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Introduction
.‘

This project aims to create a Sudoku game and auto-
solver. Sudoku is a logic based, combinatorial, number-
placement puzzle. Completed puzzles are always a type
of Latin square with an additional constraint on the
contents of individual regions. For example, the same
single integer may not appear twice in the same row,
column or in any of the nine 3x3 sub-regions of the 9x9
playing board.




Purpose and Scope
.’

The purpose of this project is to create a Sudoku
program and auto-solver. This enables the user to play
the game as well as the program has the ability to solve
the grid as input by the user. Also the program has the
ability to generate Sudoku grids of varying levels of
toughness.

It has a scope of verifying the given set of entries by the
user and if required, solving the generated Sudoku
uniquely.




Salient Features

\

Auto-solver : The program finds the unique solution
of the grid as input by the user.

Difficulty Levels : The user has the opportunity to
select the level of the grid. There are three levels:
Easy, Moderate and Hard

Timer : The program keeps note of the time taken by
the user to solve the puzzle

Scores : Depending upon the level and time taken the
program assigns score to the user.




Methodology
\

We will use backtracking algorithm to code this program. The
algorithm is stated below :

Find row, col of an unassigned cell
If there is none, return true
For digits from1to 9

a) If there is no conflict for digit at row, col assign digit to
row, col and recursively try fill in rest of grid

b) If recursion successful, return true

c) Else, remove digit and try another If all digits have been
tried and nothing worked, return false




\

* The graphics in this project have been added by using
simplecpp libraries. The working can be done by using
either turtle or coordinate system. We have used
coordinate system to produce the grids and numbers.
The numbers in the sudoku grid are input through
mouse pointer and we also had to validate the mouse
click.



Sample

The following pages give a basic idea of how the program
will look while it is executed in autosolver or grid
generator mode.




Autosolver Mode
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Grid Generator
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SOLUTION
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* The program can further be modified to create
different variations of the classical Sudoku puzzle.
Some of the popular variations include :

e Variation in grid sizes

e Imposing Additional Constraints
e Mini Sudoku

e Cross Sums Sudoku

e Killer Sudoku
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