

Introduction

Carrom Game is a C++ multithreaded application with OpenGL and OpenAL for
sounds and graphics. This document explains few concepts used in this program
so that anyone interested in concepts probably can try these out.

Basic architecture

There are three synchronized threads in this program. The main thread is the
game it self and the second thread is to observe collisions and motions of coins
and generate sounds.
The third thread simulates friends around the user (human player) and it
observes game events / user actions just like friends watching, and generates
conversations probabilistically for those events detected.

Main thread
(Game)

Observer thread 2
(for game status to
generate voices)

Observer thread 1
(for collisions and
motions)

Common data

(GameStatus)

Basic flow of the Program

Game progresses as a sequence of polymorphic commands issued by the
“Referee” object to the present “Shooter”. “Referee” updates the “GameStatus”
and sends it to the “GameRules” object. “GameRules” returns a set of actions to
be carried out for the particular situation.
Referee carries out the action by itself or it issues a command to the present
shooter to carryout the action. The player executes the action and returns control
back to the Referee.
 This continues until all actions are implemented. Once all actions for the
particular rule are carried out Referee updates the game status and sends it to
rules and rules returns another set of actions. This process starts when the game
starts and continues until game ends.

Example scenario – computer player had just pocketed the striker along with its
own side coin and returned control to the referee. (The rule is to take out the coin
along with a penalty coin but retain the strike with the same player. The coins are
taken out and placed by the opponent player).

P.T.O

Here Ac1, Ac2, Ac3, Ac4 and Ac5 are change player, command player to pick a
coin out, command player to pick a coin out, change player and command player
to play respectively.

Control returned to referee

Referee Player = human player Perform Ac2

Referee

Referee

Referee

Referee

Referee

Referee

Rule

Game status

Set of
actions

Implement “Ac1” which is for the
referee itself (change player)

Player = computer player

Player = human player

Player = computer
player

Perform Ac3

Implement “Ac4” which is for the
referee itself (change player)

Perform Ac5
Rules

Game status

Set of
actions

Ac1 Ac2 Ac4 Ac3

Set of actions

Ac5

Motion algorithm with collision prediction

Following collision prediction method was developed without having any
intension to create a game. Therefore OpenGL provided collision detection is not
used in this program. The Initial intension was to create a mechanism to detect
collisions of small molecules with high velocities. This method works accurately
virtually for any size and any velocity provided that relative accelerations are
sufficiently small. All other motion related events such as coin being pocketed,
stopped and collisions with walls also are predicted.
Generally in collision detection methods, collisions are detected per each frame.
This is done by checking whether two or more objects are overlapped in a
particular instance of time. However this method might fail if objects move very
fast and the sizes of objects are relatively small. This is due to the fact that
collisions might occur in between two instances of calculations.

The basic flow chart and explanations are below.

Calculate time remaining for next coin-coin collision

Calculate time remaining for next coin-wall collision

Calculate time remaining for coin to stop

Calculate time remaining for a coin to be pocketed

Time remaining for the next event (Event time -Te)
= minimum time out of previous four values

Event time
(Tc + Te) <

Next frame time
(Tc +Tf)

Calculate
positions

and
velocities at
next frame
time and
draw the

scene in the
back buffer

Wait till
frame time

(Tc + Tf)
and show

Calculate positions and velocities at next event time (Tc + Te)

Calculate “after event” velocities and directions

At least one coin
is in motion

Start

End N

Y

Y

N

a) Calculating time remaining for next coin-coin collision

For this, relative velocities and relative paths of coins are used. Collision location
in the relative path is determined and time taken for the coin to travel to the
collision location is calculated. This calculation is done with all combinations of
coins and the minimum time is considered as the time remaining for next coin-
coin calculation. For a small acceleration and for a small time period it can be
assumed that velocity change within the time period is negligibly small.

1) calculating relative velocities and relative paths

Consider two coins each having velocities and directions as depicted in the
following diagram.

Since, Vc2,c1 = Vc2,b + Vb,c1

Relative velocity of coin2 at
time t

Relative velocity of coin1 at
time t

Vc1,b

β

Vc2,b

α

C1 (x1,y1)
C2 (x2,y2)

Vc2,c1

γ

-Vc1,b

Vc2,b

Velocity of C2 relative to C1 at time t

Therefore the relative path is y = mx + c which satisfies (x2,y2) and who’s m = tan
(γ)

2) determining point of collision and time taken for it

Here,

r1 -- radius of C1
r2 -- radius of C2
r3 -- r1+r2
LN -- y = mx + c
CL -- (x-x1)2 + (y-y1)2 = r3

2 Circle who’s centre lies on x1,y1 and radius r3
p1,p2 -- intersecting points of LN and CL
d -- distance C2 travels on relative path before colliding with C1

Finding p1 and p2 is done by solving equations LN and CL.

From points p1 and p2, the one on which coins collide is the one closer to C2.

i.e

If, (x1-xp2)2 + (y1-yp2)2 > (x1-xp1)2 + (y1-yp1)2

r1

r

r3
p1

p2

LN

C1

C2

CLd

The required point is p1, else p2.

Whether this is a past occurrence or not is determined by using coin location on
the relative path after very small period of time. If the new point is closer to the
collision location it is a collision in the future. In this way the collision is predicted.

s = ut + 1/2ft2 equation is used to determine the time taken for the collision by
substituting relative velocity of C2 for “u” and deceleration component due to
friction between the coin and the board for “f”. In this way the collision time is
predicted.

This whole calculation is done for all pairs of coins and the least time is taken as
the minimum time for next coin-coin collision.

b) Calculating the time remaining for the next coin-wall collision

This is done without considering relative velocities. Since the distance between
the edge (wall) of the board and the coin is known the time taken for collision is
determined by using s=ut+1/2ft2 by substituting distance for “s”, deceleration for
“f” and velocity for “u”.

This calculation is done for all the coins that are in motion and the least time is
taken as the minimum time for next coin-wall collision.

c) Coin- coin collision calculations

Just before collision Just after collision

u1

u2

v1

v2

θ1

θ2

β1

β2

As we know, relationship between velocities in the direction of collision is,

v1-v2 = -e(u1-u2)

The velocities in a direction normal to collision direction are unaffected.

By using this and other properties of motion, the new velocities and directions are
found.

d) Coin-wall collision calculations

Just before collision Just after collision

Collision calculations with walls are done in the same manner. Velocities in
collision direction obey the above Newton’s formula and the velocities normal to it
won’t change.

Next position calculation with equations of motion

This is done by using s = ut + 1/2ft2 equation by substituting X and Y directional
components of frictional force due to friction between the coin and the board,
initial velocity of the coin and time the coin had been traveling.

θ1

u

θ2

v

Computer Player

Computer player works like this. First it analyses the situation and applies a set
of rules to determine the best shot.

Computer player’s analytical functions include the following.

• Categorizing coins to a set of categories based on coin location
• Determining all possible shots for each an every coin (direct, back etc.)
• Determining clusters of coins
• Determining possible shots for all clusters with own side coins
• Determining possibilities of shooting a coin to a more convenient location

Then it uses a set of rules to select the best shot with the findings of analytical
functions. Currently these rules are just test rules that I used to test analytical
functions. However it seemed even those simple rules are quite enough for the
game.

Thread 1 - Collision and motion observer thread

Function of this background thread is to monitor collisions and motions of coins,
manage OpenAL “Sound Sources” and play sound clips as appropriate. It is quite
possible to include the functionality of generating collision and motion sound
effects to the main thread it self. However this functionality was separated to
make sure collision calculations are done in real time, without any other burden.

Thread 2 - Game events and user activity observer thread

Function of this thread is to simulate friends around the human player. Following
diagram illustrates basic flow of the thread.

Determine user activities and game scenarios
(events) through GameStatus object

Probabilistically select an event

Probabilistically generate conversations for the
selected event

Manage OpenAL sound sources, load/unload
sound files and play sound files

a) Detecting user activities and game scenarios

Basic data used to determine user activities and game scenarios are read from
“GameStatus” structure which is updated and read by all three threads.

Thread uses a set of analytical functions to determine user actions and game
scenarios. Some analytical functions use only data from GameStatus object and
other functions use ActionLog object which is updated by other analytical
functions.

When a particular analytical function determines an action of the user it is stored
in “ActionLog”.

 Action

 ActionLog (An array of “Actions”)

Once these events are determined one of the events is selected probabilistically.
Once selected, probability of occurrence of that particular event is reduced by a
value unique to the event. However the probability of occurrence of the event is
gradually incremented with time until it reaches its original value.

ActionID Time

Ai Ti

 A1 A2 A3 A4 A5

b) Generating conversations for the selected event

This is done by using an interconnected mesh of nodes as depicted in the below
picture.

 Starter node

 Node Connection bundle

 Talk node mesh

• “Talk node mesh” is a mesh of interconnected of nodes.
• Each node represents a voice file with necessary information to play it.
• Starter nodes can start conversations for one or more events
• Nodes are connected with zero or more “connection bundles”.
• A connection bundle may contain one or more connections.
• Connection bundle connects two nodes.
• Connection represents connection between two talks
• Connections are one way, a second talk after a first talk, etc.
• Connection has properties such as probability of occurrence, relative

delay to start playing etc.

Conversations are generated and played in the following way

1) Event occurs.
2) One of the starters (probabilistically) for the particular event gets triggered.
3) One of the connections to a next node gets triggered (probabilistically).
4) This triggering process goes until it finds the end of nodes or stopped

probabilistically.
5) In this way a conversation is logically generated.
6) Information required for playing sound files are taken from triggered

nodes.
7) Sound files are opened, buffered and played with appropriate delay in

between them and buffers are released.
8) Once a particular sound file is played, “probability of occurrence” in the

respective connection is decremented by a specific value unique to that
connection. (This probability of occurrence is then gradually incremented
with time until it gains original value).

 Sample Node mesh

Above diagram shows an example mesh with probabilities of occurrence for an
event ei.
Let’s assume the triggering mechanism triggers above mesh as below.

 Sample node mesh with triggered nodes

Once the triggering process is complete, sound file name, relative delay and
node id are taken from these triggered nodes and sent to a sound player object
which plays these files one after the other with appropriate delay between clips
by using relative delay values.

The “node mesh” is informed just after a file started to play. Then the node mesh
will decrement the probability of occurrence for the particular connection by a
value unique to the connection.

 Sample node mesh after all files are played

(These values are then gradually incremented by values unique to each
connection until they gain their original values)

Shanaka Liyanage
www.lankagames.com

Event

