
SYSTEM REQUIREMENTS
SPECIFICATIONS

PURPOSE:

The goal of this project is to construct a user-friendly program to

enable users to play the game “CHAIN REACTION”. It’s a multiplayer

game which allows group strength to vary from 2 players to 6

players. Game play proceeds with players strategically placing their

orbs so as to control the board. The objective of the game is to win

by eliminating orbs of every other player. Elimination occurs by

exploding orbs near enemy positions after a certain critical number

of orbs have been placed in a particular square. It is inspired by the

underlying principle of the chain reactions in chemistry which take

place due to instability of heavy nuclei.

BLACK BOXES

As the principles of OOPs stress upon the division of work into

different units, we have created several functions allotting specific

task to each of them. The following are the functions used in our

code and their description:

1. main() :
 This is the function which will be called when the
program is executed. It’s basically like a central node from
where all the functions are called and where they return to.
It has different return values for different cases depending
on the behavior of the function it calls. The different return
values helps in pinpointing the function due to which the
error is occurring.

2. HowToPlay() :

 This function on being called displays a paragraph on how
to go about playing the game. Mouse click is implemented
in a region to allow the user to return to the main menu. It
is of Boolean type and returns false values incase of any
error like failed image loading etc.

3. NumberOfPlayer() :
This function basically takes input from the user on the
number of players that are going to be playing the game. It
displays a clickable box with numbers printed on them. An
array of structures was used to implement the different
regions of mouse click corresponding to each particular
number. It is of type int and returns the number of players.

4. GamePlay() :

This function is the backbone of the game. This function
runs the game. Throughout its call it changes the various
variable values and calls to various functions to enable the
game to run. First of all it prints the grid on the screen,
thereby creating a click region upon it. It then in
accordance with the mouse clicks changes the grid
variables and changes turns etc. It also calls for functions
to check if the game is over or a particular player has been

knocked out in every turn of the game. It is of Boolean type
and returns false if any error occurs.

5. MainScreen() :

This function basically sets up a screen and prints the
welcome screen on it . It has well-defined clickable regions
which lead to different parts in the game like the Play
Mode, instructions page or end the game (Exit).

6. TurnPrinter(int T) :
 This function prints an image corresponding to the person
whose turn it is. Ex- If its player 3’s turn whose color code
is green, then it will display an image displaying number 3
with a green background thereby indicating that player 3
has to play.

7. CheckWin(int g[][6][2]) :

The victory condition is achieved when only orbs of one
color are present on the board. This function will therefore
check this condition before every move of all the players
as the game is prone to sudden wins and reversals due to
the nature of game play. It simply checks the [][][1] two
dimensional grid of the main grid checking if there is only a
single non-zero number present which would thereby
indicate a winning situation. It is of integer type and
returns -1 if there is no winner and returns with the ID of
corresponding player if a particular player has won.

8. LocationType(int xx , int yy) :

 This function takes the co-ordinates of the move via
mouse click and determines whether the square is a
corner(returns 0) , an edge (returns 1) or an inland square
(returns 2).

9. Blast(int x , int y, int Gr[][6][2] , int ii) :
The function combs the grid for any square where the
number of orbs have crossed the critical value. Firstly it
calls a function to get to know what kind of square the
move has been played in. Thereby it checks the number of
balls in the square and checks if it has crossed the critical
mass. If it hasn’t crossed the critical mass, the functions
simply calls a function to print the balls corresponding to
the no. of balls. If has crossed the critical mass , the
function edits the variable associated with the adjacent
squares and then recursively calls the functions on their
co-ordinates to check for a successive blast condition.

10. init() :

This function simply initialize all the sub-systems of the
SDL libraries and prepares them to be used. It is of boolean
type and returns false in case of any error.

11. SDL_Surface *load_image(std::string filename) :
This function takes a filename as a parameter and loads a
pointer pointing to this image on a pointer pointing to a
SDL_Surface type variable.

e.g.
SDL_Surface* A = load_img(“FILENAME”);

12. apply_surface(int x, int y, SDL_Surface* source,
SDL_Surface* destination, SDL_Rect* clip = NULL) :
 This function blits (i.e. puts the image on the screen to
display) . Its take the offset(x,y) which is the point of the
upper left corner of the image. Source is the pointer to the
SDL_Surface which has the image loaded on it. The
destination is the pointer to the SDL_Surface which is the

screen.

13. checkPlayerExist(int J, int g[][6][2]) :
This functions takes the ID of a player as the parameter
and checks the [][][1] of the grid. If there is no match
means the player doesn’t exist and the function returns
false else it returns true. This function helps in the
purpose of eliminating a player during multiplayer mode
when all of his orbs have been conquered by other players.

14. BlitBalls(int id, int quant,int xx,int yy,int G[][6][2]):

This crucial function prints the balls on the screen at the
offset xx,yy of the particular player(id). It consists of
switch-case statements which pinpoint the colour and
quantity of the balls to be printed.

15. GameOver(int ID) :

 If a player has won , the GamePlay functions will invoke a call to this

function which will change the screens and print the corresponding

victory message. It will also provide a button to return to the main

menu.

SOFTWARE REQUIREMENTS

Applications required :

SOFTWARE
NAME

VERSION DOWNLOAD LINK

Code::Blocks 13.12 http://www.codeblocks.org/downloads/26
GCC Compiler 4.8.1, 32

bit.
http://www.codeblocks.org/downloads/26

GDB Debugger - http://www.codeblocks.org/downloads/26

http://www.codeblocks.org/downloads/26
http://www.codeblocks.org/downloads/26

Libraries required :

Name of Library Where to get it ?

IOstream Preinstalled in Code::Blocks
Stdio Preinstalled in Code::Blocks
Cstring Preinstalled in Code::Blocks
SDL & its
extension
libraries.(SDL_img.
h, SDL_ttf.h)

http://lazyfoo.net/tutorials/SDL/01_hello_SDL/index.
php

 -

http://lazyfoo.net/tutorials/SDL/01_hello_SDL/index.php
http://lazyfoo.net/tutorials/SDL/01_hello_SDL/index.php

