () function is completed.

All data regarding the progress of the game is

stored in the file “history” and each step is stored

in grid(int ** grid) and the previous step in prev

array. The 2 D array is displayed using Simplecpp

graphics.

