
 MaSH
 Mathematical Shell

GROUP 16
SLOT 11
STAGE 2 SUBMISSION
SRS (Software Requirement Specifications)

Project – Unix Shell in C++ with some mathematical functions
Project Name – MaSH

 © Team – 11-16-T3, 2014-15

Introduction to Shell :

Shell is an command language interpreter or a command line interpreter that executes
commands, which is read from the standard input device such as keyboard or from a
file. Shell is not part of system kernel, but uses the system kernel to execute
programs, create files etc. Simply put, the shell is a program that takes your
commands from the keyboard and gives them to the operating system to perform. In
the old days, it was the only user interface available on a Unix computer. Nowadays,
we have graphical user interfaces (GUIs) in addition to command line interfaces
(CLIs) such as the shell.

On most linux system, bash (Bourne again Shell) and the C shell (csh) are the most
influential shell. These shells have both been used as the coding base and model for
many derivative and work-alike shells with extended feature sets. The korn shell
(ksh) is also used sometimes. Some other shells are tcsh, zsh.

Objective :

Our objective is to create a Unix shell and emulates its basic tasks. Generally we are
trying to implement basic I/O redirection among files and commands, basic piping
between commands and files and running basic *nix commands.

While our shell will behave like a normal Unix shell, it will also have some other
features. As students of the mathematics department, we will try to implement basic
mathematical operation in our shell.

List of our objectives :

 Run basic *nix commands
 Emulate basic shell behaviour
 Basic mathematical commands including integration and differentiation

We have till now decided upon these three broad objectives and have started towards
fullfilling them.

Functional Requirement :

Different software packages and non-standard header files used till now :-

 “fparser” library for parsing mathematical functions in shell terminal.
 GNU readline library for reading user input at terminal. It was chosen because

it makes tab-completion and command history implementing easy.
 GNU GCC/G++ compiler package
 gedit, code::blocks and sublime text editors for editing codes.
 Ubuntu 14.04 Operating system, Windows 7 Operating System

Sample Code for a Shell (Unix) (Main Function) :

int main (int argc, char **argv)
{

while (true)
{

int childPid;
char * cmdInput;

 printPrompt();

 cmdInput= readline(); //or GNU
cmd = parseCommand(cmdInput);

add_history (cmdInput) ;

if (checkBuiltIn (cmd))
 executeBuiltIn (cmd);
else
{

childPid = fork(); //Unix specific function

 if (childPid == 0)
executeCommand (cmd)

else
{

if (backgroundJob(cmd))
record_Job () ;

else
waitpid (childPid);

 }
 }

 }
}

Required features :

Some of the required features that are required for the Shell :-

 The prompt you print should indicate the current working directory. For
example:

 The directory:~/usr/foo/bar/baz #

 Maintain a history of commands previously issued. So that the user can access
previously used commands using a single key.

 A built-in command is one for which no new process is created but instead the
functionality is build directly into the shell itself. We are supporting the
following built-in commands : cd, history, version, exit and
math.

 The prompt should print system name and system user name. For example
 user@system:~/usr/foo/bar/baz #

 Mathematical functions are to be included, some of the required mathematical
functions are

1. Integrating a function given as input by the user. User will also supply
 lower limit and the upper limit for integrating. If the function cannot be
 cannot be integrated then the program must print out error message and also

mailto:user@system

a reason for the error.
 2. Differentiating a given function. The program should differentiate at a given
 point, which is inputted by the user. Now it must also show if the function is
 not differentiable at a given point, printing an error message and a reason
 for the error.
 3. Greatest common divisor of 'n' number should be implemented. It should
 first ask the user to input the number of integers that is to be given. Then
 it should print out as output the greatest common divisor of the given
 integers.
 4. It should contain a program that prints out the value of a given function at
 a given point. If the function is not defined at that point then it must print
 an error message.
 5. Given any function and an approximate root, it must contain a program that
 gives us the real root of the function based on the approximate root given by
 the user.

 Shell should not exit if user presses CTRl + C or CTRL + Z and should handle
these signals properly.

 Tab completion and command prompt editing. The GNU readline library is
being used for this.

 Up and down errors to scroll through the history list. The GNU readline library
is being used for this.

 Basic Piping between two processes must be present. Codes like ps |
grep bash should work.

Optional Requirement

 One can implement I/O redirection.
 Similarly chaning of pipes and redirection may be implemented
 History can be implemented as a command and history ­c should

delete all commands previously stored in history.
 Scripting can be implemented using parser, lexical analyzer etc.
 Other useful statistical and mathematical commands may be added, like

adding, multiplying and finding determinant of matrices.

