Sudoku

CS 101 Project
Autumn, 2014
Pranav Damani, Yash Dhoble, Yash Bhagat, Vikas Sutrakar

Introduction
.‘

This project aims to create a Sudoku game and auto-
solver. Sudoku is a logic based, combinatorial, number-
placement puzzle. Completed puzzles are always a type
of Latin square with an additional constraint on the
contents of individual regions. For example, the same
single integer may not appear twice in the same row,
column or in any of the nine 3x3 sub-regions of the 9x9
playing board.

Purpose and Scope
.’

The purpose of this project is to create a Sudoku
program and auto-solver. This enables the user to play
the game as well as the program has the ability to solve
the grid as input by the user. Also the program has the
ability to generate Sudoku grids of varying levels of
toughness.

It has a scope of verifying the given set of entries by the
user and if required, solving the generated Sudoku
uniquely.

Salient Features

\

Auto-solver : The program finds the unique solution
of the grid as input by the user.

Difficulty Levels : The user has the opportunity to
select the level of the grid. There are three levels:
Easy, Moderate and Hard

Timer : The program keeps note of the time taken by
the user to solve the puzzle

Scores : Depending upon the level and time taken the
program assigns score to the user.

Methodology
\

We will use backtracking algorithm to code this program. The
algorithm is stated below :

Find row, col of an unassigned cell
If there is none, return true
For digits from1to 9

a) If there is no conflict for digit at row, col assign digit to
row, col and recursively try fill in rest of grid

b) If recursion successful, return true

c) Else, remove digit and try another If all digits have been
tried and nothing worked, return false

\

* The graphics in this project have been added by using
simplecpp libraries. The working can be done by using
either turtle or coordinate system. We have used
coordinate system to produce the grids and numbers.
The numbers in the sudoku grid are input through
mouse pointer and we also had to validate the mouse
click.

Sample

The following pages give a basic idea of how the program
will look while it is executed in autosolver or grid
generator mode.

Autosolver Mode

] Untitled1.cpp [sudoku1] - Code:Blocks svn bu Simplecpp Canvas - O
File Edit View 5Search Project Build Debug Tools Plugins DoxyBlocks Settings Help
FeEA| <> AhalQa EETLHE|O L
Srga0 |Build target: Debug | 9 5 6 7 3 RESET
Management J Untitled1.cpp X] o
[Projects I Symbals l Files l_ 4 5 2 1 g 7
F:\ W o~ 1
Mask: W H K 2
B Fy else if(num==2)
B> Cos { 1(3]7
BB Codeblocks-Simplecpp L.
@B DC++ initCanvas();)) 3 6 1 8 4 9
= selectSudoku(t®, matrix,grid, str);
@ B movies cout<<str; . i
[CB-Simplecpp-setup.exe //generate(t@, str,matrix, grid): 3 9 6
j codeblocks_13.12-1.targz SolveSudoku(grld) ;
] gB29:5y0dk.docx 5 4
. 1 8 7 9 3
//9*%9 sized rectangle
3 3 . .
Rectangle r(220 , 22@, 368, 36@); r.setColor(GREEN); g 7 2 1 1 SUBMIT
int i,j:
//creating the lines of the sudoku 9%9% box 1 2 3 4 5 6 7 8 9 DELETE
//used coloured lines to define the 2x*2 haves
Line 1v1(86,40 , 80,6400); L] FAMITVCS101\sudoku\bin\Debug\sudoku1.exe - b v
E Enter 1 or 2:
l (i>Autosolver
Logs & others (2)Geneerator
[j Code::Blocks] l\15|aard'1 results l £} Build log X] ? Build messages
Checking for existence: F:A\IIT"C5101%sudokul‘bin‘\Debug'sudokul .
Executing: "F:“Codeblocks-Simplecpp/ch_console runner.exe"™ "F:ib!

FAITCS10TUntitled1.cpp

% Untitled1.cpp [sudoku1] - Code:Blocks svn bu 5
File Edit View Search Project Build Debug Tools Plugins DoxyBlocks Settings Help
511 1: 1K%3 Q& RETLDOOD
: a8 |Build target: Debug
Management k4 UntitledLcpp ¢
Projects | Symbols | Files
Fih v oA }
Mask: v }
B R else if(num==2)
W B Crt [
7 B Codeblocks-Simplecpp .
2B Do+ initCanvas():
. selectSudoku(t®, matrix grid, str):
2 B movies cout<<str;
CB-Simplecpp-setup.exe //generate(td,str,matrix, grid);
5olveSudoku(grid):

codeblocks_13.12-1.tar.gz
gB2%3y0dk.docx

//9%9 sized rectangle
Rectangle r(220 |, 220, 260, 2608): r.setColor(GREEN):

int 1,j:

//creating the lines of the sudoku 9%9 box
/fused coloured lines to define the 32 haves

Line 1v1(80,40 , 80,400): i
g Enter 1 or 2:

(1)Autozolver
Logs & others (2)Geneerator

/| Code::Blacks 4 Search results CyBuildlog X V‘ Build messages

Checking for existence: F:\IIT%CS5101%sudokul’bin'Debug'sudokul. ¢
Executing: "F:\Codeblocks-Simplecpp/ch conscle runner.exe" "F:b]

FAIMCS101\Untitledl.cpp

Simplecpp Canvas =

RESET

6|8 |4]5]1 SUBMIT

51678139 DELETE

N R D

Grid Generator

L] Simplecpp Canvas - - Untitled1.cpp [sudoku1] - Code:Blocks svn build - o
Help
2]y
6 y 7 8 5 RESET 0 FAIMCS101\sudokuT\bin\Debug\sudokuT.exe

Enter 1 or 2:
(12Autoszolver
(2»Geneerator

Enter a level :='E’ for easy and ‘H’ for hard : E

HB4070805080000A7A02358000AHEA2064100000RRROTNRDAZ 2046603 70508 RARARA. AL00020
5 8 2 6 4 1 tm

9 3 2 |
out<<"Bad input!"<<end!.

4 6 3 7 L

SOLUTION

8 6 reloaded sudoku on the
pen{"1.txt" ,"r"): fre:

5 2 | SUBMIT [pen("2.txt" ,"r"); fred ™ _ — - — ! . .
pen{"3.txt" ,"r"); fread(str , 1 , 81 , fp); if(fp==NULL){cout<<"Cannot open file"; return ;
pen("4.txt" ,"r"); fread(str , 1 , &1 , fp); if(fp==NULL){cout<<"Cannot open file"; return ;

1 5 3 4 5 6 7 8 g DELETE pen{"5.txt" ,"r"); fread(str , 1 , 81 , fp); if(fp==NULL){cout<<"Cannot open file"; return ;
pen("6.txt" ,"r"): fread(str , 1 , 81 , fp): if(fp==NULL){cout<<"Cannot open file": return :
pen("7.txt" ,"r"); fread(str , 1 , 81 , fp); if(fp==NULL){cout<<"Cannot open file"; return ;

b
e i
Logs & others E
jCode::BIocks lQ,Search results £3 Build log ¢ ?Build Messages ijpCheck j CppChedk messages £ Debugger jDoxy‘Ech(s 4% Closed files list
Checking for existence: F:\IIT“CS5101%sudokul‘bin'\Debug'sudokul _ exe
Executing: "F:“Codeblocks-Simplecpp/ck_conscle_runner.exe™ "FiAZIITWCS10lwsudekulibin'Debugisudckul.exe” (in F:WIITWCS5101%sudeokulh.)
FMITVCS10TWUntitled1.cpp WINDOWS-1252 Line 484, Column 21 Insert Read/Write default

03:07 PM
24-Nov-2014

~ @ 5

\

* The program can further be modified to create
different variations of the classical Sudoku puzzle.
Some of the popular variations include :

e Variation in grid sizes

e Imposing Additional Constraints
e Mini Sudoku

e Cross Sums Sudoku

e Killer Sudoku

References

‘\

Books:

e Cohoon, James P. and Davidson, Jack W., An Introduction to Programming
and Object- Oriented Designing

e Arora, Sumita, Computer Science with C++, Dhanpat Rai Co.

Websites :

e www.en.wikipedia.org

e http://www.youtube.com/watch?v=p-gpalGRCQI
e www.stackoverflow.com

e www.sanfoundry.com

e Www.quora.com

e www.cplusplus.com

