
PROJECT REPORT

PROJECT TOPIC: CHAIN REACTION

ABOUT: The objective of Chain Reaction is to take

control of the board by eliminating your opponents' orbs.

TEAM MEMBERS

S.No. NAME ROLL.NO

1. AMIYA MAITREYA (L) 140020025
2. ARUNABH SAXENA 140020005
3. SHASHI KANT KUMAR 140020060

WORK DIVISION

Following is the individual contributions to the project till

now:

TEAM
MEMBER

HOURS
CONTRIBUTE
D

KEY CONTRIBUTIONS

1. AMIYA

MAITREYA
69

 Researched and
learnt the graphical
features of SDL and
coded the full
graphical part of the
game.

 Coded most part of
the program
integrating graphics
and game code

 Debugged all parts
 Wrote the SRS
 Made the algorithm

on which the game is
going to run.

 Coded 2 possible AI
codes based on
Arunabh’s insights.

2. ARUNABH
SAXENA

55
 Provided ideas and

insights into possible
implementation for
1-player modes

 Coded a better
Blast() which is
critical to the game.

 Also helped in some
game code.

 Coded 1 possible AI
code.

 Attempted at
inclusion of a code
that would enable
sound to play.

 Wrote user manual
 Wrote the Project

Report
 Finalized all the

documents.

3. SHASHI
KANT
KUMAR

30.5
 Helped play as a

counter to the A.I
thought -which
helped him note
down the fallacies
possible

 Helped during
documentation of
report.

 Helped in creating
the images of the
balls, main screen
etc.

 Coded the
checkWin() ,
TurnPrinter(),Game
Over()

 Helped in debugging
the code a bit.

DESIGN AND ALGORITHM

We implemented our grid of the game using a 3D array named Grid

[8][6][2]. This would basically give us 2 two dimensional arrays one

placed behind the other. The purpose of this is to have easy access

and determination of player ID. The two dimensional array [][][1]

stores the ID of the player corresponding to the orb in the two

dimensional array [][][0] in the front.

E.g. Assuming top right corner to be (0,0) if you take the 2,3 to have

2 balls of player with ID 3 , then Grid[2][3][1] will be equal to 3 (ID of

the player) and Grid[2][3][0] will be equal to 6(number of balls * ID).

Thus whenever we require the number of balls at a location, we

simply do a division!

We have kept ID = 0 to indicate that a square is unoccupied. The

program gets the number of players input from the mouse click in

the NumberPlayers() function. The GamePlay function is then called

which is the backbone of the game.

After the grid is printed, whenever you click the mouse inside the

grid we take the co-ordinate of the click using functions available in

the SDL libraries. We manipulate its value by dividing by 60 and

storing it as integer to give the corresponding indices of the square

(60 by 60) inside which there was an event of a mouse click relative

to the 8 by 6 grid we have created.

After getting the corresponding square, we edit the values in the

Grid variable, ensuring the fact that an orb of a player is added only

to a square which is vacant or previously owned by the same player.

After the move has been incorporated in the Grid, a call to the Blast

function is invoked to check for squares which have crossed the

critical limits. The Blast function has to have a recursive

implementation which enables it to handle successive blasts. This is

because after an explosion occurs and the orbs spread to adjacent

squares the blast function needs to be invoked again so as to check

for the affected squares. After a successful stable condition has been

achieved with all corresponding changes made in the Grid, a call to

BlitBalls function is invoked with the Grid and ID to print the

corresponding pictures on the screen. After a move is done and

pictures printed, the turn variable (j) is incremented by the unary

operator ++.This ensures a rotation of the turn between the players.

The turn of a player is intimated to him by a message adjacent to the

grid which prints out the player ID of the person whose turn it is. The

player colour is also the colour of the rectangle in which the player ID

is flashed. Before the next iteration in the loop is started, a call to

checkPlayerExist function and checkWin function is called to ensure

whether the next player exists or the game has already been won! If

checkWin returns a value corresponding to a player ID, GameOver

function is called which prints the winning message thereby ending

the game!

SOME UNRESOLVED ISSUES…

1. We did not include past results as the gameplay is generally
done via multiplayer option in which case we would have to
store results under multiple player IDs as the history of each
player who played would have to be shown. This we felt as a
team was not feasible in the given timeframe.

2. The code for artificial intelligence took 3 attempts to get it
right however it happened at the last moment and couldn’t be

implemented in the graphic interface of the project . Thereby
we are just uploading the pseudo code of the AI.
The final logic for which we settled to implement the AI was
the simulation of moves to get the best possible ratio of balls in
favour of the computer. What the code does is it copies the
original array and calls a function known as Simulate which
then using for loops simulates one possible turn of the
computer followed by corresponding second turns of the
player. After two moves have been simulated , the ratio of the
balls of computer to the balls of the player are calculated in the
final simulated grid. Likewise all the ratios are compared for all
the permutations and combinations of possible computer
moves and possible human moves. Thereby we get a (x,y) for
which the ratio is highest. We have made the function of return
type CompMove which is a structure with data members x,y
and ratio. Therefore Simulate function returns a structure
TheMove out of which we can extract the required move using
TheMove.x and TheMove.y. Thus we get the move.

3. We also couldn’t fit in the implementation of String input of
names and the mouseover highlight feature in the code in the
time constraint even though their non-graphical code were
coded .

ACKNOWLEDGEMENT

1. We would like to acknowledge the help received in this
project by our mentor Sougata Singha who has been actively
involved in every stage of the operation.

2. We would also like to thank our friend Harshvardhan
Tibrewal with whom we had active discussions over the

possible strategy and implementation of artificial
intelligence in our game.

3. We would like to thank the entire CS101 course and
Professor Dr. Supratik and Professor Dr. Phatak for
introducing us to the wonders of programming via these
thought – provoking project ideas. It was indeed a vivid
experience to see our code get a visual aspect in this project.

