

Snakezzz….
(A CS101 Course Project)

By:

Utkarsh Gautam

Arushi Bansal

Surbhi Sahu

Anay Tripathi

CONTENTS

1. Acknowledgements

2. Abstract

3. Introduction

4. Background &Analytical conclusions

5. Algorithm & Functions

6.Expectations met & Scope for Improvement

6. ConcluSION

7. Bibliography

Acknowledgements

We would like to thank Prof. Deepak Phatak and Prof. Supratik
Chakraborty for their guidance and encouragement. Thanks and
appreciation is also due to our TA Mr. Prasanth Presannan for his
constructive suggestions, help in rectifying the errors and his
valuable critics during the planning of the project. We would also
like to thank all other TA’s whom we came across informally at
various points who also gave their ideas, suggestions and inputs.

The Team

Abstract

In this project we have created a game called "Snakezzz…". It is just like

one of the common gaming applications found in cell phones. The user

moves the snake in a maze in order to eat the food appearing on the

screen to gain points while avoiding collision with walls and itself which

leads to death. The game has been created using C++.

The maze has been created using simplecpp. The snake is a series of

circles whose coordinates are stored in a circular array. To move and turn

the snake coordinates of tail character are modified and placed in front of

head. The score increases with time and every time the food is consumed.

Also, length of snake increases every time food is consumed, thereby

increasing difficulty with time. Hence, a challenging yet refreshing game is

created for the user.

Introduction

This project is an attempt to make the popular game “SNAKE”

using C++ language. With the use of simplecpp library the

graphical notion of the game has been accomplished.

The game has multiple mazes and difficulty levels which user can

choose and play accordingly.

The movement of the snake is decided by the user using controls

as mentioned in user manual. It can move up, down, left or right

as per the user commands.

The snake goes around an arena bounded by the walls and having

some obstructions in between which will block its way. Red

colored food items appear periodically in the game . On

consuming them the score increases but the length of the snake

will also increase which will increase difficulty level of the game.

Points will be on the basis of how long the snake lives and how

much food it eats.

Background &
Initial Analytical

Process

Background
We had to make a programming project for the course CS101.
Various options were provided to us by our course instructor.
After a lot of discussion, the team decided to make game snake
as it seemed fun while providing sufficient challenge and scope
for learning, which got the approval of our TA. The work was
started as soon as possible.

Initial Analytical Process

Till first few meetings the core discussions was on the
movement of snake and its representation.
Initial Ideas –Based on what we had learnt in the course so far, it
was thought to first represent the snake as an array of x and y

coordinate (nx2)array, which had to be changed according to its
moving directions.
*n is the length of snake.
For moving, the idea was to change each coordinate as per the
user commands e.g. to move left: decrease x coordinate of each
element of array by one and continue doing it unless some new
instruction from user is not commanded.
{ALGORITHM:
Move the head of the chain as instructed by the user and run a
loop so that each i'th element of snake will occupy the
coordinates of (i-1)th element . Run a forever loop which will
follow a command unless some new instruction is not passed
and as soon as some new instruction is passed change
accordingly.
}
Simultaneously check that the head of the user (coordinates of
head of the snake) doesn’t coincide with the wall or any other
obstruction.

We decided to make functions for movement of snake (turn left
or right).Another parameter viewer direction will give idea how
the left or right instruction would be executed on the snake. e.g.
if initially snake is moving in right direction(variable viewer
direction will be initialized R, if further user instructs to move
say ‘Left’, the y coordinate of head of snake would be
incremented and viewer direction would turn to U(up)).
Function calls would be made to make a movement successful .
With not much knowledge of graphics all these ideas were
formulated so the team didn’t had much idea how practically it
will work.

In our further meetings we felt that the program was going
to be extremely slow because very large number of checks
are being performed, and then the next movement is
decided.
Also the algorithm for movement of snake failed as it
created errors and complications in test cases of multiple
turns.
A temporary improved algorithm on movement of snake
which was thought
{ALGORITHM

As soon as user makes a change in movement that coordinate will

be recorded each part of snake passing through that point will

follow that particular direction.

Change of coordinates will be according to the previous algorithm.
}
This facilitated turns of snakes but was soon disregarded as
number of movements was not fixed so those specific points
couldn’t be stored as such. Also number of steps in every
movement of snake was anyhow increasing which slowed
down the programmed.
The forever loop idea also failed since we didn’t knew
how to write a code such that user can anytime enter a
command and movement can change accordingly.
On further discussion with some TA’s including our own,

we reached a conclusion that for simultaneous movement of

snake with death checks and food appearance and checking

for user command prompt, we may have to use

multithreading. However, on consulting our professor about

the same,he told us that simplecpp has features of non-

blocking input.

Also, once we had learnt OOPs, we managed to simplify our

program and make it much neater.

FINAL ALGORITHMS
AND FUNCTIONS

Movement of Snake :[void move();]
The function “void move()” has been created which will
move the snake according to the command given by the
user. The user gives command through keyboard buttons:
‘w’, ‘s’, ‘a’ and ‘d’ to move the snake up, down, left or right
respectively.
The algorithm is based on the principle of circular array. The last
element of snake’s body will be redefined w.r.t the first one and
then the last element would become the new first element.

e.g. for a snake moving right, the tail element:
((head+length-1)%length)’th element

 would be redefined as (headX+1,headY).And now, this would be
the new head. Now, the user gives a command to move up, tail
element would be redefined as (headX,heady+1).

Snake (circular array)
An array of circles was created dynamically, named “snake”.
These circles form the body elements of the snake and were
placed adjacent to each other.

Random Appearance of Food [double
foodx() & double foody()]
The random function already included in simplecpp library

was used to specify the random coordinates of the food. Its

limits were set to keep it from appearing outside the

boundary of the maze or on the obstructions. The food will

disappear and reappear at different locations if not eaten in a

limited time.

Class Buttons
It was created to facilitate the user in choosing options

between play/help/choosing a maze/level etc.

Maze Designing[class maze_1{ }; class
maze_2{ }; class maze_3{ };]
All the mazes will be predesigned and the user will have an

option at the start to choose one of them. They will have

obstructions typical shapes to make the game tough for the

user.

LEVELS
The user has the option to choose from three levels: Easy,

Normal & Tough. The levels vary in speed of snake and

frequency of disappearance of food.

Distance Function [double dist()]

This function was created using the sqrt() function from

<cmath> library to detect click on button.

CHECK FUNCTIONS [bool checkmoves()
& void checkfoodeaten()]

bool checkmoves() has been made to be passed in the

while loop of the main program which ends the game if the

coordinates of the head of the snake coincides with that of

walls, obstructions or any other part of its own body.

void checkfoodeaten() increases the score and the length

of the snake if it eats the available food.

Expectations Met
& Scope for

Improvement

 The program created meets performs most of the

defined functions. Only the display of mazes couldn’t

be achieved properly as the compiler refused to

recognize the Rectangle and Line classes pre-included in

simplecpp library for a reason neither we nor any ta

could explain. Eventually it worked when we inherited

Rectangle in our class maze, but Line gave trouble on

inheritence. Finally the maze wasn’t displayed. It just

blinked.

 The new circle element on incrementing the length is

white in color and is not getting recolored.

 We thought of adding a pause/resume feature at the

last moment but could not debug it entirely due to

shortage of time.

 Files could be used to store the Highscores from

previous games.

 User could also be able to continue a paused game from

the last time he/she had played.

 We could add some extra bonus items to be consumed

by snake which temporarily give it some special powers

like collision immunity , speed etc.

CONCLUSION

So, we have created an interesting and dynamic game:

“Snakezzz…” using what we learnt in the course CS101.

Making this project has given us some real-life software

development experience and we found this project to be one

of the best parts of the course. We learnt much more than

what we had learnt in the classs, it has given us an

opportunity to further explore the world of computer

programming and realize that we have a long and

interesting journey ahead of us in the world of

programming.

Bibliography

 An introduction to programming through C++ by

Abhiram G. Ranade

 Lectures on simplecpp graphics by Prof. Abhiram

G. Ranade

 www.cplusplus.com

 www.google.com

