Algorithms

Contents:

1. Infix to Postfix
2. Matrices:
- Addition
- Subtraction
- Multiplication
- Determinants
- Inverse
3. Integration by Numerical Methods
4. Differentiation by Numerical Methods
5. Differential Equation by Runge Kutta Method
6. Quadratic Equation
7. Linear Equation

Infix to postfix conversion algorithm

This is an algorithm to convert an infix expression into a postfix expression. It uses a stack; but in
this case, the stack is used to hold operators rather than numbers. The purpose of the stack is to
reverse the order of the operators in the expression. It also serves as a storage structure, since no
operator can be printed until both of its operands have appeared.

In this algorithm, all operands are printed (or sent to output) when they are read. There are more
complicated rules to handle operators and parentheses.

Examples:
1.A*B + C becomes AB * C +

The order in which the operators appear
is not reversed. When the '+' is read, it
has lower precedence than the *', so the
"*' must be printed first.

We will show this in a table with three
columns. The first will show the symbol

convert infix to postfix: flow chart

(3]

!

Initialize an empty

getnext token in infix

stack of operators

expression

YES

==end of infix expression =

NO

—

-~ Switch(token)

(|)

Pushit onto
the stack

operand\

If stack is empty or
token has higher
precedencethantop

currently being read. The second will
show what is on the stack and the third

Pop and display stack
iterns until the stack is
empty

will show the current contents of the
postfix string. The stack will be written
from left to right with the 'bottom' of the
stack to the left.

terminate

Fop and display stack
elementuntil a left) is
encountered, but don't
display)

stack element, then
pushtoken onto stack,
otherwise, pop and
displaytop stack

element; then repeat
the comparison of
token with new top

displayit

stack item
\

Sr. |Current Symbol Operator Stack | Postfix string

no

1. A A

2. * * AB

3. B * A B *(pop and print before pushing the '+')
4. + + AB*C

5. C + AB*C+

6. AB*C+

The rule used in lines 1, 3 and 5 is to print an operand when it is read. The rule for line 2 is to push
an operator onto the stack if it is empty. The rule for line 4 is if the operator on the top of the stack
has higher precedence than the one being read, pop and print the one on top and then push the new
operator on. The rule for line 6 is that when the end of the expression has been reached, pop the
operators on the stack one at a time and print them.

Example 2: A* (B + C AD) + E becomes AB C D A+ *E +

Sr.no | Current Symbol Operator Stack |Postfix string

1. A A

2. * * A

3. (*(A

4. B * (AB

5. + * (+ AB

6. C * (+ ABC

7. A *(+A ABC

8. D * (+ A ABCD

9.) * ABCDA+

10. + + ABCDA+*
11. E + ABCDA+*E
12. ABCDA+*E+

A summary of the rules follows:
1. Print operands as they arrive.

2. If the stack is empty or contains a left parenthesis on top, push the incoming operator onto the
stack.

3. If the incoming symbol is a left parenthesis, push it on the stack.

4. If the incoming symbol is a right parenthesis, pop the stack and print the operators until you see a
left parenthesis. Discard the pair of parentheses.

5. If the incoming symbol has higher precedence than the top of the stack, push it on the stack.
6. If the incoming symbol has equal precedence with the top of the stack, use association. If the
association is left to right, pop and print the top of the stack and then push the incoming operator. If

the association is right to left, push the incoming operator.

7. If the incoming symbol has lower precedence than the symbol on the top of the stack, pop the
stack and print the top operator. Then test the incoming operator against the new top of stack.

8. At the end of the expression, pop and print all operators on the stack. (No parentheses should
remain.)

Matrices

Input Two matrices A and B
Output Output matrix C containing elements after addition of a and b

Matrix-Addition and substraction(A,B)

fori =1 to rows [A]

for j =1 to columns[A]

Input Ali,j];

Input Ali,j];

Cli, j1 = Ali, j1 + BIi, jl; (for addition)
Cli, j1 = Ali, j1 + BIi, jl; (for substration)
Display Cl[i,j];

N O uh~ WDN -

Algorithm Description

To add two matrixes sufficient and necessary condition is "dimensions of matrix A =
dimensions of matrix B".

Loop for number of rows in matrix A.

Loop for number of columns in matrix A.

Input A[i,j] and Input B[i,j] then add A[i,j] and B[i,j]

store and display this value as C[i,j];

Matrix-Multiply(A, B)

if columns [A] # rows [B]

then error "incompatible dimensions"
else

fori =1 to rows [A]

for j = 1 to columns [B]

Cli, jl =0

for k = 1 to columns [A]

Cli, j1=CIli, j1+Ali, kKI*BK, j]

return C

OO UL WDN -

Algorithm Description

To multiply two matrixes sufficient and necessary condition is "number of columns in
matrix A = number of rows in matrix B".

Loop for each row in matrix A.

Loop for each columns in matrix B and initialize output matrix C to 0. This loop will run for
each rows of matrix A.

Loop for each columns in matrix A.

Multiply A[i,k] to B[k,j] and add this value to C[i,j]

Return output matrix C.

The determinant of an n by n matrix -by recursion

Termination condition-minor of order 2

allal2 al3 ... aln
a2l a22 a23

det(A) = |A| = a3l1a32 a33 ... a3n
Do : aij :
anlan2 an3 ... ann

The solution is given by the so called "determinant expansion by minors". A minor Mij of
the matrix A is the n-1 by n-1 matrix made by the rows and columns of A except the i'th
row and the j'th column is not included. So for example M12 for the matrix A above is
given below

a2l a23 a24 ... a2n

a3l a33 a34 ... a3n
M12 = a4l a43 a44 ... a4n

: : : aij, i!=1, j!=2

anlan3 an4 ... ann

The determinant is the given by the following where the sum is taken over a single row or
column.

|A] = pow(-1,i+j)*aij *Mij
Any row or column can be chosen across which to take the sum, when computing manually
the row or column with the most zeros is chosen to minimise the amount of work. If the
first row is chosen for the sum then the determinant in terms of the minors would be

|A| =all M1l -al2 M12 + al3M13-... + aln Mln

Or expanded out as follows.

|A| = (al1)

a22 a23 a24 ... a2n
a32 a33 a34 ... a3n
a42 a43 a44 ... adn
an2 an3 an4 ... ann

- (al2)
a2l a23 a24 ... a2n
a3l a33 a34 ... a3n
anl an3 an4 ... ann

+ al3
a2l a22 a24 ... a2n
a3l a32 a34 ... a3n
a4l a42 a44 ... a4dn
anl an2 an4 ... ann

..... +(aln)

a2l a22 a23 ... a2(n-1)
a3l a32 a33 ... a3(m-1)
a4l a42 a43 ... a4(n-1)
anl an2 an3 ... an(n-1)

The process is repreated for each of the determinants above, on each expansion the
dimension of the determinant in each term decreases by 1. When the terms are 2 by 2
matrices the determinant is given as

all al2 = (alla22 - al2 a2l)
a2l a22

this is the termination condition.

If the determinant is O the matrix said to be "singular". A singular matrix either has izero
elements in an entire row or column, or else a row (or column) is a linear combination of
other rows (or columns).

Matrix inversion
AB=BA =1,

If matrix is a non singular square matrix ,one can calculate the it’s inverse

The algorithm is given below

First make an augmented matrix of size n by 2n by an unit matrix such as the left one is
given matrix and the rest right part is unit matrix of size n by n

Then convert the right half of augmented matrix into row echelon form

When the given part of augmented matrix converts into row echelon form the right half
gives the inverse of given matrix

Algorithm for Integration

By numerical methods - simpson’s 1/3 method

In our source code,we have defined functions f(x) . The calculation using C++ program
for Simpson 1/3 rule is based on the fact that the small portion between any two points is
a parabola. The program follows the following steps for calculation of the integral.

As the program gets executed, first of all it asks for the value of lower boundary value of x
i.e. Xo, upper boundary value of x i.e. x, and width of the strip, h.

Then the program finds the value of number of strip as n=(x,- Xo)/h and checks whether
it is even or odd. If theln the source code, a function f(x) = 1/(1+x) has been defined. The
calculation using C program for Simpson 1/3 rule is based on the fact that the small portion
between any two points is a parabola. The program follows the following steps for
calculation of the integral.

As the program gets executed, first of all it asks for the value of lower boundary value of x
i.e. X0, upper boundary value of x i.e. xn and width of the strip, h.

Then the program finds the value of number of strip as n=(xn - X0)/h and checks whether
it is even or odd. If the value of ‘n’ is odd, the program refines the value of ‘h’ so that the
value of ‘n’ comes to be even.

After that, this C program for Simpson 1/3 rule, calculates value of f(x) i.e ‘y’ at different
intermediate values of ‘x’ and displays values of all intermediate values of ‘y’.

After the calculation of values of ‘c’, the program uses the following formula to calculate the
value of integral in loop.

Integral = *((yO + yn) +4(yl +y3 + +yn-1) +2(y2 +y4 +.......... + yn-2))
Finally, it prints the values of integral which is ‘stored as ‘ans’ in the program.

If f(x) represents the length, the value of integral will be area and if f(x) is area the output
of C program for Simpson 1/3 rule will be volume. On balance, numerical integration can
be carried out using the program below is very easy to use, simple to understand and gives
reliable and accurate results.

value of ‘n’ is odd, the program refines the value of ‘h’ so that the value of ‘n’ comes to be
even.

After that, this C program for Simpson 1/3 rule, calculates value of f(x) i.e ‘y’ at different
intermediate values of X’ and displays values of all intermediate values of ‘y’.

After the calculation of values of ‘c’, the program uses the following formula to calculate the
value of integral in loop.

Integral = *((yo+ yn) +4(y1+ y3+ «oennennns + Vo) + 202+ yataena.. + Vn2))

Finally, it prints the values of integral which is ‘stored as ‘ans’ in the program.

Numerical differentiation-by newtons interpolation formula

Newtons forword interpolation formula

By Tayler’s theorem
AFy,
k!

ﬂzyu
21

flz) = flzo+ ku=u + Ayou + (wfw—1)) 4+ -+ {ufu—1) - (u— kA

ﬂﬂyu

4+ 4+
n!

{ufu—1)..(u—n+1)}.

Differentiating above tayler’s formula , we get the approximate value of the first derivative
at = as

fﬁaﬂu

2
£=l%m%[ﬂyu+&—yﬂ{2u—lj+ (3u? —6u+2)+ .-

+ Ao (n‘u‘“_l — “{n—_l)zu‘“—z 44 (1) (R — 1]!)] .

. T — Tg
YT TR
where,
E=1Ip

Thus, an approximation to the value of first derivative at i.e. w=10 is obtained as :

Ef_f 1 ﬁzyu ﬂayn _ ﬂﬂyn

= = |Ayy — — —1ym— = 2 (13.2.3

dz|,_,. h[:"’“ 2t 73 +(1) n)

Algorithm for Differential equation

By runge-kutta 4™ order method

One member of the family of Runge-Kutta methods is often referred to as "RK4", "classical
Runge-Kutta method" or simply as "the Runge-Kutta method". This method is used to
solve ordinary differential equation.

Let the differential equation is:

ng(t:y)! y(tﬂ) = Yo

Here, y is an unknown function_ (scalar or vector) of time t which we would like to
approximate; we are told that ¥, the rate at which y changes, is a function of t and

of y itself. At the initial time Lo the corresponding y-value is ¥0. The function f and the
data to, Yo are given.

Now pick a step-size h>0 and define

Yn+1 = Un + % (kl + 2‘%2 + 2k3 + kfl)

thar=t, +h
forn=0,1,2,3,...,using

ki = f(tnyn),

ky = ftn+ 5. 9n + 5F1),

ks = ftn+ 5, yn + §ka),

ks = f(tn+ h,yn + hka)

Yn+1 = Yn + Z bik;,

i=1
where, ki = hf(tn: yﬂ):

ko = hf(tn + coh, yn + anky),
k3 = hf(ty + cah, yn + az1 by + aazks),
Ji‘:s - hf(tﬂ + CSh] Yn + aslkl + asﬁkﬁ + -+ a’s,s—lks—l)-

K1 is the increment based on the slope at the beginning of the interval, using 'E;', (Euler's

http://en.wikipedia.org/wiki/Euler's_method

method) ;

- h
k3 is the increment based on the slope at the midpoint of the interval, using Y+ 3 JE‘:1;

Y
K3 is the increment based on the slope at the midpoint, but now using y+3 ka ;

K4 is increment based on the slope at the end of the interval, using Y+ hk;

Algorithm for Quadratic Equation:

/ Get user input of /
a b andc

true. p=-b/(2*a)
d=b*b-4*a*c
g=sqrt(abs(d))/(2*a)

p=-clb ‘@
X
/Display error message// Display results are any // Displaylr Iinear/ Display real solutions Display complex solutions
real or complex numbers solution p p+q, p-g p+iq, p-ig

h

terminate

http://en.wikipedia.org/wiki/Euler's_method

Algorithm for Linear Equations:

Gaussian elimination is a method for solving matrix equations of the form

al,1*Xi1+ai1,2X24++"+a1,n"Xn=b1l
a2,1'X1+a2,2X24++-+a2,n*Xn=b2

an,1'X1+an,2X24+---+an,n*Xn=bn
above system of equation can be expressed in matrix form as given below

Ax=h.
(1) To perform Gaussian elimination starting with the system of equations
dy dip e Ay || by
e O e s
gy Gga o g | X by

(2) Compose the "augmented matrix equation”

apy ap oag |b x)
) @p o aay (b || x
gy @ vt agg |by |1

3)
Here, the column vector in the variables X is carried along for
labeling the matrix
Now,

perform elementary row operations to put the augmented matrix into
the upper

triangular form

B
tl-l-
b
B
s
=

-
)
ol ™
et
)
e ==
b]
A

Solve the equation of the th row for , then substitute back into the
equation of

(k-1)st row obtain a solution for Xk-1, etc., according to the formula

k
— I J"' !)
x=— b - ;X
[r)

H J=i+l

	To add two matrixes sufficient and necessary condition is "dimensions of matrix A = dimensions of matrix B".
	To multiply two matrixes sufficient and necessary condition is "number of columns in matrix A = number of rows in matrix B".
	The determinant of an n by n matrix -by recursion
	Termination condition-minor of order 2
	Matrix inversion
	Algorithm for Integration
	By numerical methods - simpson’s 1/3 method
	Numerical differentiation-by newtons interpolation formula
	Newtons forword interpolation formula

	Algorithm for Differential equation
	By runge-kutta 4th order method

	a1,1⋅x1+a1,2x2+⋯+a1,n⋅xn=b1

